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Lie Algebra Quantization by the Star Product
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Abstract

We apply the star product quantization to the Lie algebra. The quantization in terms
of the star product is well known and the commutation relation in this case is called
the θ-deformation where the constant θ appears as a parameter. In the application
to the Lie algebra, we need to change the parameter θ to x-dependent θ(x). There
is no essential difference between the quantization in the quantum mechanics and
deriving quantum numbers in the Lie algebra from the viewpoint of the star product.
We propose to unify them in higher dimensions, which may be analogous to the
Kaluza-Klein theory in the classical theory.
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1 introduction

The commutation relations(CRs hereafter) of non-commutative coordinates x̂i

can be classified into several types. Two of the important types of the CRs of
operators x̂i are given by[1]

[

x̂i, x̂j
]

= iΘij , (1)
[

x̂i, x̂j
]

= iθf ij
k x̂k, (2)

where Θij , f ij
k and θ are constants. The first CR is the θ-deformation type,

and the second CR is the Lie algebra type.
The quantization using the star product is mainly applied to the first type.

The application of the star product to the second type is less known. It might
be possible to unify these types as

[

x̂i, x̂j
]

= iΘij(x̂), (3)

where Θij(x̂) are functions of x̂is in general. A special case Θij(x̂) = Θij falls
into the first type. So far, θ-deformation known as the Moyal quantization has
been studied extensively. On the other hand, the space-time operator dependent
Θij(x̂) case has been less studied from the viewpoint of star product framework.

One of the purposes of the present paper is to show the star product re-
alization of the Lie algebra type of operator CRs. When f ij

k in the CR (2)
is the structure constant of su(2), the star product representation of the CR
also yields the algebra in the same way as the operator representation. The
quantization of the Casimir operator is carried out by using functions and star
product only.

When we derive a star product for the Lie algebra type CR, we encounter a
difficulty which does not exist in the θ-deformation. In order to clarify the
difficulty we start with reviewing the definition of the star product for the
θ-deformation case. We define the star product for functions of x1 and x2,
f(x) = f(x1, x2) and g(x) = g(x1, x2), by

f(x) ⋆ g(x)

= exp

[

i
θ

2

(

∂

∂x1
∂

∂x2′
− ∂

∂x2
∂

∂x1′

)]

f(x)g(x′)|x1′=x1, x2′=x2 , (4)

where θ is a constant. As far as θ is a constant, the differential operators in the
exponent never hit θ when the exponential function is expanded. However, when
θ is a function of x1 and x2, there occurs a question whether the x-dependent θ
is differentiated by the differential operators in the exponent of the exponential
function. Though there can be several definitions, we adopt the ansatz that
θ(x) is not differentiated. In other words, we generalize the above definition to
the following definition for x-dependent θ(x) case. We denote the star product
by use of the same notation as before

f(x) ⋆ g(x)
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= exp

[

i
θ(x′′)

2

(

∂

∂x1
∂

∂x2′
− ∂

∂x2
∂

∂x1′

)]

f(x)g(x′)|x1′′=x1′=x1, x2′′=x2′=x2

=

∞
∑

n=0

1

n!

(

i
θ(x′′)

2

)n

×
(

∂

∂x1
∂

∂x2′
− ∂

∂x2
∂

∂x1′

)n

f(x)g(x′)|x1′′=x1′=x1, x2′′=x2′=x2 . (5)

The last expression is to be read that the Poisson bracket differential opera-
tor(see Eq. (6)) acts upon f and g only, and we keep this ansatz whenever we
define other type of star products throughout this paper.

This paper is organized as follows. In the following section, we discuss the
x-dependent θ-deformation. We show how such cases appear in curved space-
time. In section 3, we review the θ-deformation quantization of one-dimensional
harmonic oscillator which shows one of the most general procedure of Moyal
quantization. In section 4, we quantize the Lie algebra su(2) and su(3) using
the star product in the same way as in the Moyal quantization, after we assign
proper components to each element of a matrix (Θµν(x)) for the Lie algebra.
The quantization is implemented completely in an algebraic way. In section 5,
we propose a higher dimensional model where the quantization of a Hamiltonian
and the quantization of the Lie algebra in terms of the star product are unified
in higher dimensions. The last section is devoted to summary and discussion.

