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Abstract

We study intersecting extremal black attractors in non chiral 8D N = 1 su-

pergravity with moduli space SO(2,N)
SO(2)×SO(N) × SO (1, 1) and work out explicitly the

attractor mechanism for various black p-brane configurations with the typical near

horizon geometries AdSp+2 × Sm × T 6−p−m. We also give the classification of

the solutions of the attractor equations in terms of the SO (N − k) subgroups of

SO (2)× SO (N) symmetry of the moduli space as well as their interpretations in

terms of both heterotic string on 2-torus and its type IIA dual. Other features

such as non trivial SO(1, 7) central charges Zµ1...µp
in 8D N = 1 supergravity and

their connections to p-form gauge fields are also given.
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1 Introduction

During the last decade, black attractor solutions in supergravity theories have been a

subject of big interest; especially in connection with low energy 10D superstring and

11D M-theory compactifications [1]-[18]. Because of their specific properties [19]-[38],

static, asymptotically flat and spherically symmetric extremal (vanishing temperature

for non-zero entropy) black attractors have been investigated for supergravities in diverse
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space time dimensions; with various numbers of conserved supersymmetries [39]-[56].

Guided by the new solutions on extremal BPS and non BPS black attractors in higher

dimensional supergravity; in particular those on intersecting attractors obtained first by

Ferrara et al. in [57], see also [58]; we focus in this paper on non chiral 8D N = 1 su-

pergravity with moduli space SO(2,N)
SO(2)×SO(N)

× SO (1, 1) and study explicitly the attractor

mechanism for various configurations of extremal black p-branes with the typical near

horizon geometries AdSp+2 × Sm × T 6−p−m where p = 0, 1, 2, 3, 4 and m = 2, 3, 4, 5, 6.

Actually this analysis completes the results obtained in [58] for the case of maximal

N = 2 supergravity in 8D ; it also gives new solutions, along the line of [57], classified

by SO (N − k) subgroups of the SO (2)× SO (N) symmetry of the moduli space of the

non chiral 8D N = 1 supergravity.

The interest into this study is also motivated from the two following features: first

because of its 16 conserved supersymmetries, extremal black attractors in this 8D su-

pergravity may be viewed as the ancestor of an interesting class of black holes in 7D,

6D, 5D and 4D supergravities [1, 5]; in particular in 4D N = 2 and 4D N = 4 resulting

from adequate compactifications of the 8D space time down to 4D. It is also interesting

from the view of higher dimensions since non chiral 8D N = 1 supergravity may arise

as low energy of heterotic string on T 2 and type IIA string on a real compact surface

Σ that preserves half of the 32 conserved supercharges of the 10D type II superstrings.

Black attractor solutions in 8D offers therefore a framework to explicitly check specific

features of the heterotic/type IIA duality in 8D [59].

The paper is organized as follows. In section 2, we review the 8D N = 1 supersymmetry

algebra with central charges Zµ1...µp
. We derive the various SO (1, 7) charges of these

Zµ1...µp
’s and give their connection with p-branes. It is also shown why the 3-form gauge

field in N = 1 theory should vanish. In section 3, we develop the study of the non

chiral N = 1 supergravity in 8D and its links with the low energy limit of the heterotic

superstring on T2 and its type IIA superstring dual. The various charges of the black

attractors are also given. In section 4, we first give the effective potential and the at-

tractor eqs; then we derive their solutions together with their classification in terms of

SO (N − k) subgroups of the SO (2)×SO (N) symmetry of the moduli space. In section

5, we study the intersecting attractors along the line of the approach of [57, 58] and in

section 6, we give a conclusion.

2 Central charges in 8D N = 1 supersymmetry

In this section, we identify the full set of the bosonic ”central charges” Zµ1...µp
involved in

the generalized non chiral 8D N = 1 superalgebra and give their links to black p-brane
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attractors by using group theoretical methods.

To start it is interesting to recall that like in 4D space time, supersymmetry with sixteen

supercharges may also live in other space times. In eight dimensions; this is precisely

N = 1 supersymmetry given by a graded superalgebra with both commutators and

anticommutators; it exchanges 8D space time bosons into 8D space time fermions. In

addition to the twenty eight M[µν] symmetry generators of SO (1, 7), the standard (non

extended) N = 1 non chiral supersymmetry is moreover generated by the energy mo-

mentum vector operator Pµ and the fermionic generators Qα and Q̄α̇ transforming as

Weyl spinors under SO (1, 7). To have more insight on the structure of this superalgebra

and its connection with black branes in 8D, we give below some useful details.

2.1 N = 1 superalgebras in 8D

We begin by recalling the group theoretical nature of the fermionic generators in 8D

N = 1 non chiral supersymmetry; these are SO (1, 7) spinors with 24 = 16 complex com-

ponents that transform in the reducible 8s ⊕ 8c representation of the 8D Lorentz group

respectively given by the eight component Weyl spinors Q+
α and Q̄−

α̇ . These fermionic

generators carry also charges under the SO (2) ∼ UR (1) R-symmetry of the supersym-

metric algebra.

Using general properties of tensor products of SO (1, 7)×UR (1) representations, we learn

that one may distinguish three kinds of N = 1 anticommutation relations in 8D ; two

chiral (complex) relations and a vector like (real) one:

(1, 0) chiral relations in 8D

These are complex relations involving only the fermionic generator Q+
α ,

{

Q+
α , Q

+
β

}

= Z++
(αβ) ,

[

Q+
α , Q

+
β

]

= Z++
[αβ] , (2.1)

where the symmetric Z++
(αβ)’s should be thought of as operators carrying charges of black

branes in 8D. The antisymmetric term Z++
[αβ]’s, which may be expanded as σµν

[αβ]Mµν may

be interpreted in terms of SO (1, 7) rotations in the Weyl representation.

(0, 1) antichiral relations in 8D

These are the complex conjugate of (2.1); they involve the Q̄α̇ spinor

{

Q̄−
α̇ , Q̄

−

β̇

}

= Z̄−−

(α̇β̇)
,
[

Q̄−
α̇ , Q̄

−

β̇

]

= Z̄−−

[α̇β̇]
, (2.2)

where Z̄−−

(α̇β̇)
and Z̄−−

[α̇β̇]
are the complex conjugate of Z++

(αβ) and Z++
[αβ].

N = (1, 1) superalgebra in 8D

This is a vector like superalgebra with fermionic generators Q+
α and Q̄−

α̇ obeying the
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following anticommutation relations,
{

Q+
α , Q

+
β

}

= Z++
(αβ) ,

{

Q+
α , Q̄

−

β̇

}

= Z0
αβ̇

,
{

Q̄−
α̇ , Q̄

−

β̇

}

= Z̄−−

(α̇β̇)
,

(2.3)

where the bosonic operators Z++
(αβ), Z̄

−−

(α̇β̇)
are as before and where Z0

αβ̇
contains the usual

energy momentum vector Pµ generating space time translations.

