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Abstract

We consider N=4 SU(2)⊗U(1) gauged supergravity on asymptotically-AdS5 back-
grounds. By a near-boundary analysis we determine the boundary-dominant components
of the bulk fields from their partially gauge-fixed field equations. Subdominant compo-
nents are projected out in the boundary limit and we find a reduced set of boundary
fields, constituting the N=2 Weyl multiplet. The residual bulk symmetries are found
to act on the boundary fields as four-dimensional diffeomorphisms, N=2 supersymmetry
and (super-)Weyl transformations. This shows that the on-shell N=4 supergravity mul-
tiplet yields the N=2 Weyl multiplet on the boundary with the appropriate local N=2
superconformal transformations.

1 Introduction

Supergravities on Anti-de Sitter (AdS) spaces play a prominent role in the AdS/CFT corre-
spondence [1], which – in the weakest form of the conjecture – relates classical ten-dimensional
supergravity on the near-horizon limit of p-brane backgrounds to strongly-coupled supercon-
formal quantum field theories (SCFT) on p+1-dimensional flat space. The near-horizon ge-
ometry of the p-brane solutions is typically given by a product of AdS space and a compact
manifold, on which one may perform a Kaluza-Klein expansion. Gauged supergravities on
AdS spaces are then employed to describe the Kaluza-Klein expanded ten-dimensional the-
ory truncated to a finite number of Kaluza-Klein modes, and consequently also for a dual
description of the corresponding SCFT sector [2, 3]. The explicit AdS/CFT duality relation
is given by interpreting the boundary values of the supergravity fields as sources for the dual
operators of the SCFT [4], and it has been applied to describe a variety of phenomena in
strongly-coupled Quantum Field Theories (QFT) [5].
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In this work we consider five-dimensional half-maximally supersymmetric gauged supergrav-
ity. The general gauged matter-coupled N=4 supergravities in five dimensions were con-
structed in [6, 7], and it was noted in [6] that AdS ground states are only possible if the gauge
group is a product of a one-dimensional Abelian factor and a semi-simple group. We focus
on the N=4 SU(2)⊗U(1) gauged supergravity constructed by Romans [8], the only gauging
of the pure supergravity without additional matter multiplets which admits an AdS vacuum.
Solutions of this theory can be lifted to solutions of the IIB supergravity [9] where they
correspond to product geometries involving S5, and also to warped-product solutions of IIA
supergravity and the maximal d=11 supergravity [10]. We restrict the configuration space
to asymptotically-AdS5 geometries with an arbitrary four-dimensional boundary metric. By
an analysis of the asymptotic field equations we determine the multiplet of boundary fields,
and from the local bulk symmetries we obtain the boundary symmetries with the induced
representation on the boundary fields. This limiting procedure does not involve the AdS/CFT
conjecture and does not rely on the choice of boundary conditions. We find the N=2 Weyl
multiplet with local N=2 superconformal transformations. Similar calculations have previ-
ously been carried out for bulk theories in d=3, 6, 7 dimensions and for N=2 supergravity in
d=5 [11].

The relevance of these results is twofold. Firstly in the AdS/CFT context, where the bulk
theory is understood as dual to four-dimensional N=2 SCFTs1 [3, 12]. With the boundary
fields and symmetries obtained here one may calculate the holographic counterterms needed
to render the on-shell bulk action finite, which have been given for the pure-gravity case
in [13], for the full N=4 supergravity. Then, one can extend the calculation of the purely
gravitational part of the conformal anomaly of the dual CFT [14] to the full result including
matter-field contributions for N=2 SCFTs2. Secondly, a duality relation of QFTs on AdS
space and on its conformal boundary has been formulated and proven in [16] in the framework
of algebraic QFT. In contrast to the AdS/CFT correspondence, gravity does not seem to play
a dedicated role in the algebraic holography. In particular, the constructions in [17] suggest
that a gravitational theory is induced on the conformal boundary by a gravitational bulk
theory. A similar result was obtained in [18] by deforming the AdS/CFT correspondence.
It was shown there that changing the Dirichlet boundary conditions to Neumann or mixed
boundary conditions promotes the boundary metric to a dynamical field. In this context our
construction yields the kinematics of the boundary theory, for which we thus expect an N=2
conformal supergravity.