2 Generalization of the Star Product

The procedure of defining the star product for constant θ is a little bit cumber-
some as shown in Eq.(4). First we need to distinguish the variables of a function
f(x) and g(x) and then take derivatives by allocating the variables to derivative
operators. After the derivatives are taken, the variables are set to be equal.

When we change the constant θ to a function of x1 and x2, θ(x), manipula-
tion becomes more complicated. As for a question whether θ(x) is differentiated
by the differential operators in the exponent, we adopt the ansatz that the dif-
ferential operators operate only on the functions f(x1, x2) and g(x1, x2) and
not on θ(x) as in Eq.(5). The merit of this ansatz is that the Poisson bracket
operator defined by

∂

∂x1
∂

∂x2
− ∂

∂x2
∂

∂x1
, (6)

on the functions always keeps its form because part of the operators never
operates on θ(x), by assumption. We keep this ansatz as a prescription for the
generalization of the star product in the discussion below. We also comment on
the reason why we need to study x-dependent θ(x).

In order to generalize the star product, we replace differential operators by
vector fields. Then x-dependent coefficient in front of the differential operators
appear, and we follow the above ansatz in this case. The generalized star product
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is explicitly written as

f(x) ⋆ g(x) = µ

{

exp

[

i
Θab

2
Xa

⊗

Xb

]

f(x)
⊗

g(x)

}

, (7)

where the independent vector field Xa, (a = 1, 2, · · · , n) is given by

Xa = eµa(x)∂µ, (8)

and is assumed to satisfy

[Xa, Xb] = 0. (9)

In (7), Θab (a, b = 1, 2, · · · , n) is an antisymmetric constant in indices a and
b, and f(x) and g(x) are functions of n variables xi, (i = 1, 2, · · · , n). The
expansion of the generalized star product is written as

f(x) ⋆ g(x)

= f(x)g(x) +
i

2
ΘabXaf(x)Xbg(x)

+
1

2!

(

i

2

)2

Θa1b1Θa2b2(Xa1
Xa2

f(x))(Xb1Xb2g(x))

+
1

3!

(

i

2

)3

Θa1b1Θa2b2Θa3b3(Xa1
Xa2

Xa3
f(x))(Xb1Xb2Xb3g(x)) + · · ·

= f(x)g(x) +
i

2
Θµν∂µf(x)∂νg(x)

+
1

2!

(

i

2

)2

Θµ1ν1Θµ2ν2(∂µ1
∂µ2

f(x))(∂ν1∂ν2g(x))

+
1

3!

(

i

2

)3

Θµ1ν1Θµ2ν2Θµ3ν3(∂µ1
∂µ2

∂µ3
f(x))(∂ν1∂ν2∂ν3g(x)) + · · · ,(10)

where the coefficients Θµν appearing in front of the differential operators are
functions of x given by

Θµν = Θµν(x) = Θabeµa(x)e
ν
b (x). (11)

Here we have followed the prescription that the differential operators operate
only on the functions f(x) and g(x), and not on Θµν(x). We thus define the
generalize star product by

f(x) ⋆ g(x)

=

∞
∑

n=0

1

n!

(

i
Θµν(x′′)

2

)n (
∂

∂xµ
∂

∂xν ′
− ∂

∂xν
∂

∂xν ′

)n

f(x)g(x′)|x′′=x′=x.(12)

We note that this formula of the generalized star product coincides with the
ordinary definition of the star product (5) when Θµν = θǫµν . We stress that
we obtain this formula similar to one with a constant coefficient, as the conse-
quence of the prescription, otherwise there can appear terms which include the
derivatives of vielbein eµa(x)s.
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We denote the star product CR by

[f(x), g(x)]⋆ = f(x) ⋆ g(x)− g(x) ⋆ f(x). (13)

We apply the formula to the case f(x) = xµ and g(x) = xν to obtain

[xµ, xν ]⋆ = iΘµν(x), (14)

where µ, ν = 1, 2, · · · , n. In this paper, we do not take up the form of vielbein
too much. We rather take this equation as a starting point. By assuming
possible forms of Θµν(x), we study what we can obtain from this equation as
the result of possible assumptions.