2.2 More on central charges in 8D N = 1 supersymmetry

The bosonic operators Z++
(αβ), Z̄

−−

(α̇β̇)
, Z0

αβ̇
capture several irreducible SO (1, 7) space time

representations. To get their irreducible components, we use the correspondence1

Q+
α ∼ (8s,+1) , Q̄−

α̇ ∼ (8c,−1) (2.4)

and tensor product properties of the SO (1, 7)× UR (1) representations; in particular

(8s,+1)× (8s,+1) = (1,+2) + (28,+2) + (35s,+2) ,

(8s,+1)× (8c,−1) = (8v, 0) + (56v, 0) ,

(8c,−1)× (8c,−1) = (1,−2) + (28,−2) + (35c,−2) .

(2.5)

The symmetry property of the anticommutators of eqs(2.3) allows to read the group

theoretical structure of the Z++
(αβ), Z̄

−−

(α̇β̇)
and Z0

αβ̇
; we have:

Z++
(αβ) ∼ (1,+2) ⊕ (35s,+2) ,

Z0
αβ̇

∼ (8v, 0) ⊕ (56v, 0) ,

Z̄−−

(α̇β̇)
∼ (1,−2) ⊕ (35c,−2) .

(2.6)

Notice that the sub-index i = v, s, c refer to the triality property of the SO (1, 7) sym-

metry which have three kinds of fundamental representations with same dimension.

Moreover, using the SO (1, 7) Dynkin labels (l1l2l3l4), the three eight dimensional basic

representations read as follows,

8v = (1000) , 8s = (0001) , 8c = (0010) . (2.7)

With these basic representations, one can build the higher dimensional ones by taking

tensor products. For the example of the leading lower dimensional representations, we

have
8i × 8i = 1 + 28 + 35i ,

8i × 8j = 8k + 56k ,
(2.8)

1viewed from 4D, this corresponds to N = 4 supersymmetry with fermionic generators QI

α
in the

(2s, 4) representation of SO (1, 3)× SU (4).
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with i, j, k cyclic and where

35v = (2000) , 35s = (0002) , 35c = (0020) ,

56v = (0011) , 56s = (1010) , 56c = (1001) .
(2.9)

Notice also that besides the real energy momentum vector Pµ ∼ 8v and complex sin-

glets Z++
0 = Tr

(

Z++
αβ

)

∼ 1, the bosonic operators Z++
(αβ), Z̄

−−

(α̇β̇)
, Z0

αβ̇
capture moreover

SO (1, 7) higher dimensional representations namely the 35s, 35c, 56v.

In terms of SO (1, 7) vector indices, these representations may be decomposed by using

antisymmetric products of the 8× 8 Pauli-Dirac Γµ- matrices as follows

Z++
(αβ) = δαβZ

++
0 + Γµνρσ

(αβ) Z
++
[µνρσ] ,

Z̄−−

(α̇β̇)
= δα̇β̇Z̄

−−
0 + Γµνρσ

(αβ) Z̃
−−
[µνρσ] ,

Z0
αβ̇

= Γµ

αβ̇
Z0

µ + Γµνρ

αβ̇
Z0

[µνρ] ,

(2.10)

where antisymmetrization with respect to space time indices is understood. Notice that

an antisymmetric rank 4-tensor type Z[µνρσ] has in general 8!
4!×4!

degrees of freedom; but

the 4- forms Z++
[µνρσ] and Z̃−−

[µνρσ] involved in (2.10) capture each 35 degrees of freedom

associated with the self dual and anti-self dual antisymmetric 4-rank tensors in 8D space

time,

Z++
µ1µ2µ3µ4

= εµ1....µ8
Z++µ5µ6µ7µ8 ,

Z̃−−
µ1µ2µ3µ4

= −εµ1....µ8
Z̃−−µ5µ6µ7µ8 .

(2.11)

From this group theoretical analysis, it follows amongst others the two following features:

(1) the simplest form of the non chiral 8D N = 1 supersymmetric algebra reads as

follows,
{

Q+
α , Q

−

β̇

}

∼ Γµ

αβ̇
Pµ ,

{

Q+
α , Q

+
β

}

∼
{

Q−
α̇ , Q

−

β̇

}

= 0 ,
(2.12)

and corresponds to switching off the p-forms Z++
0 , Z0

µ, Z
0
[µνρ] and Z±±

[µνρσ],

(2) there are no Z±±
[µν] components in eq(2.10); this means that in non chiral 8D N = 1

supergravity we should have

Z++
[µν] = 0 , Z−−

[µν] = 0 , (2.13)

showing in turn that the supergravity multiplet has 1-form and 2-form gauge fields; but

no 3-form gauge field.

Below, we switch on these charges and study extremal black attractors in non chiral 8D

N = 1 supergravity arising from superstring compactifications.
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2.3 Central charges and branes

From the above analysis, we learn that the bosonic Z- generators appearing in the gener-

alized supersymmetric algebra (2.3) exhibit a set of remarkable properties; in particular

the three following ones:

(1) to the bosonic operators Zµ1...µp
, which are charged under SO (1, 7) × UR (1), we

associate a space time p-form operator density

Zp = 1
p!
dxµ1∧...∧dxµpZµ1...µp

, (2.14)

together with the charge,

Jp =
∫

Mp
Zp , (2.15)

where Mp is a p-dimensional space time submanifold which may be thought of as the

world volume of a p-brane.

(2) The Zµ1...µp
operators have an interpretation in terms of fluxes of gauge fields in non

chiral 8D supergravity. By using the usual relations m = 1
4π

∫

S2 F2 and e = 1
4π

∫

S2 F̃2

giving the magnetic and electric charges of particles coupled to 4D Maxwell gauge fields

and thinking about the Zp’s in the same manner, we end with the following relations

Z0 ∼
∫

S2 F2 , Z1 ∼
∫

S2 F3 , Z2 ∼
∫

S2 F4 (2.16)

as well as their duals. In these relations, the Fp’s stand for the gauge invariant p-forms,

F2 = dA1, F3 = dA2, F4 = dA3, (2.17)

with Hodge duals

F̃4 = (⋆F4) , F̃5 = (⋆F3) , F̃6 = (⋆F2) , (2.18)

from which we learn

Jp =
∫

Mp×S2 Fp+2 , (2.19)

teaching us that the Zp’s describe precisely charges of p-branes that couple to the 8D

supergravity (p+ 1)- form gauge fields Ap+1 with the field strengths Fp+2 and their

magnetic duals F̃6−p.

(3) Using the relation (2.13) and eqs(2.15-2.19) it follows that J2 = 0 and

∫

M2×S2 F4 =
∫

(∂M2)×S2 C3 = 0 , (2.20)

showing that, in non chiral N = 1 supergravity, there is no magnetic nor electric charges

associated with the dyonic 4-form gauge invariant field strength F4 = dC3. In other

words there is no D2- brane in the type IIA set up of non chiral 8D N = 1 supergravity.
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3 Fluxes of black attractors in 8D

In this section we study the non chiral 8D N = 1 supergravity arising from low energy

compactifications of 10D superstring that preserve sixteen supersymmetric charges.