The paper is organized as follows. In Section 2 we review the N=4 SU(2)⊗U(1) gauged
supergravity [8] to fix notation. In Section 3 the notion of an asymptotically-AdS5 space is
introduced and the multiplet of fields induced on the conformal boundary is constructed. We
employ Fefferman-Graham coordinates and partial gauge fixing of the local super-, Lorentz
and SU(2)⊗U(1) symmetries. The asymptotic scalings of the boundary-irreducible compo-
nents of the bulk fields are determined in Section 3.1 from the linearized field equations.
Subdominant components are projected out in the boundary limit and we find a reduced

1 For example, the AdS5 vacuum solution of Romans’ theory lifted to d=11 supergravity is found to describe
the near-horizon limit of a semi-localized M5-M5′ brane system, which was discussed in [12] as the AdS/CFT
dual of the four-dimensional N=2 SCFT on the intersection of the M5-brane stacks.

2 For the maximally supersymmetric case a discussion of the SCFT effective action, the conformal anomaly
and the role of conformal supergravity in AdS/CFT can be found in [15]. Explicit constructions for the
boundary of AdS are given there for the metric-dilaton sector.
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set of boundary fields, constituting the N=2 Weyl multiplet. These results are extended to
the nonlinear theory in Section 3.2, where we argue for the consistency of the previous con-
struction with the interaction terms. We also determine those of the subdominant bulk field
components which then enter the boundary symmetry transformations. The residual bulk
symmetries preserving the gauge fixings, and their action on the boundary fields are deter-
mined in Section 3.3. This yields the complete local N=2 superconformal transformations of
the Weyl multiplet. We conclude in Section 4. Two appendices contain an overview of the
conventions and connect our results to the literature on N=2 superconformal gravity.

2 Romans’ N=4 SU(2)⊗U(1) gauged supergravity

In this section we briefly discuss the five-dimensional gauged supergravity [8] in order to fix
notation. The theory has N=4 supersymmetry (counted in terms of symplectic Majorana
spinors) with R-symmetry group USp(4), of which an SU(2)⊗U(1) subgroup is gauged. The
symplectic metric is denoted by Ω, and exploiting the isomorphism usp(4) ∼= so(5) the Lie
algebra generators are given by Γmn := 1

2 [Γm,Γn] with so(5) vector indices m,n, and Γm

satisfying the five-dimensional Euclidean Clifford algebra relation3 {Γm,Γn} = 2δmn1. With
the obvious embedding of su(2)⊕u(1) ∼= so(3)⊕so(2) into usp(4) ∼= so(5), the vector index m
decomposes into m = (I, α) with I = 1, 2, 3 and α = 4, 5. We consider the theory referred to
as N=4+ in [8], for which the SU(2) gauge coupling g2 is fixed in terms of the U(1) coupling
g1 by g2 = +

√
2g1 =: g. For this choice of couplings the theory admits an AdS solution.

The bosonic field content is given by the vielbein eaµ, two antisymmetric tensor fields Bα
µν ,

the SU(2) and U(1) gauge fields AI
µ and aµ, respectively, and a scalar ϕ. The four gravitinos

ψi
µ and four spin-12 fermions χi comprising the fermionic field content are in the spinor 4

of usp(4), which decomposes as 4 → 21/2 + 2−1/2. The vector and tensor fields originate
from the vector representation, decomposing as 5 → 30 + 11 + 1−1. The spinors satisfy the

symplectic Majorana condition, e.g. χ̄i =
(

χi
)T
C with the conjugate χ̄i := (χi)

† γ0, the metric
is of signature (+,−,−,−,−) and the γ-matrices are chosen such that γabcde = ǫabcde with
ǫ01234 = 1. For a summary of the conventions see Appendix A. From this point on we denote
five-dimensional objects with hat and four-dimensional ones without, e.g. five-dimensional
spacetime indices µ̂ = (µ, r) with µ = 0, 1, 2, 3. The Lagrangian as given up to four-fermion
terms in [8] is