3 One-Dimensional Harmonic Oscillator

In this section, we quantize the one-dimensional harmonic oscillator by using
the star product. The energy spectrum is quantized using the stargenvalue
equation[2]. The one-dimensional harmonic oscillator falls into an application
of the generalized star product by inserting Θµν(x) = θǫµν , (µ, ν = 1, 2) with
constant θ, which is the simplest case of the generalized star product cases,
or the ordinary star product used for the θ-deformation. Inserting this into
Eq.(14), we obtain

[x1, x2]⋆ = iθ. (15)

The star product which we use in this section is obtained from (12) by setting
Θµν(x) = θǫµν . The dimension is two which is the smallest dimension in the
phase space of coordinate and momentum. As far as we apply the star product
to the θ-deformation to such phase space, the dimension is always even. This
example shows contrasting features in comparative with the Lie-algebra types
discussed in the following section, which allow for the odd number of dimensions.

We introduce new variables a and ā by

a =
x1 + ix2√

2
, (16)

ā =
x1 − ix2√

2
. (17)

Then the differentiations with respect to x1 and x2 are replaced by those with
respect to a and ā as

∂

∂x1
=

1√
2

(

∂

∂a
+

∂

∂ā

)

, (18)

∂

∂x2
= i

1√
2

(

∂

∂a
− ∂

∂ā

)

. (19)
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Inserting these results to the star product, we obtain

f ⋆ g = exp

[

θ

2

(

∂

∂a

∂

∂ā′
− ∂

∂a

∂

∂ā′

)]

f(a, ā)g(a′, ā′)|a′=a, ā′=ā′ . (20)

Then, the CR is written in terms of a and ā as

[a, ā]⋆ = θ, (21)

suggesting a and ā play roles of an annihilation operator and a creation operator
in the operator formalism, respectively.

We next discuss the stargen equation of the one-dimensional harmonic os-
cillator Hamiltonian given by

H =
1

2
((x1)2 + (x2)2) =

1

2
(ā ⋆ a+ a ⋆ ā). (22)

We shall study the stargenstates belonging to the stargenvalues of the Hamil-
tonian. The stargenstate ψ and stargevalue E correspond to the eigenstate and
eigenvalues in the operator formalism, respectively. The stargen-value equation
is given by

H ⋆ ψ = Eψ. (23)

In order to solve this equation, there can be an analytic method and an algebraic
method. Here we use the algebraic method. We first rearrange the order of a
and ā in the Hamiltonian as

H = ā ⋆ a+
θ

2
= a ⋆ ā− θ

2
=

1

2
(a ⋆ ā+ ā ⋆ a). (24)

We then define the vacuum state ψ0 by

a ⋆ ψ0 = 0. (25)

The stargen-value equation is solved by

H ⋆ ψn = Enψn, (n = 0, 1, 2 · · ·) (26)

where the stargenstate ψn and the stargen-value En are given by

ψn = (ā⋆)nψ0, En = (n+
1

2
)θ. (27)

This is proved by the inductive method. The vacuum state satisfies

H ⋆ ψ0 = (ā ⋆ a+
θ

2
) ⋆ ψ0 =

θ

2
⋆ ψ0, (28)

showing that Eq.(27) holds for n = 0. We assume that Eq.(26) holds for n = k.
When n = k + 1, the stargen-value equation reads

H ⋆ ψk+1 = H ⋆ ā ⋆ ψk = (ā ⋆ H + θā) ⋆ ψk = (k + 1 +
1

2
)θψk+1, (29)
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where we have used

[H, ā]⋆ = θā. (30)

Therefore, Eq.(26) holds also for n = k + 1. We have thus shown that Eq.(23)
is solved by Eqs.(26) with Eq.(27) for non-negative integer number n.

This is a well-known result in the operator formalism or the Schrödinger
equation, and we have shown that the same result can be obtained by solving
the stargen-value equation. We remark here that the energy spectrum is semi-
infinite.

4 Lie algebra

In this section, examples of x-dependent Θµν(x) in (14) are shown. In the first
subsection, we show su(2) as an example. In the second subsection, su(3) is
exhibited as another example.