We first study the case of 8D N=1 supergravity embedded in heterotic string on T 2

with moduli space

MN=1
8D-Het/T 2 = SO(2,r+2)

SO(2)×SO(r+2)
× SO (1, 1) , r ≥ 0 . (3.1)

Then we develop the dual type IIA superstring on a compact real surface Σ
(r)
2 . In this

case, we will focus on the class of real surfaces given by the following union of irreducible

2-cycles (2-spheres) CI

Σ
(r)
2 = C0 ∪

(

r−1
⋃

I=1

CI

)

(3.2)

with intersection matrix

CI .CI = −KIJ (3.3)

coinciding with the Cartan matrix of the of simply laced ADE Lie algebras. The moduli

space of this theory is

MN=1
8D−IIA/Σ = SO(2,r+1)

SO(2)×SO(r+1)
× SO (1, 1) , r ≥ 0 . (3.4)

The simplest surface Σ
(r)
2 corresponds obviously to taking r = 0 and its singular limit

given by vol (C0) → 0 should be associated with a non abelian SU (2) gauge symmetry.

The similarity between MN=1
8D-Het/T 2 and MN=1

8D−IIA/Σ shows precisely the duality between

the two constructions; for details see [59].

3.1 Heterotic string on T2

First recall that the massless bosonic fields of the 10D heterotic string belong to two

representations of the 10D supersymmetric algebras; these are G10D
MN , B10D

MN , Φ
10D
dil of the

supergravity multiplet and the typical gauge fields AI
M belonging to the Yang Mills mul-

tiplets. As we are interested in this study into black attractor solutions, we will restrict

below to the abelian sector and think about AI
M as Maxwell gauge fields associated with

the Cartan subalgebra of a given rank r gauge group; i.e: I = 1, ..., r.

Under compactification of these bosonic fields on the two torus T2, we get the following

8D ones

Gµν , Bµν , σ, AI
µ, (3.5)

together with the four 8D gauge fields

Gi
µ, Bi

µ, (3.6)
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as well as the (4 + 2r) scalars

G(ij), B[ij] = εijB, AiI . (3.7)

These fields combine into two 8D N = 1 supermultiplets namely:

• the 8D gravity multiplet with bosonic content

Gµν , Bµν , Ci
µ, σ (3.8)

containing the 8D graviton Gµν , the Bµν antisymmetric field, two gauge fields

Ci
µ =

(

C1
µ, C2

µ

)

transforming as a real 2-vector under SO (2) R-symmetry; and the

8D dilaton σ.

The total number of the degrees of freedom of this gravity multiplet is 48+48 ; the

other 48 superpartners come from the gravitino Ψµα and a photino χα carrying

respectively 40 and 8 fermionic degrees of freedom.

• the 8D Maxwell multiplets whose bosonic fields are given by

Ai
µ, φij, AI

µ, φiI . (3.9)

These 8D N = 1 supermultiplets contain (2 + r) Maxwell gauge fields (Ai
µ,AI

µ)

which we denote collectively as Aa
µ with a = 1, ...r + 2; and 2 (r + 2) real scalars

φia ≡
(

φij, φiI
)

. Together with these bosons, we also have r + 2 gauginos λa
α given

by pseudo-Majorana spinors in 8D.

The moduli space of this 8D N = 1 supergravity that is embedded heterotic superstring

on T2 reads as follows

MN=1
8D-Het/T 2 = SO(2,r+2)

SO(2)×SO(r+2)
× SO (1, 1) (3.10)

where the extra factor SO (1, 1) refers to the dilaton σ and SO(2,r+2)
SO(2)×SO(r+2)

for φia. This

real space has (2r + 5) dimensions; it reduces for the particular case r = 0, to the five

dimensional one
SO(2,2)

SO(2)×SO(2)
× SO (1, 1) (3.11)

In addition to the dilaton, the four scalars φij have geometric and stringy interpretations;

three of them are given by the Kahler and complex structure of the 2-torus; the fourth

is given by the value of the BNS field on T 2.

The field strengths associated with the various gauge fields of the 8D supergravity are

given by the gauge invariant forms

F i
2 = dCi

1 , Fa
2 = dAa

1 , F3 = dB2 , (3.12)
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For later use, we give below the magnetic and electric charges associated with these field

strengths as well as the brane interpretation; more details will be given when we consider

the type IIA dual derivation. We have:

• a black hole and its 4-brane dual associated with the two graviphotons Ci
µ with

magnetic and electric charges as follows

gi =
∫

S2 F i
2 , ei =

∫

S̃6 F̃6|i (3.13)

• a black hole and its 4-brane dual associated with the (r + 2) Maxwell fields Aa
µ;

their magnetic and electric charges are given by

pa =
∫

S2 Fa
2 , qa =

∫

S̃6 F̃6|a (3.14)

these two kinds of magnetic and electric charges of the black hole/black 4-brane

combine into SO (2, r + 2) vector charges as given below

PΛ = (gi, pa) , QΛ = (ei, qa) (3.15)

• a black string and its 3-brane dual associated with the Bµν-field; the corresponding

charges are given by

p0 =
∫

S3 F3 , q0 =
∫

S̃5 F̃5 (3.16)

All these electric and magnetic charges are linked by the usual Dirac quantization rela-

tion; they determine the effective potential

Vhet
eff = Vhet

eff

(

P,Q; p0, q0, ...
)

(3.17)

of the 8D black attractors to be considered later.

Notice that one of the remarkable features of this analysis is the absence of the 4-form

field strengths F4, F̃4 as predicted from the group theory view. In what follows, we

explore this issue by studying the type IIA dual compactification down to 8D.

3.2 Black attractors in type IIA on Σ
(r)
2

In this subsection, we study the embedding of non chiral 8D N = 1 supergravity in type

IIA superstring on Σ
(r)
2 . To that purpose, we first study the compactification of type IIA

on the 2-sphere S2 corresponding to Σ
(0)
2 . Then, we extend the analysis to the surface

Σ
(r)
2 given by eq(3.2).
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In type ten dimensional type IIA superstring with 32 supercharges, the massless bosonic

particles of the perturbative spectrum, describing the low energy 10D type IIA super-

gravity, is given by

bosons : GMN , BMN , Φdil, AM , CMNK , (3.18)

with indices M,N,K = 0, . . . , 9 transforming as SO (1, 9) vectors.

These fields capture 128 on shell degrees of freedom partitioned as follows

128 = 64 + 64 = (35 + 28 + 1) + (8 + 56) , (3.19)

with the first 64 coming from NS-NS sector (GMN , BMN , Φdil) and the other 64 from

RR-sector; i.e (AM , CMNK).

