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Abstract

Using the Voros star product, we investigate the status of the two particle correlation function
to study the possible extent to which the previously proposed violation of the Pauli principle
may impact at low energies. The results show interesting features which are not present in
the computations made using the Moyal star product.
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It is likely that at short distances spacetime has to be described by different geometrical struc-
tures and that the very concept of point and localizability may no longer be adequate. This is
one of the main motivations for the introduction of noncommutative (NC) geometry [1]-[3] in
physics. Attempts have been made to formulate quantum mechanics [4]-[11] and quantum field
theories [12]-[15] on NC spacetime. However, for the former case, the issue of the lack of Lorentz
invariance symmetry has remained a challenge since field theories defined on a NC spacetime
with the commutation relation of the coordinate operators

[x̂µ, x̂ν ] = iθµν (1)

where θµν is a constant antisymmetric matrix, are obviously not Lorentz invariant.
The twist approach to NC quantum field theory has been developed to circumvent this

problem [16]-[23]. It is triggered by the realization that it is possible to twist the coproduct of
the universal enevelope U(P) of the Poincaré algebra such that it is compatible with the star
product.

An interesting consequence that follows from the twisted implementation of the Poincaré
group is the violation of Pauli exclusion principle. In [24], it has been shown that the two
particle correlation function for a free fermion gas in 2 + 1 dimensions (with exclusively spatial
noncommutativity, i.e. θ0i = 0, i = 1, 2) does not vanish in the limit r → 0 which indicates that
there is a finite probability that fermions may come very close to each other. The computation
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has been done by using twisted commutation relations among the creation and annihilation
operators of the Schrödinger field which in turn has been obtained by taking the non-relativistic
limit of the analogous relations for the Klein-Gordon field. A key ingredient in the entire analysis
has been the Moyal twist element which reads

F (θ)
M = e−

i
2
θij∂i⊗∂j . (2)

Recently, a comparison of NC field theories built using two different star products (twist ele-
ments): Moyal and Voros have been made [25]. It has been found that although the Green’s
functions are different for the two theories, the S-matrix is the same in both cases and is differ-
ent from the commutative case. This motivates us to investigate the status of the two particle
correlation function using deformed commutation relations obtained by incorporating the action
of the Voros twist element [25]

F (θ)
V = e−θ∂+⊗∂− . (3)

on the usual pointwise product between two fields.
To begin the analysis, we first write down the mode expansion of a free nonrelativistic

quantum field ψ of mass m (in units with h̄ = 1) in the NC plane as

ψ(~x, t) =

∫

d2k a(k)ẽk (4)

where ẽk = e−i
|~k|2t
2m ei

~k.~x and a(k) satisfy the usual (anti)commutation relation

a(k)a†(k′)− ηa†(k′)a(k) = (2π)2δ2(~k − ~k′) (5)

where η is +1 for bosons and −1 for fermions. The deformation algebra involving a(k) has
already been derived in [26] for the relativistic case and can be readily shown to hold in the
nonrelativistic case as well :

a(k) ⋆M a(k′) = e−(1/2)θijkik
′
ja(k)a(k′)

a(k) ⋆M a†(k′) = e(1/2)θ
ijkik′ja(k)a†(k′)

a†(k) ⋆M a(k′) = e−(1/2)θijkik
′
ja†(k)a(k′) (6)

a(k) ⋆V a(k
′) = e−θk−k′+a(k)a(k′)

a(k) ⋆V a
†(k′) = eθk−k′+a(k)a†(k′)

a†(k) ⋆V a(k
′) = e−θk−k′+a†(k)a(k′) . (7)

We now compute the two particle correlation function for a free gas in 2+1 dimensions using
the canonical ensemble, i.e., we are interested in the matrix elements 1

Z 〈r1, r2|e−βH |r1, r2〉, (β =
1/(kBT )) where Z is the canonical partition function and H is the non-relativistic Hamiltonian.
The physical meaning of this function is quite simple; it tells us what the probability is to
find particle two at position r2, given that particle one is at r1, i.e., it measures two particle
correlations [27]. The relevant two particle state is given by

|r1, r2〉 = ψ̂†(r1) ⋆V ψ̂
†(r2)|0〉

=

∫

d2q1
(2π)2

d2q2
(2π)2

e∗q1(r1)e
∗
q2(r2)a

†(q1) ⋆V a
†(q2)|0〉 . (8)