4.1 su(2)

We present a three dimensional space model in which the coordinates xµ satisfy
Eq.(14) with a condition n = 3:

[xµ, xν ]⋆ = iΘµν(x), (µ, ν = 1, 2, 3)

where Θµν(x) is an entity of a 3× 3 matrix given by

(Θµν(x)) = 2θ





0 x3 −x2
−x3 0 x1

x2 −x1 0



 . (31)

Then, Eq.(14) with this assignment yields the su(2) CR in terms of the star
product

[xµ, xν ]⋆ = 2iθǫµνλx
λ, (32)

where ǫµνλ are constants antisymmetric in all indices with ǫ123 = 1.
We next discuss the quantization of this algebra. Introducing j± and j3 by

j± =
x1 ± ix2

2
, (33)

j3 =
x3

2
, (34)

the CRs are rewritten as

[j3, j±]⋆ = ±θj±, (35)

[j+, j−]⋆ = 2θj3. (36)
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We define j2 known as a Casimir operator in the operator formalism by

j2 =

3
∑

i=1

j2i , (37)

then the CRs with js become
[

j3, j
2
]

⋆
= 0, (38)

[

j±, j
2
]

⋆
= 0, (39)

which show that j2 is commutable with all js.
In order to obtain stargen-values and stargen functions, we need to solve the

stargen-value equations of j3 and j2. Since they are commutable, the stargen
functions are characterized by two indices which are independent to each other.
We denote them by l and m. In the quantization of a harmonic oscillator in the
previous section, we quantized the energy spectrum of the Hamiltonian function.
In the present case, we quantize the su(2) algebra in which the stargen function
is that of j3 and j2 at the same time. This may be similar to the situation where
a constraint on the eigenstate of a Hamiltonian is imposed.

We study the stargen-value equation of j3. We define the state belonging to
the stargen-value mθ by

j3 ⋆ flm = mθflm, (40)

where m is assumed to be an integer or half-integer. As for the range of m, a
condition which bounds the range will be imposed later. We also assume

j2 ⋆ flm = γθ2flm, (41)

where γ is assumed to be expressed in terms of l only and its explicit form will
also be computed later.

The states flm±k with the second quantum number m± k can be obtained
by operating j± upon flm state k times as

flm±k ∝ (j±⋆)
kflm. (42)

These can be derived in the following way. By using (35), we obtain

j3 ⋆ (j± ⋆ flm) = (j± ⋆ j3±θj±) ⋆ flm = (m±1)θ(j± ⋆ flm). (43)

Then we find that

j± ⋆ flm ∝ flm±1. (44)

By repeating this procedure, Eq.(42) can be proved.
As for the range of m, we assume that m ranges from −l to l where we

assume that l is integer or half-integer. In order this to be realized, we impose
a condition that the value m does not exceed the maximal value l:

j+ ⋆ fll = 0. (45)

8



By taking a complex conjugate of this equation, we also have

fl−l ⋆ j− = 0. (46)

These conditions guarantee the finite range of m;−l ≤ m ≤ l.
Last of all, we determine the explicit form of γ, which is expressed in terms

of l. Noting that

j2 = j− ⋆ j+ + θj3 + j23 , (47)

we obtain, by operating j2 on fll,

j2 ⋆ fll = (j− ⋆ j+ + θj3 + j3 ⋆ j3) ⋆ fll = (l2 + l)θ2fll. (48)

Then, by operating j− on fll (l −m) times, we obtain

j2 ⋆ flm = (l2 + l)θ2flm. (49)

We have thus derived that γ = l(l+ 1).
We have assumed that l takes either the integer value or half-integer value.

When l takes integer values, the algebra represents so(3). Setting θ = h̄, we
obtain the algebra of the angular momentum. When l takes half-integer values,
the algebra represents su(2), which can be interpreted as a spin representation
or the internal symmetry, isospin. For example, when l is set to be l = 1/2, the
value of m takes either m = 1/2 or m = −1/2, which correspond to an upstate
and a downstate of isospin, respectively.

4.2 su(3)

In this subsection, we discuss su(3) algebra in terms of the star product. We
start with defining the star product. The rank of the root space of su(3) is two
in contrast to one in su(2) case. This makes it complicated to impose constraints
in order to confine the states into the multiplet representation of su(3).

