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Hamiltonian Dyson-Schwinger and FRG Flow Equations
of Yang-Mills Theory in Coulomb Gauge
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Abstract. A new functional renormalization group equation for Hamiltonian Yang-Mills theory in Coulomb gauge is
presented and solved for the static gluon and ghost propagators under the assumption of ghost dominance. The results are
compared to those obtained in the variational approach.
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INTRODUCTION

My talk is devoted to the application of functional renor-
malization group (FRG) flows to the Hamiltonian formu-
lation of Yang-Mills theory in Coulomb gauge developed
in our group [1].

The advantage of the Hamiltonian formulation is its
close connection to physics. In the variational approach
one makes an ansatz for the unknown vacuum wave func-
tional which encodes all the physics [2, 1]. This ansatz
can be systematically improved towards the full theory.
The price to pay is the apparent loss of renormalization
group invariance.

Renormalization group invariance is naturally built-in
in the functional renormalization group approach to the
Hamilton formulation of Yang-Mills theory put forward
in [3]. Such an approach has the advantage of combin-
ing renormalization group invariance with the physical
Hamiltonian picture.

HAMILTONIAN FLOW

In the FRG approach the quantum theory of a fieldϕ is
infrared regulated by adding the regulator term

∆Sk[ϕ ] =
1
2

ϕ ·Rk ·ϕ ≡
1
2

∫

ddp
(2π)d ϕ(p)Rk(p)ϕ(−p)

(1)
to the classical action. The regulator functionRk(p) is an
effective momentum dependent mass with the properties

lim
p/k→0

Rk(p)> 0 , lim
k/p→0

Rk(p) = 0 , (2)

which ensures thatRk(p) suppresses propagation of
modes withp. k while those withp& k are unaffected
and the full theory at hand is recovered as the cut-off
scalek is pushed to zero. Wetterich’s flow equation for
the effective actionΓk[φ ] of a fieldφ is given by

∂tΓk[φ ] =
1
2

Tr
1

Γ(2)
k [φ ]+Rk

Ṙk, (3)

where

Γ(n)
k,1...n[φ ] =

δ nΓk[φ ]
δφ1 . . .δφn

(4)

are the one-particle irreduciblen-point functions (proper
vertices), for reviews on gauge theories see [4]. The
generic structure of the flow equation (3) is independent
of the details of the underlying theory, but is a mere
consequence of the form of the regulator term (1), i.e.,
that it is quadratic in the field. By taking functional
derivatives of Eq. (3) one obtains the flow equations for
the (inverse) propagators and proper vertices. For the
two-point function this equation reads

∂tΓ
(2)
k,12 =

1
2

Tr Ṙk
1

Γ(2)
k +Rk

{

−Γ(4)
k,12

+

[

Γ(3)
k,1

1

Γ(2)
k +Rk

Γ(3)
k,2 +(1↔ 2)

]}

1

Γ(2)
k +Rk

,

(5)

where all cyclic indices (summed over in the trace) have
been suppressed.

In the Hamiltonian approach to Yang-Mills theory
in Coulomb gauge the generating functional of static
correlation functions reads

Z[J] =
∫

DADet(−D∂ )|ψ [A]|2exp(J ·A) , (6)
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FIGURE 1. Flow equation of the gluon propagator. The spi-
ral and dotted lines with black circles denote the regularized
gluon and ghost propagators at cutoff momentumk, respec-
tively. White circles stand for proper vertices at cutoffk, a
regulator insertioṅRk is represented by a square with a cross.

where the integration is over transversal gauge fieldsA
and the Coulomb gauge condition has been implemented
by the usual Faddeev-Popov method. Representing the
Faddev-Popov determinant in the standard fashion by
ghost fields,c, c̄,

Det(−D∂ ) =
∫

D c̄Dce−
∫

c̄(−D∂ )c (7)

the underlying action reads

S[A, c̄,c] =− ln |ψ [A]|2+
∫

c̄(−D∂ )c . (8)

The general flow equation (5) still holds provided that
φ is interpreted as the superfieldφ = (A,c, c̄). The FRG
flow equations for the gluon and ghost propagators are
diagrammatically given in Figs. 1, 2.