We also have a non perturbative sector with p-branes namely

F1 string, NS 5-brane ; D0, D2, D4, D6. (3.20)

Some of these branes are the source of the gauge fields involved in the Maxwell sector

of non chiral 8D N = 1 supergravity. The fields are mainly similar to those given by

eq(3.9); but here they should be thought of as the gauge fields associated with a D2-

brane wrapped the irreducible 2-cycles of Σ
(r)
2 .

3.2.1 Compactification of type IIA on S
2

After the space time compactification R1,9 → R1,7 × S2 where the local coordinates

(x0, ..., x9) get split as (x0, ..., x7) and y = (z, z̄) with z = x8 + ix9 parameterizing the

2-sphere, the bosonic fields of the spectrum (3.18) reduces to:

{

Gµν

φ1 ,

{

Bµν

φ2 , σ ; Aµ, Cµνρ, Cµ, (3.21)

with

φ1 = Gzz̄ , φ2 = Bzz̄ , Cµ = Czz̄
µ (3.22)

respectively describing the Kahler modulus of the 2-sphere, the BNS field on S 2 and the

gauge particle associated with a D2-brane wrapping S2.

This field spectrum has 70 bosonic degrees of freedom; but only 48 of them combine

with the 8D gravitino Ψµ =
(

Ψα
µ, Ψ̄µα̇

)

and the graviphotino χ = (χα, χ̄α̇) to form the

non chiral N = 1 supergravity multiplet

Gµν ,Bµν , σ,Ai
µ ; Ψµ, χ (3.23)
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where Ai
µ stands for the SO (2) doublet (Aµ, Cµ). The on shell degrees of freedom are

partitioned as 48bose = (20 + 15 + 1) + 2 × 6 and 48fermi = 40 + 8. We also have the

following branes,

F1 string, (NS 5-brane/S2) ; D0,
(

D6/S2
)

,
(

D2/S2
)

,
(

D4/S2
)

. (3.24)

satisfying the usual 8D electric magnetic duality relation between electric q-brane and

its magnetic p-brane dual with the integers p and q constrained as p+ q = 4.

3.2.2 Compactification of type IIA on Σ
(r)
2

The compactification of field content of the type IIA superstring on Σ
(r)
2 extends the case

of the 2-sphere; it leads to the following:

(1) a gravity multiplet; the same as in eq(3.23)

(2) r Maxwell multiplets given by

Aa
µ, φia, a = 1, ..., r (3.25)

where the φ1a’s are the Kahler parameters of the irreducible 2-cycles Ca (2-spheres S2
a)

involved in Σ
(r)
2 and the φ1a’s stand for the values of the BNS fields on these S2

a’s.

The gauge fields Aa
µ are associated with the wrapping of D2-brane on the S2

a’s of the

compact surface Σ
(r)
2 ; i.e:

Aa
µ : (D2/S2

a) (3.26)

The moduli space MN=1
8D-IIA/Σr

2
of this 8D N = 1 supergravity is parameterized by the

(2r + 1) scalars namely the dilaton σ and the SO (2) doublets φia; it is given by

MN=1
8D-IIA/Σr

2
=

SO(2,r)
SO(2)×SO(r)

×SO (1, 1) (3.27)

This space is comparable to MN=1
8D-het/T 2 eq(3.10); this is due to the string-string duality

between the heterotic on T2 and type IIA superstring on Σ
(r)
2 that follows from the well

known duality relation in 6D space time,

Het/T4 ↔ Type IIA/K3 (3.28)

The field strengths Fp+1 = dAp, associated with the various gauge fields of the 8D N = 1

supergravity, are given by

F i
2 = dAi , Fa

2 = dAa , F3 = dB2 (3.29)
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These gauge invariant fields transform under the SO (2)× SO (r) group as follows

F i
2 Fa

2 F3

SO (2)× SO (r) (2, 1) (1, r) (1, 1)
(3.30)

The corresponding magnetic and electric charges are as follows:

(a) the string and its dual 3-brane

p0 =
∫

S3 F3 , q0 =
∫

S̃5 F̃5 (3.31)

the string is magnetically charged while the 3-brane is electrically charged.

(b) the black hole magnetic charges (gi, pa) and the electric duals (ei, qa) given by

gi =
∫

S2 F i
2 , ei =

∫

S̃6 F̃6|i ,

pa =
∫

S2
a
F2 , qa =

∫

S̃6
a
F̃6|a .

(3.32)

These are respectively SO (2) and SO (r) vectors.

We end this section by noting that one may write down the lagrangian densities of the

various gauge fields. For the bosonic sector we have, in addition to the Einstein-Hilbert

term 1
16πG8

∫

M8

√
−GR8D, two other contributions; the first one is given by the 1-form

gauge fields AΛ
µ =

(

Ai
µ,Aa

µ

)

L1-form = 1
16πG8

∫

M8

√
−G

[

Nab Fa
µνFµνb +Nij F i

µνFµνj
]

, (3.33)

where the field metricNΛΓ = NΛΓ (φ, σ) reads as e
2σLi

Λ (φ) δijL
j
Γ (φ)− e2σLa

Λ (φ) ηabL
b
Γ (φ)

with the field matrix LΛΥ parameterizing the SO (2, N) group [see eqs(4.4-4.5)] and

φ ≡
{

φia
}

being the free moduli that parameterize the moduli space SO(2,N)
SO(2)×SO(N)

. The

second contribution comes from the B2 gauge field; it reads as follows

L2-form = 1
16πG8

∫

M8

√
−G N (σ)FµνρFµνρ , (3.34)

where now N (σ) is the metric associated with the SO (1, 1) factor parameterized by the

dilaton σ with no dependence in the φias.

4 Attractor equations and solutions

We first describe the effective potential of the black branes in non chiral 8D N = 1

supergravity. Then, we study the attractor eqs and their solutions.
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4.1 Effective potential

The effective potential Veff of the black attractors has contributions coming from the

various gauge fields of the non chiral 8D N = 1 supergravity. As there is no contribution

coming from the D2-brane we have:

Veff = (VBH + V4B) + (Vstring + V3B) , (4.1)

with: (a) VBH is the effective potential of the 8D black hole associated with the charges

of the two graviphotons Ai
µ and the Maxwell gauge fields Aa

µ. It is given by the usual

Weinhold relation whose expression, in the flat coordinate frame, reads as:

VBH =
2
∑

i,j=1

δijX
iXj +

N
∑

a,b=1

δabY
aY b (4.2)

In this relation, X i and Y a, which respectively transform as SO (2) and SO (N) vectors,

are the dressed central charges related to the magnetic bare PΛ = (gi, pa) of eqs(3.32)

like,

X i = eσLi
ΛP

Λ , Y a = eσLa
ΛP

Λ . (4.3)

In these relations, eσ and LΛΥ parameterize respectively the SO (1, 1) and SO (2, N)

group factors of the moduli space of the non chiral 8D N = 1 supergravity. Notice that

the LΛΥ matrix is a real (2 +N)× (2 +N) matrix

LΓ
Λ =

(

Lj
i Lb

i

Lj
a Lb

a

)

, (4.4)

satisfying the usual orthogonality relation LT ηL = η which explicitly reads like

LΓΛη
ΓΣLΣΥ = ηΛΥ , (4.5)

with ηΛΥ = diag (+,+,−, · · · ,−). A priori LΛΓ has (2 +N)2 parameters; but this

relation may be viewed as a constraint relation that reduces this number down to
1
2
(N2 + 3N + 2). Furthermore subtracting the 1

2
(N2 −N + 2) gauge degrees of free-

dom captured by the SO (2)× SO (N) symmetry of the moduli space, we end with 2N

moduli parameterizing SO(2,N)
SO(2)×SO(N)

.