We study a eight dimensional space model in which the coordinates xi, (i =
1, 2, · · · , 8) satisfy Eq.(14) with a condition n = 8:

[xµ, xν ]⋆ = 2ifµνλx
λ = iΘµν(x),

where fµνλ is the su(3) structure constant and Θµν(x) is given by

(Θµν(x))

= θ























0 2x3 −2x2 x7 −x6 x5 −x4 0
−2x3 0 2x1 x6 x7 −x4 −x5 0
2x2 −2x1 0 x5 −x4 −x7 x6 0
−x7 −x6 −x5 0 x3 x2 x1 −

√
3x5

x6 −x7 x4 −x3 0 −x1 x2
√
3x4

−x5 x4 x7 −x2 x1 0 −x3 −
√
3x7

x4 x5 −x6 −x1 −x2 x3 0
√
3x6

0 0 0
√
3x5 −

√
3x4

√
3x7 −

√
3x6 0























.
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For example, we can read the following examples from this matrix

[x1, x2]⋆ = 2iθx3, [x3, x1]⋆ = 2iθx2, [x2, x3]⋆ = 2iθx1, (50)

which show that the CRs constitute one of the su(2) subalgebras of su(3).
We introduce new variables in order to adapt to the ordinary expressions.

We define Hi, (i = 1, 2) by

H1 =
x3

2
, (51)

H2 =
1√
3
x8, (52)

which are commutable with each other

[H1, H2]⋆ = 0. (53)

We further define linear combinations of xi by

E±1 = (x1 ± ix2)/2, E±2 = (x6 ± ix7)/2, E±3 = (x4 ± ix5)/2. (54)

Some of the CRs are given by

[E1, E−1]⋆ = 2H1, (55)

[E2, E−2]⋆ =
3

2
H2 −H1, (56)

[E3, E−3]⋆ =
3

2
H2 +H1. (57)

We introduce two component vector ~H by

~H =

(

H1

H2

)

. (58)

Then we obtain
[

~H,E±i

]

⋆
= ±~αiE±i, (i = 1, 2, 3) (59)

where two component vectors ~αis called root vectors are given by

~α1 =

(

1
0

)

, ~α2 =

(

− 1
2
1

)

, ~α3 =

(

1
2
1

)

= ~α1 + ~α2. (60)

We next study the stargen-value equation of ~H . We denote the stargen
function of ~H by fI3Y (x), where I3 and Y are the stargen-values of H1 and H2,
respectively. The equation reads

~H ⋆ fI3Y (x) = fI3Y (x) ⋆ ~H = ~ηfI3Y (x), (61)

10



Figure 1: The translations by E1, E2 and E3 expressed by ~α1, ~α2 and ~α3.

where ~η = (I3, Y )t. Though there are left and right operation of ~H in the

stargen-value equation, the operation of ~H from left shall be omitted in the
following discussion for simplicity, if not necessary.

We study the translations of a point specified by the stargen-values (I3, Y )
in I3Y -plane by the operation of E±is. This can be explicitly shown by

~H ⋆ (E±i ⋆ fI3Y (x)) = (~η ± ~α±i)(E±i ⋆ fI3Y (x)). (62)

This shows that the state E±i ⋆ fI3Y (x) is the stargen state belonging to the
stargen-value ~η ± ~α±i:

E±i ⋆ f~η(x) ∝ f~η±~αi
(x), (63)

where f~η(x) = fI3Y (x). From this result, we find that E±i translate a state at
~η to one at ~η± ~αi. The translations by E±i, (i = 1, 2, 3) are illustrated in Fig.1.

We next show that every state in a multiplet can be visited by these oper-
ations by E±i. As an example, we can visit all the states in the octet starting
from a state in the octet. Starting from a f10(x) state, other states can be
visited by successive operations of E±is as

f00(x) ∝ E−1 ⋆ f10(x), (64)

f−10(x) ∝ E−1 ⋆ f00(x), (65)

f− 1

2
−1(x) ∝ E−2 ⋆ f−10(x), (66)

f 1

2
−1(x) ∝ E1 ⋆ f− 1

2
−1(x), (67)

f00(x) ∝ E2 ⋆ f 1

2
−1(x), (68)

f− 1

2
1(x) ∝ E2 ⋆ f00(x), (69)

f 1

2
1(x) ∝ E1 ⋆ f− 1

2
1(x), (70)

which is shown in Fig.2.
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Figure 2: Traveling in the octet states driven by E±i starting from f10 state.