L =− 1

4
êR̂(ω̂)− 1

2
iê ˆ̄ψi

µ̂γ̂
µ̂ν̂ρ̂D̂ν̂ψ̂ρ̂i +

3

2
iêTij

ˆ̄ψi
µ̂γ̂

µ̂ν̂ψ̂j
ν̂ − iêAij

ˆ̄ψi
µ̂γ̂

µ̂χ̂j +
1

2
iê ˆ̄χiγ̂µ̂D̂µ̂χ̂i

+ iê

(

1

2
Tij −

1√
3
Aij

)

ˆ̄χiχ̂j +
1

2
êD̂µ̂ϕ̂D̂µ̂ϕ̂+ êP (ϕ̂)− 1

4
ê ξ2B̂µ̂ν̂αB̂ α

µ̂ν̂

+
1

4g1
ǫ̂µ̂ν̂ρ̂σ̂τ̂ ǫαβB̂

α
µ̂ν̂D̂ρ̂B̂

β
σ̂τ̂ −

1

4
ê ξ−4f̂ µ̂ν̂ f̂µ̂ν̂ −

1

4
ê ξ2F̂ µ̂ν̂I F̂ I

µ̂ν̂ −
1

4
ǫµ̂ν̂ρ̂σ̂τ̂F I

µ̂ν̂F̂
I

ρ̂σ̂âτ̂

+
1

4
√
2
iê
(

H ij
µ̂ν̂ +

1√
2
hijµ̂ν̂

)

ˆ̄ψρ̂
i γ̂[ρ̂γ̂

µ̂ν̂ γ̂σ̂]ψ̂
σ̂
j +

1

2
√
6
iê
(

H ij
µ̂ν̂ −

√
2hijµ̂ν̂

)

ˆ̄ψρ̂
i γ̂

µ̂ν̂ γ̂ρ̂χ̂j

− 1

12
√
2
iê
(

H ij
µ̂ν̂ −

5√
2
hijµ̂ν̂

)

ˆ̄χiγ̂
µ̂ν̂χ̂j +

1√
2
iê (∂ν̂ ϕ̂)

ˆ̄ψi
µ̂γ̂

ν̂ γ̂µ̂χ̂i

(1)

3The Γm can all be chosen hermitian, such that Γ†
mn + Γmn = 0. With the charge conjugation matrix CE

satisfying CEΓmC
−1
E = ΓT

m, we can identify Ω := CE and have ΩΓmn +ΓT
mnΩ = 0, providing the isomorphism

usp(4) ∼= so(5).

3



with ξ := exp
√

2
3 ϕ̂ and the scalar potential P (ϕ̂) := 1

8g
2
(

ξ−2 + 2ξ
)

. Antisymmetrization of

indices is defined as X[µYν] :=
1
2(XµYν −XνYµ). Furthermore,

T ij :=
g

12
√
2

(

2ξ−1 + ξ2
)

(Γ45)
ij , Aij :=

g

2
√
6

(

ξ−1 − ξ2
)

(Γ45)
ij ,

H ij
µ̂ν̂ := ξ

(

F̂ I
µ̂ν̂ (ΓI)

ij + B̂α
µ̂ν̂ (Γα)

ij
)

, hijµ̂ν̂ := ξ−2Ωij f̂µ̂ν̂ .
(2)

The covariant derivative on the spinor 4 of usp(4) is given by

D̂µ̂vi = ∇̂µ̂vi +
1

2
g1âµ̂ (Γ45)

j
i vj +

1

2
g2Â

I
µ̂ (ΓI45)

j
i vj , (3)

with the spacetime-covariant derivative ∇̂µ̂ and ΓIJ = −ǫIJKΓK45. Acting on a spinor

∇̂µ̂ = ∂µ̂ + 1
4 ω̂

âb̂
µ̂ γ̂âb̂, and the curvatures are defined by

[

D̂µ̂, D̂ν̂

]

ǫ̂i =:
1

4
R̂âb̂

µ̂ν̂ γ̂âb̂ǫi +
1

2
g1f̂µ̂ν̂ (Γ45)

j
i ǫ̂j +

1

2
g2F̂

I
µ̂ν̂ (ΓI45)

j
i ǫ̂j . (4)