(b) V4B is the effective potential associated with the black 4D- branes dual the black

holes,

V4B =

2
∑

i,j=1

δijX̃iX̃j +

N
∑

a,b=1

δabỸaỸb (4.6)

The X̃i and Ỹa are dressed central charges related to the electric QΛ = (ei, qa) as follows

X̃i = QΛ (L
−1)

Λ
i e

−σ , Ỹa = QΛ (L
−1)

Λ
a e

−σ (4.7)
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(c) the term (Vstring + V3B) is the effective potential of the black string and its 3- brane

(NS 5-brane/S2) dual; it is given by

Vstring = e4σp20 , V3B = e−4σq20 (4.8)

where the magnetic charge p0 and the electric q0 one are as in eq(3.31).

Adding all terms, we get the total effective potential of the black attractors in non chiral

8D N = 1 supergravity

Veff = +
2
∑

i,j=1

(

X iδijX
j + X̃iδ

ijX̃j

)

+ (e4σp20 + e−4σq20)

+
N
∑

a,b=1

(

Y aδabY
b + Ỹaδ

abỸb

)

(4.9)

It is manifestly invariant under the SO (2)× SO (N) symmetry of the moduli space.

Substituting the dressed central charges X i, X̃i, Y
a, Ỹa by their explicit expressions in

terms of the field moduli, we end with a function depending on the electric and magnetic

charges as well as on the scalars σ and LΛM ,

Veff = Veff

(

σ, LΛM ;PΛ, QΛ; p0, q0
)

. (4.10)

More explicitly, we have

Veff = +
2
∑

i,j=1

(

e2σPΛLi
ΛδijL

j
ΥP

Υ + e−2σQΛ (L
−1)

Λ
i δ

ij (L−1)
Υ
j QΥ

)

+
N
∑

a,b=1

(

e2σPΛLa
ΛδabL

b
ΥP

Υ + e−2σQΛ (L
−1)

Λ
a δ

ab (L−1)
Υ
b QΥ

)

+ (e4σp20 + e−4σq20)

(4.11)

with LΛΥ belonging to SO (2, N) as given by eqs(4.5).

Notice that invariance of the effective potential Veff under the electric/magnetic duality

symmetry between the charges of the black branes and their duals is captured by the

relation (M,σ) → (E,−σ) with M standing form the magnetic charges and E for electric

ones.

4.2 Attractor eqs

These are given as usual by minimizing the effective potential with respect to the field

moduli σ and LΛΥ;
∂Veff

∂σ
= 0 ,

∂Veff

∂LΛΥ
= 0 (4.12)
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by taking into account the constraint relation LTηL = η. This constraint relation may

be implemented in the effective potential by using the Lagrange multiplier method; for

technical details see [47] developed for the case of black attractors in 6D supergravity.

We also need to compute the Hessian matrix

∂2Veff

∂σ2 = 0 ,
∂2Veff

∂σ∂LΛΥ
= 0 ,

∂2Veff

∂LΛΥ∂LΓΣ
= 0 (4.13)

which needs to be positive definite for stable solutions.

Computing ∂Veff/∂σ = 0

Now, using the fact that X i, X̃i, Y
a, Ỹa are eigenvectors of ∂

∂σ
; i.e ∂Xi

∂σ
= X i, ∂Y a

∂σ
= Y a,

∂X̃i

∂σ
= −X̃i,

∂Ỹa

∂σ
= −Ỹa, the extremization with respect to the dilaton σ gives,

0 = +

2
∑

i,j=1

(

X iδijX
j − X̃iδ

ijX̃j

)

+

N
∑

a,b=1

(

Y aδabY
b − Ỹaδ

abỸb

)

+2 (e4σp20 − e−4σq20) .

(4.14)

There are different ways to solve this attractor eq; one of them is to cast it as follows

X iδijX
j − X̃iδ

ijX̃j = 0 ,

Y aδabY
b − Ỹaδ

abỸb = 0 ,

e4σp20 − e−4σq20 = 0 ,

(4.15)

where summation on repeated indices is understood. An other way is to compensate the

terms with X i, X̃i with the terms with Y b, Ỹa as follows,

X iδijX
j + Y aδabY

b = 0 ,

X̃iδ
ijX̃j + Ỹaδ

abỸb = 0 ,

e4σp20 − e−4σq20 = 0 ,

(4.16)

or like
X iδijX

j − Ỹaδ
abỸb = 0 ,

X̃iδ
ijX̃j − Y aδabY

b = 0 ,

e4σp20 − e−4σq20 = 0 .

(4.17)

Further solutions are obtained by compensating X i, X̃i, Y
b, Ỹa with e4σp20 and e−4σq20;

for instance as follows:
X iδijX

j = e−4σq20 ,

e4σp20 = X̃iδ
ijX̃j ,

Y aδabY
b = Ỹaδ

abỸb .

(4.18)
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We will give some explicit examples later on.

Substituting the dressed central charges by their field expressions back into (4.15), we

get the following attractor eqs

e2σPΛLi
ΛδijL

j
ΥP

Υ − e−2σQΛ (L
−1)

Λ
i δ

ij (L−1)
Υ
j QΥ = 0 ,

e2σPΛLa
ΛδabL

b
ΥP

Υ − e−2σQΛ (L
−1)

Λ
a δ

ab (L−1)
Υ
b QΥ = 0 ,

(e4σp20 − e−4σq20) = 0 .

(4.19)

Similar attractor eqs may be written down for the other cases given above.