When we observe the traveling in the octet in Fig.2, we note that the state
designated by (I3, Y ) = (0, 0) is visited twice. As will be shown later, we have

(E−1⋆)
2f00(x) = 0, (71)

(E2⋆)
2f00(x) = 0. (72)

Since (E−1⋆)
2 6= (E2⋆)

2, this suggests that the state f00(x) is doubly degenerate,
though it can not be distinguished by the values of I3 and Y .

In the above traveling among the octet states, the path should not exceed
the boundary of the hexagon. These constraints on the path should be imposed
so that the traveling is limited inside an octet. After the introduction of the
Casimir operator, we shall discuss these constraints.

In su(3) algebra, there are two Casimir operators. The stargen-values of
the Casimir operators should be the same for any state in the octet, because
they are commutable with all xis and so Eis. We discuss one of the Casimir
operators. The Casimir operator C(su(3)) is defined by

C(su(3)) =

8
∑

i=1

(

xi

2

)2

. (73)

Then, this can be rewritten in terms of His and E±is as

C(su(3)) = H1(H1 + 1) +
3

4
H2(H2 + 2) +

3
∑

i=1

E−i ⋆ Ei. (74)

At each state on the vertices of hexagon representing the octet states, we should
impose conditions that forbid the translations outward of the hexagon to the
outer states and allow translations inward to the states within the hexagon. In
order to realize this, we impose the following conditions at (I3, Y ) = (1, 0)

E1 ∗ f10(x) = 0, E−2 ∗ f10(x) = 0, E3 ∗ f10(x) = 0. (75)
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At (I3, Y ) = (12 , 1), the conditions are given by

E1 ∗ f 1

2
1(x) = 0, E2 ∗ f 1

2
1(x) = 0, E3 ∗ f 1

2
1(x) = 0, (76)

and at (I3, Y ) = (− 1
2 , 1)

E−1 ∗ f− 1

2
1(x) = 0, E2 ∗ f− 1

2
1(x) = 0, E3 ∗ f− 1

2
1(x) = 0. (77)

As for other states at the antipodal vertices, similar conditions with Eis with
opposite signed i are obtained by the complex conjugation of the above con-
straints. Noting that f 1

2
1(x) ∝ E2 ⋆ f00 and using the middle equation of (76),

we obtain

(E2⋆)
2f00 = 0,

which is Eq.(72). This shows that the state f00 is a state of the triplet of su(2).
In the similar way, we can show Eq.(71). Since there are two independent su(2)
subalgebras of su(3), we have Eqs.(71) and (72) imposed on f00 independently.

We can now evaluate the Casimir operator. As we have mentioned, evalu-
ation at any state would be the same. We evaluate it at (I3, Y ) = (1, 0). We
need to rewrite the Casimir operator so that the conditions (75) are made use
of. By using the CR (56), the Casimir operator should be rewritten as

C(su(3)) = H1(H1 + 2) +
3

4
H2

2 + E−1 ⋆ E1 + E2 ⋆ E−2 + E−3 ⋆ E3. (78)

Then we can evaluate it to obtain

C(su(3)) ⋆ f10(x) = 3f10(x). (79)

The same value can be obtained from other states of the octet by rearranging
the order of Ei and E−i, so that it fits to the conditions at vertex of the hexagon.

5 Unification of Quantizations in the External
space and Internal Space

In section 3, we quantize a Hamiltonian of one-dimensional harmonic oscillator
in the two dimensional phase space in terms of the star product. We apply
the star product method also to the Lie algebra. In section 4, we quantize
the Lie algebra su(2) in the three dimensional representation space, and Lie
algebra su(3) in the eight dimensional representation space. The quantization
is made by setting CRs among the coordinates in each dimension. Once the
CRs among the coordinates are set, or explicit Θµν(x) are determined, the
quantization is implemented. The terminology “quantization” is meant by not
only the quantization of the energy levels but also computing quantum numbers
in the Lie algebra. As far as quantization by using the star product is concerned,
there seems to be no reason to distinguish both quantizations in the phase space

13



and representation space. Only difference between them is the choice of entities
of Θµν(x) in Eq.(14).