The two particle correlation function can therefore be written as

C(r1, r2) =
1

Z
〈r1, r2|e−βH |r1, r2〉 =

1

Z

∫

d2k1d
2k2e

−
β
2m

(k21+k22)|〈r1, r2|k1, k2〉|2 (9)
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where we have introduced a complete set of momentum eigenstates |k1, k2〉 and Z is the partition
function of the system.
Using eq(s)(8, 7, 5) and noting that

|k1, k2〉 = a†(k1) ⋆V a
†(k2)|0〉 (10)

we get

|〈r1, r2|k1, k2〉|2 = e−2θ(k1xk2x+k1yk2y){2 + ηei(
~k1− ~k2).~r12eiθk1∧k2 + c.c} (11)

where c.c implies complex conjugate of the second term in the above expression. Substituting
this in eq(9), we obtain

C(r1, r2) =
f(θ)

Z









1 + η
(1− 4m2θ2

β2 )

(1− 3m2θ2

β2 )
e
−

m(1+ 2mθ
β

)

β(1− 3m2θ2

β2
)
r2








(12)

where r = r1− r2. The partition function of the system can now be readily computed and reads

Z =

∫

d2r1d
2r2〈r1, r2|e−βH |r1, r2〉

= f(θ)A2
{

1 + η
πβ

mA

(

1− 2mθ

β

)}

≈ f(θ)A2 (13)

in the limit of the area of the system A→ ∞. Substituting the above result in eq(12), we finally
obtain

C(r1, r2) =
1

A2









1 + η
(1− 16π2θ2

λ4 )

(1− 12π2θ2

λ4 )
e
−

2π(1+ 4πθ

λ2
)

λ2(1− 12π2θ2

λ4
)
r2









(14)

where λ is the mean thermal wavelength given by

λ =

(

2πβ

m

)1/2

; β =
1

kBT
. (15)

The above result show many interesting features. Note that there exists two thermal wave-

lengths λ1 = 2
√
πθ and λ2 =

√

2
√
3πθ where the second term in the above expression vanishes.

These wavelengths correspond to two temperatures T1 = 1/(2kBmθ) and T2 = 1/(
√
3kBmθ) at

which the correlation function is completely independent of whether the particles are bosons
or fermions. For temperatures much less than T1 the correlations exhibit mild deviations away
from that of commutative bosons or fermions. However, for temperatures T lying between T1
and T2 (i.e. T1 < T < T2), the bosons start behaving as fermions and vice versa. These tem-
peratures are of course extremely high. Indeed, assuming θ to be of the order of the Planck
length squared and restoring h̄ one finds them to be of the order of 1048K. For temperatures
T > T2, the exponential in eq(14) becomes positive and correlation grow exponentially with dis-
tance. This signals the onset of instability, which can best be seen if one considers the exchange
potential defined by V (r) = −kBT logC(r1, r2). This becomes unstable or complex above this
temperature. This suggests the existence of a high energy cut off E = kBT2. These features are
completely absent when the computations are made using the Moyal star product [24] and are
summarized in Figures 1a and b, which shows the exchange potential for bosons and fermions
respectively for values of the dimensionless variable α = θ

λ2 below T1 (α = 0.0796) and between
T1 and T2 (α = 0.919). Here r is measured in units of λ. For reference the commutative results
(α = 0) are also shown. The transgression of statistics in the temperature range between T1 and
T2 can clearly be seen.
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Figure 1: The exchange potential in units of kBT for bosons (a) and fermions (b). The solid
curve represents the commutative result (α = 0), the short dashed curve (α = 0.01) is the result
below T1 and the long dashed curve (α = 0.085) is the result for a temperature between T1
and T2. The latter exhibits for (a) fermionic rather than bosonic and (b) bosonic rather than
fermionic behaviour.

References

[1] A. Connes, Noncommutative Geometry (Academic, New York, 1994).

[2] G. Landi, An Introduction to Noncommutative Spaces and Their Geometry (Springer, New
York, 1997).

[3] J. M. Gracia-Bondia, J. C. Varilly, H. Figueroa, Elements Of Noncommutative Geometry
(Birkhaeuser, Basel, 2001).