Computing δLVeff = 0

The extremization of the effective potential of the black attractors with respect to the

field matrix LΛΥ is some how lengthy. Below, we give the main steps by using the

expression of Veff in terms of X i, X̃i, Y
a, Ỹa. First, we have

δLΛΥ
Veff = +2

2
∑

i,j=1

[

(δLΛΥ
X i) δijX

j +
(

δLΛΥ
X̃i

)

δijX̃j

]

+2

N
∑

a,b=1

[

(δLΛΥ
Y a) δabY

b +
(

δLΛΥ
Ỹa

)

δabỸb

]

(4.20)

where δLΛΥ
X i and so on are the variation of the dressed central charges with respect to

the field matrix LΛΥ. These variations may be nicely expressed in terms of the Maurer

-Cartan 1-form

Ω = dLL−1 = −L (dL−1) , (4.21)

of the orthogonal group SO (2, N). Indeed, denoting X i = eσLi
ΛP

Λ in a condensed man-

ner as X i = eσ (L.P )i and similarly for the other dressed central charges, the variation

with respect to L reads as δX i = eσ (δL.P )i. Now inserting the relation L−1L = I, we

get δX = eσ (δL.L−1.LP )
i
where we recognize the Ω term. Doing the same for the other

dressed central charges, we end with the following result:

δX i = Ωi
k.X

k + Ωi
c.Y

c , δY a = Ωa
k.X

k + Ωa
c .Y

c

δX̃i = −Ωk
i .X̃k − Ωc

i .Ỹc , δỸa = −Ωk
a.X̃k − Ωc

a.Ỹc

(4.22)

Putting back into (4.20), we get the vanishing condition of δLVeff
(

XΩX − X̃ΩX̃
)

+
(

XΩY − X̃ΩỸ
)

+
(

Y ΩY − Ỹ ΩỸ
)

+
(

Y ΩX − Ỹ ΩX̃
)

= 0
(4.23)

from which we can learn the associated attractor eqs. In this relation, the condensed

terms are as follows

XΩX = +XjΩjkX
k , X̃ΩX̃ = +X̃jΩ

jkX̃k

Y ΩY = −Y bΩbcY
c , Ỹ ΩỸ = −ỸbΩ

bcỸc

XΩY = +XjΩjcY
c , X̃ΩỸ = +X̃jΩ

jcỸc

Y ΩX = −Y bΩbkX
k , Ỹ ΩX̃ = −ỸbΩ

bkX̃k

(4.24)
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where the i,j indices are raised and lowered by δij and δij while the indices a, b are raised

and lowered by −δab and −δab. Notice also that we have

Ω
(2+N,2+N)
ΛΥ =

(

Ω
(2,2)
ij Ω

(2,N)
ib

Ω
(N,2)
aj Ω

(N,N)
ab

)

(4.25)

Notice as well that the attractor eqs of the black attractors (4.12) are given by eqs(4.14,4.23);

a class of solutions of these eqs are given below.

4.3 Solutions of attractor eqs

We first solve the attractor eq ∂Veff/∂σ = 0 (4.14) allowing to fix the dilaton in terms

of the electric and magnetic bare charges. Then, we consider the case of the attractor

eqs ∂Veff/∂LΛΥ = 0.

4.3.1 Solving ∂Veff/∂σ = 0

Eq(4.14) may be solved in several ways:

(1) no D-brane fluxes: PΛ = 0, QΛ = 0

This configuration corresponds to X i = 0, Y a = 0; X̃i = 0, Ỹa = 0. Substituting, eq(4.14)

reduces to (e4σp20 − e−4σq20) = 0 whose solution is

σ0 =
−1
4
ln p0

q0
(4.26)

giving the value of the dilaton in terms of the magnetic charge of the string and the

electric charge of the 3-brane. The near horizon geometry of this black attractor is given

by AdS3×S5 and AdS5×S3 depending on the values of the magnetic and electric charges.

Notice that for p0 = 0, σ0 → +∞ while for q0 = 0, σ0 → −∞.

(2) general solutions

These solutions correspond to compensate the contributions coming from the electric

and magnetic sectors as in eqs(4.15,4.16,4.17,4.18). As an example, we consider the case

X iδijX
j = X̃iδ

ijX̃j ,

Y aδabY
b = Ỹaδ

abỸb ,

σ0 = 1
4
ln q0

p0
.

(4.27)

which may be solved in four ways by taking the dressed central charges as follows:

(i) : X i = +zi , X̃j = +ziδij , Y a = +ya , Ỹb = +yaδab

(ii) : X i = +zi , X̃j = +ziδij , Y a = +ya , Ỹb = −yaδab

(iii) : X i = −zi , X̃j = −ziδij , Y a = −ya , Ỹb = +yaδab

(iv) : X i = −zi , X̃j = −ziδij , Y a = −ya , Ỹb = −yaδab

(4.28)
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and σ0 as before and zi, ya some constants. The above relations may also written as

follows
(L−1)

Λ
i QΛ = ±e−2σ0 (L)jΥ PΥδij ,

(L−1)
Λ
b QΛ = ±e−2σ0 (L)aΥ PΥδab ,

LT ηSO(2,N)L = ηSO(2,N) ,

(4.29)

with e−2σ0 given by eq(4.26) and whose solutions allow to express the field matrix LΛΥ

in terms of QΛ, P
Υ as well as p0

q0
.

Notice that the moduli space of solutions of (4.28) depends on the arbitrary values zi

and ya. For instance taking

Ỹb =













y1

0
...

0













, Y aδab =













±y1

0
...

0













(4.30)

the SO (2) × SO (N) symmetry of the moduli space get reduced down to SO (N − 1).

Generic solutions read as follows

Ỹb =























y1
...

yn

0
...

0























, Y aδab =























±y1
...

±yn

0
...

0























(4.31)

and have a SO (N − n) symmetry.

4.3.2 Solving ∂Veff/∂σ = 0 and ∂Veff/∂LΛΥ = 0

We give here below two classes of solutions; others solutions classified by the SO (N − n)

symmetries can be also written down.

Class I

The first class of solutions of the attractor eqs(4.12,4.14,4.23) is obtained by putting

eqs(4.26) and (4.28) back into eq(4.23); then cast it as follows:

XΩX − X̃ΩX̃ = 0

Y ΩY − Ỹ ΩỸ = 0

XΩY − X̃ΩỸ = 0

Y ΩX − Ỹ ΩX̃ = 0

(4.32)
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Taking into account eqs(4.26, 4.28) solving ∂Veff/∂σ = 0, it is not difficult to see that

the solutions of eq(4.32) are classified as given below

(i) : X = +X̃ =

(

z1

z2

)

, Y = +Ỹ =







w1

...

wN







(ii) : X = −X̃ =

(

z′1
z′2

)

, Y = −Ỹ =







w′
1
...

w′
N







(4.33)

together with σ0 =
1
4
ln q0

p0
and where zi, wa and z′i, w

′
a are some constant numbers.

Notice that the terms XΩX = X iΩijX
j and Y ΩY = Y aΩabY

b are symmetric quadratic

forms; so there no contribution coming from the antisymmetric parts Ω[ij] = (Ωij − Ω)ji
and Ω[ab] = Ωab −Ωba of the Cartan-Maurer forms. This property captures precisely the

SO (2) × SO (N) symmetry of the moduli space (3.10-3.27) of non chiral 8D N = 1

supergravity.

Notice also that for arbitrary values of zi, wa and z′i, w
′
a the symmetry group SO (2) ×

SO (N) of the effective potential is completely broken. The other possibilities where

some of the parameters are zero or identical, the SO (2) × SO (N) symmetry of the

moduli space is broken down to a subgroup G .