Then it is natural to unify two quantizations. The unification of the external
space and the internal space reminds us of the Kaluza-Klein(K-K hereafter)
theory[3]. In the K-K theory, the unification of the external space and internal
space in higher dimension together with the dimensional reduction leads to the
4-dimensional theory with internal symmetries, like the Einstein gravity with a
U(1) gauge field. The K-K theory is a classical theory. In this paper, we claim
that the quantizations are unified in higher dimensions by setting the CRs in
higher dimensions, which brings about the energy levels in the external phase
space and the quantum numbers in the representation space, at the same time.

We show this unification idea by a toy model in which the external phase
space is two dimensional phase space and the internal representation space is
three dimensional. Then we discuss the quantization in terms of the star prod-
uct in five dimensions. We assume that the internal and external spaces are
factorized. The star product is characterized by Θµν(x), (µ, ν = 1, 2, · · · , 5)
given by

(Θµν(x)) = θ











0 r 0 0 0
−r 0 0 0 0
0 0 0 x5 −x4
0 0 −x5 0 x3

0 0 x4 −x3 0











, (80)

where r is some constant. Although we can not determine the magnitude of θ
and r separately, we might regard their multiplication θ · r as h̄. We factorize
the Wigner function f(x) in 2+3 dimensions into two parts, one in the external
phase space f1(x

1, x2) and the other in the internal representation space. We
assume that the Wigner function of five variables is factorized to the Wigner
function f1(x

1, x2) of two variables and the Wigner function f2(x
3, x4, xt) of

three variables

f(x) = f1(x
1, x2) · f2(x3, x4, xt). (81)

Then the remaining computation has been already shown in previous sections.
When we assume CRs in higher dimensions, the stargen function f1(x

1, x2) gives
rise to the states for the quantized energy spectrum, and the stargen function
f2(x

3, x4, xt) yields the quantum numbers of su(e) like an isospin state. In
this way, the energy spectrum and the isospin state, which is either upstate
or downstate of su(2). These quantum numbers emerge simultaneously by the
quantization in higher dimensions. Although this is simply a toy model, we can
extend the present model in a more realistic way.

6 Summary and Discussion

In this paper, we have shown the star product construction of CR given by (14),
which includes the θ-deformation quantization and the x-dependent Θµν(x)
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cases like the Lie algebra. In the curved space time, where the coordinates
are not perpendicular to each other and so the vielbein eµi (x) is not δ

µ
i , it seems

natural to use x-dependent Θµν(x). We showed that the CR is reduced to that
of su(2) or su(3) when Θµν(x) has special entities. A special case of constant
Θµν(x) is nothing but the θ-deformation. There is no essential difference be-
tween the quantization of quantum mechanics and the quantization of the Lie
algebra from the viewpoint of the star product quantization. Then, it seems nat-
ural to unify the quantizations in the internal space and external phase space
to higher dimensions. In section 5, we gave a toy model of unified quantiza-
tion where one-dimensional harmonic oscillator and su(2) internal symmetry
are simultaneously quantized.

In section 4 we discuss the quantization of su(2) and su(3). When we com-
pare two quantizations, su(2) is much easier because the rank is just one. In
order to confine states in a multiplet of su(2), we limited outward translations
from the multiplet. This limitation corresponds to the vacuum condition in the
quantum mechanics like the one-dimensional harmonic oscillator. In su(2), one
limitation brings about another limitation by complex conjugation. Therefore,
the number of states is finite. On the other hand, in the θ-deformation the
number of states is infinite.

Though the model in section 5 is just a toy model, we can generalize it to
more realistic model that is comprised of realistic external phase space and real-
istic internal symmetry space. Since a Wigner function expresses a probability
of the corresponding state, it would be possible to compute the possibilities of
various dimensional reductions when we obtain all the Wigner functions corre-
sponding to those dimensional reductions. For example, it might be possible
to compare the magnitude relation of probabilities of su(3) and su(2) × u(1)
by use of the Wigner functions. In the present discussion, we made use of the
algebraic method in finding the energy spectrum and quantum numbers of the
Lie algebra invariants. But we can also use the analytic method in finding those
quantum numbers. Then we need to solve the stargen-value equation to obtain
the stargen functions in this analytic method. These functions are nothing but
the Wigner functions representing the probabilities. A study investigating in
this direction will be reported in the future.
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