On the vector 5 of usp(4) the covariant derivative is given by

D̂µ̂v
Iα = ∇̂µ̂v

Iα + g1âµ̂ǫ
αβvIβ + g2ǫ

IJKÂJ
µ̂v

Kα . (5)

The supersymmetry transformations to leading order in the fermionic terms are

δǫ̂ê
â
µ̂ = i ˆ̄ψi

µ̂γ̂
âε̂i , δǫ̂Â

I
µ̂ = Θij

µ̂

(

ΓI
)

ij
, δǫ̂ϕ̂ =

1√
2
i ˆ̄χiε̂i ,

δǫ̂ψ̂µ̂i = D̂µ̂ε̂i + γ̂µ̂Tij ε̂
j − 1

6
√
2

(

γ̂ ν̂ρ̂
µ̂ − 4δ ν̂

µ̂ γ̂ρ̂
)(

Hν̂ρ̂ij +
1√
2
hν̂ ρ̂ij

)

ε̂j ,

δǫ̂âµ̂ =
1

2
iξ2

(

ˆ̄ψi
µ̂ε̂i +

2√
3
ˆ̄χiγ̂µ̂ε̂i

)

,

δǫ̂χ̂i =
1√
2
γ̂µ̂ (∂µ̂ϕ̂) ε̂i +Aij ε̂

j − 1

2
√
6
γ̂µ̂ν̂

(

Hµ̂ν̂ij −
√
2hµ̂ν̂ij

)

ε̂j ,

δǫ̂B̂
α
µ̂ν̂ = 2D̂[µ̂Θ

ij
ν̂] (Γ

α)ij −
ig1√
2
ǫαβ (Γβ)ij ξ

(

ˆ̄ψi
[µ̂γ̂ν̂]ǫ̂

j +
1

2
√
3
ˆ̄χiγ̂µ̂ν̂ ǫ̂

j

)

,

(6)

where Θij
µ̂ =

√

1
2 iξ
−1

(

− ˆ̄ψi
µ̂ǫ̂

j +
√

1
3
ˆ̄χiγ̂µ̂ǫ̂

j
)

. The commutator of two supersymmetries is – to

leading order in the fermionic fields – given by

[δǫ̂2 , δǫ̂1 ] = δX̂ + δΣ̂ + δσ̂ + δτ̂I , (7)

where δX̂ denotes a diffeomorphism with X̂ µ̂ = −iˆ̄ǫi1γ̂µ̂ǫ̂2i , δΣ̂ is a local Lorentz transformation
with

Σ̂âb̂ = X̂ µ̂ω̂âb̂
µ̂ + 2iˆ̄ǫi1

(

−γ̂âb̂Tij +
1

6
√
2

(

γ̂âb̂
ĉd̂

+ 4δâĉ δ
b̂
d̂

)(

H ĉd̂
ij +

1√
2
hĉd̂ij

)

)

ǫ̂j2 , (8)

and δσ̂ and δτ̂I denote U(1) and SU(2) gauge transformations, respectively, with

σ̂ = X̂ µ̂âµ̂ +
1

2
iξ2ˆ̄ǫi1ǫ̂2i , τ̂ I = X̂ µ̂ÂI

µ̂ − 1√
2
iξ−1

(

ΓI
)

ij
ˆ̄ǫi1ǫ̂

j
2 . (9)
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3 Local N=2 superconformal symmetry on the boundary of
asymptotically-AdS configurations

We now restrict the configuration space of the theory discussed in the previous section to
geometries which are asymptotically AdS5, and discuss the fields and symmetries induced
on the conformal boundary. We give a brief discussion of asymptotically-AdS spaces in the
following, and refer to [19] for more details. The metric signature and curvature conventions
are those of Section 2 and [8], i.e. AdS has positive curvature.