Class II

This class of solutions corresponds to solving the extremum of Veff (4.23) by compen-

sating the X i and X̃i factors with the Y a and Ỹa as in (4.16-4.17). A way to do it is as

follows:
Y ΩY = X̃ΩX̃ , Ỹ ΩỸ = XΩX

Y ΩX = X̃ΩỸ , Ỹ ΩX̃ = XΩY
(4.34)

In this solution, the term Y ΩY (resp Ỹ ΩỸ ) is compensated by X̃ΩX̃ (resp XΩX); this

corresponds to first breaking the moduli space SO (2)× SO (N) subsymmetry as

SO (2)× SO (N) → SO (2)× SO (2)× SO (N − 2) , (4.35)

then compensate the terms associated with the two SO (2) factor. An explicit solution
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is given by:

X =

(

z1

z2

)

, X̃ =

(

z̃1

z̃2

)

,

Y =

















z̃1

z̃2

0
...

0

















, Ỹ =

















z1

z2

0
...

0

















(4.36)

Other configurations with symmetries SO (N −m) with m = 3, ...N may be also written

down; one of them is given by X i and X̃i as in (4.36) and Y a and Ỹa like,

Y =























z̃1

z̃2

w

0
...

0























, Ỹ =























z1

z2

w

0
...

0























(4.37)

with SO (N − 3) symmetry.

5 Intersecting attractors

Following [57, 58], one should distinguish two main classes of black p-brane solutions in

higher dimensional supergravity. In non chiral 8D N = 1 supergravity we are considering

here, these are:

(1) the standard black p- brane solutions based on AdS2+p × S6−p with p = 0, 1, 3, 4,

whose basic features have been given above.

(2) the intersecting attractors with the typical near horizon geometries

AdS2+p × Sm ×M6−p−m (5.1)

where Sm is the real m-sphere and Mn stands for some manifolds; essentially a n-torus.

Moreover, since there is no D2- brane flux in this theory; these geometries are restricted

to black hole and black string geometries as well as their duals. As such, we have:

(a) AdS3 × Sm ×M5−m

(b) AdS2 × Sm ×M6−m

The novelty with these geometries is that they allow the two following features:
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(i) a variety of irreducible sub-manifolds that support various kinds of branes and so a

rich spectrum of electric and magnetic charges;

(ii) non trivial intersections between pi-/pj- cycles of (5.1) leading to intersecting (BPS

and non BPS) attractors.

To illustrate the first point, consider the example of the two compact manifolds Sm+n and

Mm+n = Sm × T n. While the sphere Sm+n supports only charges of (m+ n− 2)-brane

charges

Fn+m = g ̟n+m , g =
∫

Sm+n Fn+m , (5.2)

and no (m− 1)- brane nor others, the manifold Sm × T n allows however many possibili-

ties. It has several irreducible ki- cycles that support, in addition to (m+ n− 2)-branes,

other kinds; in particular n types of (m− 1)-branes with charges given by,

ga =
∫

C
(a)
m+1

Fm+1 , Fm+1 =
∑

a

ga̟
m+1|a

,
∫

C
(a)
m+1

̟
m+1|b

= δab , a = 1, ..., n ,
(5.3)

with

C(a)
m+1 =

n
⋃

a=1

(S1
a × Sm) , T n =

n
⊗

a=1

S1
a . (5.4)

The branes may be imagined as filling the fiber F
(a)
m−1 of these cycles C(a)

m+1 thought of in

terms of the fibration C(a)
m+1 ∼ F

(a)
m−1 × S2 with field strength

Fm+1 = βS2 ∧
(

∑

a

gaβ
F
(a)
m−1

)

(5.5)

Using the anzats of [52], we focus below on the study of various examples of these

typical horizon geometries and work out new and explicit solutions regarding intersecting

attractors in the case of non chiral 8D N = 1 supergravity. As the solutions are very

technical, we will concentrate on drawing their main lines and giving the results.

5.1 Geometries with AdS3 and AdS5 factors

We distinguish several AdS3×Sm×M5−m and their AdS5×Sm×M3−m duals geometries;

in particular:

(a) AdS3 × S3 × T 2 with volume forms αAdS3, βS3 and βT 2 ,

(b) AdS3 × S2 × T 3 with volume forms αAdS3 , βS2 and βT 3 ,

(c) AdS3 × S4 × S1 with volume forms αAdS3 , βS4 and βS1.

Below, we study the two first ones.
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5.1.1 AdS3 × S3 × T 2

On the geometry AdS3 × S3 × T 2 there is no irreducible 2-cycle nor irreducible 6-cycle

that support the fluxes emanating from the D0 and D6- branes. As such the black

attractor is given by,

p-branes (4− p)- branes

p = 0 FΛ
2 = 0 F̃6|Λ = 0

p = 1 F3 = p0βS3 F̃5 = q0 αAdS3∧ βT 2

(5.6)

from which we read the following effective potential,

Veff = e4σp20 + e−4σq20 (5.7)

The extremization of this potential with respect to the dilaton leads to

e4σp20 − e−4σq20 = 0 (5.8)

The solving of the above equation is given by σ0 = 1
4
ln q0

p0
; it fixes the dilaton σ0 at

horizon in terms of the magnetic charge of the black string and the electric charge of the

black 3-brane.

5.1.2 AdS3 × S2 × T 3

In this geometry which involve the volume forms αAdS3
, βS2, βT 3, the non vanishing

field strength charges are given by

p-branes (4− p)- branes

p = 0 FΛ
2 = PΛ βS2 F̃6|Υ = QΥ

(

αAdS3
∧βT 3

)

p = 1 F3 = p0 αAdS3
F̃5 = q0 (βS2∧βT 3)

(5.9)

where Λ = (i, a) with i = 1, 2 and a = 1, ..., N.

The effective potential Veff of these black attractor configuration reads as follows,

Veff = +

2
∑

i,j=1

(

X iδijX
j + X̃iδ

ijX̃j

)

+ (e4σp20 + e−4σq20)

+

N
∑

a,b=1

(

Y aδabY
b + Ỹaδ

abỸb

)

(5.10)

where the first term, which we write as XX + X̃X̃, is invariant under SO(2) and the

term Y Y + Ỹ Ỹ is invariant under SO (N). The extremization of Veff gives,
(

XΩX − X̃ΩX̃
)

+
(

XΩY − X̃ΩỸ
)

(

Y ΩY − Ỹ ΩỸ
)

+
(

Y ΩX − Ỹ ΩX̃
)

= 0

e4σp20 − e−4σq20 = 0

(5.11)
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where Ω is the Maurer Cartan 1-form of SO (2, N) introduced previously.

The solutions of these attractor eqs may be realized in various ways; one of them is given

by the following:

X = ±X̃ , Y = ±Ỹ , σ0 =
−1
4
ln p0

q0
(5.12)

These solutions correspond to diverse intersecting configurations composed of a black

hole, a black 4-brane, a black string,and a black 3-brane.