[4] L. Mezincescu, Star operation in quantum mechanics, [hep-th/0007046].

[5] J. Gamboa, M. Loewe, J. C. Rojas, Phys. Rev. D. 64 (2001) 067901.

[6] V.P. Nair, A.P. Polychronakos, Phys. Lett. B 505 (2001) 267; [hep-th/0011172].

[7] C. Duval, P. Horvathy; Phys.Lett.B 479 (2000) 284; [hep-th/0002233].

[8] O.F. Dayi, A. Jellal; J. Math. Phys. 43 (2002) 4592; [hep-th/0111267].

[9] B. Chakraborty, S. Gangopadhyay, A. Saha, Phys. Rev. D 70 (2004) 107707;
[hep-th/0312292].

[10] F.G. Scholtz, B. Chakraborty, S. Gangopadhyay, A.G. Hazra, Phys. Rev. D 71 (2005)
085005; [hep-th/0502143].

[11] F. G. Scholtz, B. Chakraborty, S. Gangopadhyay, J. Govaerts; J. Phys. A 38 (2005) 9849-
9858; [cond-mat/0509331].

[12] N. Seiberg, E. Witten; JHEP 09 032 (1999); [hep-th/9908142].

[13] Richard J. Szabo, Phys. Rept. 378 (2003) 207-299; [hep-th/0109162].

[14] V. Schomerus, JHEP 06 (1999) 030.

[15] For extensive reviews, see M.R. Douglas, N.A. Nekrasov, Rev. Mod. Phys. 73 (2002) 977.

4

http://arxiv.org/abs/hep-th/0007046
http://arxiv.org/abs/hep-th/0011172
http://arxiv.org/abs/hep-th/0002233
http://arxiv.org/abs/hep-th/0111267
http://arxiv.org/abs/hep-th/0312292
http://arxiv.org/abs/hep-th/0502143
http://arxiv.org/abs/cond-mat/0509331
http://arxiv.org/abs/hep-th/9908142
http://arxiv.org/abs/hep-th/0109162


[16] M. Chaichian, P.P. Kulish, K. Nishijima, A. Tureanu; Phys.Lett. B 604 (2004) 98-102;
[hep-th/0408069].

[17] M. Chaichian, P. Presnajder, A. Tureanu, Phys. Rev. Lett. 94 (2005) 151602;
[hep-th/0409096].

[18] R.J. Szabo, Class. Quant. Grav. 23 (2006) R199; [hep-th/0606233].

[19] J.W. Zahn, Phys. Rev. D. 73 (2006) 105005; [hep-th/0603231].

[20] J.W. Zahn, Dispersion relations in quantum electrodynamics on the noncommutative
Minkowski space, [hep-th/0707.2149].

[21] P. Aschieri, C. Blohmann, M. Dimitrijevic, F. Meyer, P. Schupp and J. Wess;
[hep-th/0504183].

[22] A.P. Balachandran, A. Pinzul, B.A. Qureshi; Phys. Lett. B. 634 (2006) 434;
[hep-th/0508151].

[23] A. P. Balachandran, G. Mangano, A. Pinzul, S. Vaidya; Int. J. Mod. Phys. A. 21 (2006)
3111, [hep-th/0508002].

[24] B. Chakraborty, S. Gangopadhyay, A.G. Hazra, F.G. Scholtz, J. Phys. A 39 (2006) 9557;
[hep-th/0601121].

[25] S. Galluccio, F. Lizzi, P. Vitale, Phys. Rev. D 78, 085007 (2008).

[26] P. Aschieri, F. Lizzi, P, Vitale, Phys. Rev. D 77, 025037 (2008).

[27] R. K. Pathria, Statistical Mechanics, Butterworth-Heinemann Publishing Ltd (1996), 2nd
edition.

5

http://arxiv.org/abs/hep-th/0408069
http://arxiv.org/abs/hep-th/0409096
http://arxiv.org/abs/hep-th/0606233
http://arxiv.org/abs/hep-th/0603231
http://arxiv.org/abs/hep-th/0504183
http://arxiv.org/abs/hep-th/0508151
http://arxiv.org/abs/hep-th/0508002
http://arxiv.org/abs/hep-th/0601121