A metric ĝ on the interior of a compact space X is called conformally compact if, for a
defining function r of the boundary ∂X (meaning that r|∂X = 0, dr|∂X 6= 0 and r|intX > 0),
the rescaled metric ḡ := r2ĝ extends to all of X as a metric. For such a conformally compact
metric ĝ the conformal structure [ḡ|T∂X ] induced on ∂X and the boundary restriction of the
function |dr|2ḡ := ḡ−1(dr, dr) are independent of the choice of defining function. The curvature
of the metric ĝ is given by

R̂µ̂ν̂ρ̂σ̂ = −|dr|2ḡ
(

ĝµ̂ρ̂ĝν̂σ̂ − ĝµ̂σ̂ ĝν̂ρ̂
)

+O(r−3) , (10)

where we denote tangent-space indices on TX with hat, e.g. µ̂, ν̂, and tangent-space indices on
T∂X are denoted without hat. Asymptotically, ĝ thus has constant sectional curvature given
by −|dr|2ḡ, and we call a conformally compact metric ĝ an asymptotically-AdS metric if the
value of the sectional curvature is positive and constant on the boundary, i.e. |dr|2ḡ = −1/R2

on ∂X for some constant R. Note that we do not demand ĝ to be Einstein.

A representative metric g(0) of the boundary conformal structure uniquely determines a defin-
ing function r such that g(0) = r2

R2 ĝ |T∂X and |dr|2ḡ = −1/R2 in a neighbourhood of ∂X.
Choosing this defining function as radial coordinate, the metric ĝ takes the Fefferman-Graham
form

ĝ =
R2

r2
(gµνdx

µ ⊗ dxν − dr ⊗ dr) , gµν(x, r) = g(0)
µν(x) +

r2

R2
g(2)
µν(x) + . . . (11)

with g of signature (+,−,−,−) and the limit r → 0 corresponding to the conformal boundary.
The expansion of g in powers of r is justified when ĝ satisfies vacuum Einstein equations,
which, however, we do not assume here. For the time being we will still use that expansion
and refer the discussion of its validity to Section 3.2.

According with the Fefferman-Graham form of the metric, we partially gauge-fix the local
Lorentz symmetry such that the vielbein is of the form

êaµ(x, r) =
R

r
eaµ(x, r), êrµ = êar = 0, êrr =

R

r
, (12)

with eaµ(x, r) = e(0)aµ (x) + re(1)aµ (x) + . . . . We denote Lorentz indices by â = (a, r) with an
underline below r to avoid confusion. For the gravitinos and the SU(2)⊗U(1) gauge fields we
employ axial gauges ψ̂ri ≡ ÂI

r ≡ âr ≡ 0.

In this setting we construct the fields induced on the conformal boundary in Section 3.1. For
the discussion of the induced symmetry tranformations we will be interested in the resid-
ual bulk symmetries preserving the gauge-fixing conditions. These are to be determined as
solutions to

(

δX̂ + δΣ̂ + δǫ̂i + δU(1) + δSU(2)

)

{êrr, êar , êrµ, âr, ÂI
r , ψ̂ri} = 0 , (13)
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where δX̂ , δΣ̂, δǫ̂ denote diffeomorphisms, local Lorentz and supersymmetry transformations,
respectively. The solutions and their action on the boundary fields will be discussed in
Section 3.3.

The spin connection is treated in 1.5th-order formalism and fixed by its equation of motion as
derived from (1). We split ω̂µ̂âb̂ = ω̂µ̂âb̂(ê) + ω̂µ̂âb̂(ê, ψ̂, χ̂) where the torsion-free part ω̂µ̂âb̂ (ê)

calculated from (12) has the non-vanishing components

ω̂ab
µ (ê) = ωab

µ (e) , ω̂ar
µ (ê) =

1

r
eaµ − 1

2
eρa∂rgµρ ω̂ab

r (ê) = eµ[a∂re
b]
µ , (14)

and for the remaining part involving fermions we find

ω̂µ̂âb̂(ê, ψ̂, χ̂) = −1

2
i
(

ˆ̄ψi
âγ̂µ̂ψ̂b̂i + 2 ˆ̄ψi

µ̂γ̂[âψ̂b̂]i

)

− 1

4
i ˆ̄ψi

λ̂
γ̂ λ̂τ̂
µ̂âb̂

ψ̂τ̂ i −
1

4
i ˆ̄χiγ̂µ̂âb̂χ̂i . (15)

Thus, the Lorentz-covariant derivative on spinor fields reads

∇̂µ = ∇(e)
µ +

1

2r
γµγr − Zµ +

1

4
ω̂âb̂
µ (e, ψ̂, χ̂)γ̂âb̂ =: ∇µ +

1

2r
γµγr ,

∇̂r = ∂r − Zr +
1

4
ω̂âb̂
r (e, ψ̂, χ̂)γ̂âb̂ ,

(16)

where γ̂µ̂ = êâµ̂γâ , γµ = eaµγa. For notational convenience we defined ∇(e)
µ := ∂µ + 1

4ω
ab
µ (e)γab

and Zµ := 1
4 (∂rgµρ) γ

ργr , Zr :=
1
4(∂re

a
µ)γ

µ
a .

