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INTRODUCTION which ensures thaRq(p) suppresses propagation of
modes withp < k while those withp > k are unaffected
My talk is devoted to the application of functional renor- and the full theory at hand is recovered as the cut-off
malization group (FRG) flows to the Hamiltonian formu- scalek is pushed to zero. Wetterich’s flow equation for
lation of Yang-Mills theory in Coulomb gauge developed the effective actioiy[¢] of a field ¢ is given by

in our group [1]. 1 1 )

The advantage of the Hamiltonian formulation is its Al = 5Tr———Rq, 3)
close connection to physics. In the variational approach Mo (o] + R
one makes an ansatz for the unknown vacuum wave funGgyhere
tional which encodes all the physics [2, 1]. This ansatz r™ o= 3" (@) @)
can be systematically improved towards the full theory. K10 5 ... Oqn
The price to pay is the apparent loss of renormalizatioryre the one-particle irreducibtepoint functions (proper
group Invariance. vertices), for reviews on gauge theories see [4]. The

Renormalization group invariance is naturally built-in generic structure of the flow equation (3) is independent
in the functional renormalization group approach to thegf the details of the underlying theory, but is a mere
Hamilton formulation of Yang-Mills theory put forward consequence of the form of the regulator term (1), i.e.,
in [3]. Such an approach has the advantage of combingat it is quadratic in the field. By taking functional
ing renormalization group invariance with the physical gerivatives of Eq. (3) one obtains the flow equations for

Hamiltonian picture. the (inverse) propagators and proper vertices. For the
two-point function this equation reads
HAMILTONIAN FLOW 2 1_ - 1 4
‘?trl(giz:QTrRkT —FHZ
o +Re

In the FRG approach the quantum theory of a figli (5)

infrared regulated by adding the regulator term 3) 1 r@©

( 1
N1 = T2t (1e 2)] }7,
. L dip ol S M r+Re
AS[#] =59 R ¢ = Q/Wfﬁ(p)Rk(p)fP(—p) where all cyclic indices (summed over in the trace) have
1) been suppressed.

to the classical action. The regulator functRyfp) is an In the Hamiltonian approach to Yang-Mills theory

effective momentum dependent mass with the propertiel! €oulomb gauge the generating functional of static
correlation functions reads

o (P> 0 I R(P) =0, @) 23 = [ 7ADet-Do)|ylAlPexpd-A) . (6)
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FIGURE 2. Flow equation of the ghost propagator.
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FIGURE 1. Flow equation of the gluon propagator. The spi- KOy @ = 635{ mc - ?0’55\

ral and dotted lines with black circles denote the reguéatiz

gluon and ghost propagators at cutoff momentkntespec- .-@ o R 4

tively. White circles stand for proper vertices at cutkffa

regulator insertiofRy is represented by a square with a cross. FIGURE 3. Truncated flow equation of the gluon propagator.
The bare vertices &= A are symbolized by small dots.

where the integration is over transversal gauge fidlds
and the Coulomb gauge condition has been implemented These flow equations are solved numerically using the
by the usual Faddeev-Popov method. Representing thiegulators
Faddev-Popov determinant in the standard fashion by o 2
ghOSt fleldSC,C_, RA,k(p) - 2prk(p) ) RC,k(p) - p rk(p) )
0 exp[kZ pz} (10)
Det(—Dd) = / 9cgce 8-DIc 7) Pk
and the perturbative initial conditions at the large mo-
the underlying action reads mentum scalé& = A,

da(p) =da=const, wa(p)=p+a. (11)

With these initial conditions, the flow equations for the

. . . ghost and gluon propagators are solved under the con-
The general flow equation (5) still holds provided that straint of infrared scaling for the ghost form factor. The

¢ is interpreted as the superfiaft= (A,c,C). The FRG resulting full flow of the ghost dressing function is shown

flpw equations for Fhe gluo_n and ghost propagators g, Fig. 5. As the IR cut-off momentuinis decreased, the
diagrammatically given in Figs. 1, 2.

ghost form factod(p) (constant ak = A) builds up in-
frared strength and the final solutionkat knin is shown

SAE =~ In|yAP+ [e-Dojc.  (®)

in Fig. 7 together with the one for the gluon energy
APPROXIMATION SCHEMESAND Wi, (P) in Fig. 6. It is seen that the IR exponents, i.e.,
NUMERICAL SOLUTION the slopes of the curvek,,(p), W, (P) do not change

. o as the minimal cut-ofkmin is lowered. Let us stress that
The FRG flow equations embody an infinite tower of e have assumed infrared scaling of the ghost form fac-
coupled equations for the flow of the propagators and thegr put not the horizon conditiod;_lo(p =0)=0. The
proper vertices. These equations have to be truncated {gtter was obtained from the integration of the flow equa-
get a closed system. We shall use the following truncation put not put in by hand (the same is also true for
tion: we only keep the gluon and ghost propagators, tQhe infrared analysis of the Dyson-Schwinger equations

wit (DSEs) following from the variational Hamiltonian ap-
X ) 02 proach, i.e., assuming scaling the DSEs yield the horizon
Mican = 26(P) =gy @  condion) |
k(P In Coulomb gauge the inverse ghost form factor

N ) ] d~1(p) has been shown to represent the dielectric func-
In addition, we keep the ghost-gluon yerrenggc, which  tion of the Yang-Mills vacuum [5]e(p) = d~1(p). Then
we approximate by the bare vertex, i.e., we do not solvgne so-called horizon conditiot1(0) = 0 implies that
its FRG flow equation. The latter approximation is justi- the yang-Mills vacuum is a perfect dual color supercon-
fied by Taylor's non-renormalization theorem extendedqyctor. In the variational approach one can show that the

to Coulomb gauge. The above truncation removes thenfrared exponents of the ghost and gluon propagators,
tadpole diagrams from Figs. 1, 2. Moreover, we shall as-

sume infrared ghost dominance and discard gluon loops. @(p— 0) ~1/p% , dp—0)~1/pf, (12)
Then the flow equations of the ghost and gluon propagayye related by a sum rule under the assumption of a trivial
tor reduce to the ones shown in Figs. 3, 4. scaling of the ghost-gluon vertex [6],

a=28-1. (13)
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FIGURE 4. Truncated flow equation of the ghost propagator. 103'
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FIGURE 5. Flow di(p) of the ghost form factor.

amounts to taking into account the tadpole diagrams [3].
_ ~ Then the flow equations can be analytically integrated
The infrared exponents extracted from the numericalind turn precisely into the DSEs obtained in the varia-
solutions of the flow equations are tional approach to the Hamiltonian formulation of Yang-
B B Mills theory [1], with explicit UV regularization by sub-
a=028, fp=064. (14) traction. This establishes the connection between these

They satisfy the sum rule found in [6] but are smallertWo approaches and highlights the inclusion of a con-
than the ones of the DSE. Moreover, the present approadiistent UV renormalization procedure in the present ap-

allows to prove the uniqueness of the sum rule (13) [3],Proach. _ .
analogously to the proofin Landau gauge [7]. The above results encourage further studies, which

Rep|a_cing the propagators with running cut-off mo- include the flow of the potential between static color
mentum scal& under the loop integrals of the flow equa- sources as well as dynamic quarks.
tion by the propagators of the full theory,

dk(p) — dk=o(P) , ax(p) = Wk=0(p) ,  (15) REFERENCES
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FIGURE 6. Inverse gluon propagatam at three minimal
cutoff valueKmin.