APPROXIMATION SCHEMES AND
NUMERICAL SOLUTION

The FRG flow equations embody an infinite tower of
coupled equations for the flow of the propagators and the
proper vertices. These equations have to be truncated to
get a closed system. We shall use the following trunca-
tion: we only keep the gluon and ghost propagators, to
wit

Γ(2)
k,AA = 2ωk(p) , Γ(2)

k,c̄c =
p2

dk(p)
, (9)

In addition, we keep the ghost-gluon vertexΓ(3)
k,Ac̄c, which

we approximate by the bare vertex, i.e., we do not solve
its FRG flow equation. The latter approximation is justi-
fied by Taylor’s non-renormalization theorem extended
to Coulomb gauge. The above truncation removes the
tadpole diagrams from Figs. 1, 2. Moreover, we shall as-
sume infrared ghost dominance and discard gluon loops.
Then the flow equations of the ghost and gluon propaga-
tor reduce to the ones shown in Figs. 3, 4.
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FIGURE 2. Flow equation of the ghost propagator.
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FIGURE 3. Truncated flow equation of the gluon propagator.
The bare vertices atk= Λ are symbolized by small dots.

These flow equations are solved numerically using the
regulators

RA,k(p) = 2prk(p) , Rc,k(p) = p2rk(p) ,

rk(p) = exp

[

k2

p2 −
p2

k2

] (10)

and the perturbative initial conditions at the large mo-
mentum scalek= Λ,

dΛ(p) = dΛ = const. , ωΛ(p) = p+a . (11)

With these initial conditions, the flow equations for the
ghost and gluon propagators are solved under the con-
straint of infrared scaling for the ghost form factor. The
resulting full flow of the ghost dressing function is shown
in Fig. 5. As the IR cut-off momentumk is decreased, the
ghost form factordk(p) (constant atk= Λ) builds up in-
frared strength and the final solution atk= kmin is shown
in Fig. 7 together with the one for the gluon energy
ωkmin(p) in Fig. 6. It is seen that the IR exponents, i.e.,
the slopes of the curvesdkmin(p),ωkmin(p) do not change
as the minimal cut-offkmin is lowered. Let us stress that
we have assumed infrared scaling of the ghost form fac-
tor but not the horizon conditiond−1

k=0(p = 0) = 0. The
latter was obtained from the integration of the flow equa-
tion but not put in by hand (the same is also true for
the infrared analysis of the Dyson-Schwinger equations
(DSEs) following from the variational Hamiltonian ap-
proach, i.e., assuming scaling the DSEs yield the horizon
condition).

In Coulomb gauge the inverse ghost form factor
d−1(p) has been shown to represent the dielectric func-
tion of the Yang-Mills vacuum [5],ε(p) = d−1(p). Then
the so-called horizon conditiond−1(0) = 0 implies that
the Yang-Mills vacuum is a perfect dual color supercon-
ductor. In the variational approach one can show that the
infrared exponents of the ghost and gluon propagators,

ω(p→ 0)∼ 1/pα , d(p→ 0)∼ 1/pβ , (12)

are related by a sum rule under the assumption of a trivial
scaling of the ghost-gluon vertex [6],

α = 2β −1 . (13)
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FIGURE 4. Truncated flow equation of the ghost propagator.
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FIGURE 5. Flow dk(p) of the ghost form factor.

The infrared exponents extracted from the numerical
solutions of the flow equations are

α = 0.28, β = 0.64 . (14)

They satisfy the sum rule found in [6] but are smaller
than the ones of the DSE. Moreover, the present approach
allows to prove the uniqueness of the sum rule (13) [3],
analogously to the proof in Landau gauge [7].

Replacing the propagators with running cut-off mo-
mentum scalek under the loop integrals of the flow equa-
tion by the propagators of the full theory,

dk(p)→ dk=0(p) , ωk(p)→ ωk=0(p) , (15)

FIGURE 6. Inverse gluon propagatorω at three minimal
cutoff valueskmin.

FIGURE 7. Inverse ghost form factord at three minimal
cutoff valueskmin.

amounts to taking into account the tadpole diagrams [3].
Then the flow equations can be analytically integrated
and turn precisely into the DSEs obtained in the varia-
tional approach to the Hamiltonian formulation of Yang-
Mills theory [1], with explicit UV regularization by sub-
traction. This establishes the connection between these
two approaches and highlights the inclusion of a con-
sistent UV renormalization procedure in the present ap-
proach.

The above results encourage further studies, which
include the flow of the potential between static color
sources as well as dynamic quarks.
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