3.1 Boundary fields

In this section we construct the fields induced on the conformal boundary. Similar to the
construction of the induced conformal structure on the boundary, we define the classical
boundary field as follows. For a bulk field φ̂ with asymptotic r-dependence φ̂(x, r) = O(f(r)),
we define the rescaled field φ(x, r) := f(r)−1φ̂(x, r). This rescaled field then admits a finite,
nonvanishing boundary limit, which is interpreted as the boundary field4.

Therefore, to determine the multiplet of boundary fields, we have to fix the asymptotic scaling
of the various fields. To this end we consider their equations of motion linearized in all fields
but the metric/vielbein and decomposed into boundary-irreducible components, e.g. into four-
dimensional chiral components for a bulk spinor field. The leading order in the boundary limit
turns out to be an ordinary differential equation in r, and is solved by fixing the scalings of
the different boundary-irreducible bulk field components. The rescaled field is defined by ex-
tracting the asymptotic r-dependence of the dominant field component, thereby subdominant
components are projected out in the definition of the boundary field. The results obtained in
this way on the basis of the linearized field equations are extended to the nonlinear theory in
Section 3.2.

We start with the vielbein, for which the asymptotic r-dependence is already fixed by (11),
(12) and the induced boundary field is given by eaµ(x, 0). As discussed in [8], Einstein’s
equations as derived from (1) in a pure metric-dilaton background read

R̂µ̂ν̂ −
1

2
ĝµ̂ν̂R̂+ 2ĝµ̂ν̂P (ϕ̂) = 0 , (17)

4This is the classical analog to the construction for the Wightman field in [17].
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and the scalar potential P (ϕ̂), having exactly one extremum
(

ϕ̂, P (ϕ̂)
)

≡
(

0, 38g
2
)

, provides
a cosmological constant such that AdS5 is a vacuum solution. Here we do not restrict the
theory to the metric-dilaton sector and only demand (17) to be solved at leading order in
the boundary limit. From (10) we find that ĝ indeed solves the leading order provided that
the asymptotic curvature radius R is fixed in terms of the gauge coupling as R2 = 8/g2. In
Section 3.2 we show that – with the scalings obtained in this section – all other terms in the
complete Einstein equations contribute to the subleading orders only. In the following we fix
g = 2

√
2 such that R = 1.

For the gravitinos, which we consider next, the nonlinear equation of motion reads

γ̂µ̂ν̂ρ̂D̂ν̂ψ̂ρ̂i − 3Tij γ̂
µ̂ν̂ψ̂j

ν̂ =− 1

2
√
2

(

H ρ̂σ̂ j
i +

1√
2
hρ̂σ̂ j

i

)

γ̂[µ̂γ̂ρ̂σ̂γ̂
ν̂]ψ̂ν̂j −Aij γ̂

µ̂χj

− 1

2
√
6

(

H j
ρ̂σ̂i −

√
2h j

ρ̂σ̂i

)

γ̂ρ̂σ̂γ̂µ̂χj +
1√
2
(∂ν̂ ϕ̂) γ̂

ν̂ γ̂µ̂χi .