Moreover, using eqs(4.22), we compute the following the Hessian matrix

δδVeff = +16 (e4σp20 + e−4σq20)

+4
(

XΩ2X − X̃Ω2X̃ +XΩ2Y − X̃Ω2Ỹ
)

+4
(

Y Ω2Y − Ỹ Ω2Ỹ + Y Ω2X − Ỹ Ω2X̃
)

+
[

X (δΩ) Y − X̃ (δΩ) Ỹ
]

+
[

Y (δΩ) Y − Ỹ (δΩ) Ỹ
]

+
[

Y (δΩ)X − Ỹ (δΩ) X̃
]

+
[

X (δΩ)X − X̃ (δΩ) X̃
]

(5.13)

For the case X = +X̃ , Y = +Ỹ and X = −X̃ , Y = −Ỹ the Hessian reduces to

δδVeff = +16 (e4σp20 + e−4σq20) (5.14)

which a positive definite definite quantity; it vanishes for p0 = q0 = 0; that is no black

string nor 3-brane. This is clearly seen by using the identity e4σp20 = e−4σq20 and replacing

e4σ = q0
p0
, we get

δδVeff = +32q0p0 , Veff = q0p0 . (5.15)

5.2 Geometries with AdS2 factor

We study the following near horizon geometries.

(a) AdS2 × S4 × T 2 with volume forms αAdS2 , βS4 and βT 2,

(b) AdS2 × S3 × T 3 with volume forms αAdS2 , βS3 and βT 3 ,

(c) AdS2 × S2 × T 4 with volume forms αAdS2 , βS2 and βT 4 .

5.2.1 AdS2 × S4 × T 2

Using the various n-cycles of AdS2 × S4 × T 2 and the corresponding n-forms that could

live on, the general expressions of the field strengths on this geometry reads as follows,

p-branes (4-p)- branes

p = 0 FΛ
2 = QΛ αAdS2 F̃6|Λ = PΛ (βS

4∧βT
2)

p = 1 F3 =
2
∑

k=1

q0k

(

αAdS2∧αS1
k

)

F̃5 =
2
∑

k=1

p0k

(

βS
4∧αS1

k

)

(5.16)
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where now the strings are charged electrically and the 3-branes magnetically.

The total effective potential Veff associated with this system is given as usual by the

sum of the contribution of each extremal black-brane. The attractor equations following

from the extremization of Veff are then given by:

e4σ (p201 + p202)− e−4σ (q201 + q202) = 0 (5.17)

and
(

XΩX − X̃ΩX̃
)

+
(

XΩY − X̃ΩỸ
)

(

Y ΩY − Ỹ ΩỸ
)

+
(

Y ΩX − Ỹ ΩX̃
)

= 0
(5.18)

A class of solutions of (5.17-5.18) is given by,

σ0 =
1
8
ln
(

q201+q202
p201+p202

)

, X = ±X̃, Y = ±Ỹ . (5.19)

Other solutions like those given by eqs(4.36,4.37) may be also written down. Following

the same method as before, we find in the case of (5.19) the following Hessian matrix at

the horizon

δδVeff = +32
√

(q201 + q202) (p
2
01 + p202) (5.20)

5.2.2 AdS2 × S3 × T 3

The general form of the field strengths on this geometry reads as,

p-branes (4− p)- branes

p = 0 FΛ
2 = QΛ α

AdS2
F̃6|Λ = PΛ βS3 ∧ βT 3

p = 1 F3 = p0βS3 F̃5 = q0
(

α
AdS2

∧βT 3

)

(5.21)

The total effective potential reads, in terms of the dressed central charges of the black

hole/4-brane, the black string/3-brane, as in (5.10) with typical solutions at horizon

given by X = ±X̃, Y = ±Ỹ , σ0 =
−1
4
ln p0

q0
. Other solutions of type eqs(4.36,4.37) may

be also written down. Notice also that the solutions with plus signs describe intersecting

attractor involving string, 3-brane, D0- brane and D4- brane; those with minus signs are

associated with the string, 3-brane, ant-D0 and anti D4- brane.

5.2.3 AdS2 × S2 × T 4

The associated field strengths on this geometry read as follows,

p-branes (4− p)- branes

p = 0 FΛ
2 = PΛ βS2 F̃6|Λ = QΛ (αAds2 ∧ βT 4)

p = 1 F3 =

4
∑

k=1

pk0

(

βS2∧βS1
k

)

F̃5 =

4
∑

l=1

q0l ε
lijk
(

αAds2∧βS1
i
∧βS1

j
∧βS1

k

)

(5.22)
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Following the same approach we have been using, the effective potential Veff of these

black brane configurations is given by,

Veff = +
2
∑

i,j=1

(

X iδijX
j + X̃iδ

ijX̃j

)

+
4
∑

k=1

(e4σp20k + e−4σq20k)

+
N
∑

a,b=1

(

Y aδabY
b + Ỹaδ

abỸb

)

(5.23)

Here also there are various types of solutions describing intersecting attractors with the

moduli space SO (2) × SO (N) symmetries broken down to subgroups; a class of them

reads as:

σ0 =
1
8
ln
(

q201+q202+q203+q204
p201+p202+p203+p204

)

, X = ±X̃, Y = ±Ỹ , (5.24)

they correspond to the case where SO (2) × SO (N) is completely broken. Notice also

that for the particular case X = ±X̃ = 0 and Y = ±Ỹ 6= 0, the moduli space symmetry

is reduced to SO (2) and in the case X = ±X̃ 6= 0 and Y = ±Ỹ = 0, it reduces to

SO (N).

6 Conclusion

In this paper, we have studied the attractor mechanism of intersecting black p-branes in

non chiral 8D supergravity with 16 supercharges. Actually, this study completes previ-

ous results on black attractors in non chiral 8D supergravity with 32 supersymmetries

[58] and agrees with the results on higher D-supergravities obtained in [57].

To do so, we have first studied the structure of non chiral 8D N = 1 supersymmetric

algebra with non trivial central charges Zµ1...µp
. Then we have given the link between

these Zµ1...µp
s and the fluxes

∫

S2 Fµ1...µp+2
of p-branes; in particular the D- branes of type

IIA string on a compact real surface Σ given by eq(3.2). Using group theoretic method,

we have shown that, besides the F-sting and the D0- brane, only the (D2/Σ)-, (D6/Σ)-

and (NS5/Σ)-branes wrapping 2-cycles of Σ which survive under compactification; no

free D2- nor (D4/Σ)-brane are allowed in non chiral 8D N = 1 supergravity. This result

has been also checked by using a field theoretical method by determining directly the

fields content that follows from 10D type II spectrum on Σ.

We have also studied the attractor mechanism for both standard extremal black attrac-

tors in 8D supergravity with 16 supercharges as well as their intersections along the

line of [57, 58]. We have worked out various classes of explicit solutions and shown that

they are completely classified by the SO (N −m) subgroups of the SO (2) × SO (N)

symmetry of the moduli space SO(2,N)
SO(2)×SO(N)

× SO (1, 1).
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