(18)

To fix Tij (see (2)) we note that, since it squares to −1 and is traceless, Γ45 has eigenvalues ±i,
each with multiplicity 2. We choose a usp(4) basis where Γ45 is diagonal (Γ45)

j
i = iκiδ

j
i and

split i = (i+, i−) such that κi± = ±1. Since Γ45 is diagonal {Ω,Γ45} = 0, and consequently
Ωi+j+ = Ωi−j− = 0. Defining four-dimensional chirality projectors PL/R := 1

2 (1± iγr), the
L/R projections of the linearized equation (18) for µ̂ = µ read

γµνρ∇(e)
ν ψ̂

R/L
ρi − (γµνρZν ± iγµρZr) ψ̂

L/R
ρi + iγµρ

(

±∂r ∓
1

r
+

3κi
2r

)

ψ̂
L/R
ρi = 0 . (19)

Since the ψ̂
L/R
µi−

are related to the conjugates of ψ̂
R/L
µi+

by the symplectic Majorana condition,
it is sufficient to consider the i+-components. Solving (19) at leading order in r yields the
two independent solutions ψ̂µi+ = r−1/2ψL

µi+
+ o(r−1/2) and ψ̂µi+ = r5/2ψR

µi+
+ o(r5/2) with

limr→0 ψ
L/R
µi+

finite. Thus, the gravitinos lose half of their components in the boundary limit

and the rescaled field ψµi+ := r1/2ψ̂µi+ yields the two chiral gravitinos ψL
µi+

|r=0 as boundary
fields.

Proceeding with the fermionic fields we now discuss the spin-12 fermions χ̂i. Their equation
of motion is given by

γ̂µ̂D̂µ̂χ̂i + Tijχ̂
j =

2√
3
Aijχ̂

j +Aij γ̂
µ̂ψ̂j

µ̂ +
1

2
√
6

(

H j
µ̂ν̂i −

√
2h j

µ̂ν̂i

)

γ̂ρ̂γ̂µ̂ν̂ψ̂ρj

− 1

6
√
2

(

H j
µ̂ν̂i − 5√

2
h j
µ̂ν̂i

)

γ̂µ̂ν̂χ̂j +
1√
2
(∂ν̂ ϕ̂) γ̂

µ̂γ̂ν̂ ψ̂µ̂i .

(20)

Solving the linearized L/R projections given by

γµ∇(e)
µ χ̂

R/L
i − (γµZµ ∓ iZr) χ̂

L/R
i − i

(

±∂r +
κi ∓ 4

2r

)

χ̂
L/R
i = 0 (21)

at leading order for i = i+ we find as dominant solution χ̂i+
= r3/2χL

i+
+ o(r3/2). Similarly to

the gravitinos, the χ̂i+
become chiral in the boundary limit and we have the two lefthanded

Weyl fermions χL
i+
|r=0 as boundary fields.
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Coming to the tensor fields B̂α
µ̂ν̂ we define Ĉµ̂ν̂ := 1√

2
(B̂4

µ̂ν̂ − iB̂5
µ̂ν̂) and, with the four-

dimensional Hodge dual ⋆ Ĉµν := 1
2e
−1ǫ ρσ

µν Ĉρσ, the (anti-)selfdual parts of Ĉµν are defined

as Ĉ±µν := 1
2(Ĉµν ± i ⋆ Ĉµν). The equation of motion reads

i

g1
ǫ̂µ̂ν̂ρ̂σ̂τ̂ D̂ρ̂Ĉσ̂τ̂ − êξ2Ĉ µ̂ν̂ = −1

2
êξ
(1

2
J1

µ̂ν̂
ij +

1√
3
J2

µ̂ν̂
ij − 1

6
J3

µ̂ν̂
ij

)

(Γ4 − iΓ5)
ij , (22)

with J1
µ̂ν̂
ij = i ˆ̄ψρ

i γ̂[ργ̂
µ̂ν̂ γ̂σ]ψ̂

σ
j , J2

µ̂ν̂
ij = i ˆ̄ψρ

i γ̂
µ̂ν̂ γ̂ρχ̂j and J3

µ̂ν̂
ij = i ˆ̄χiγ̂

µ̂ν̂χ̂j. From the µr-compo-

nents of the linearized equation Ĉµr is fixed in terms of Ĉµν by Ĉµr =
1
2 ire

−1ǫ ρστ
µ ∂ρĈσ̂τ̂ , and

is of higher order in r. The (anti-)selfdual parts of the linearized µν-components

1

2
e−1ǫ ρσ

µν

(

∂rĈµν + 2∂ρĈσr

)

= − i

r
Ĉµν , (23)

then yield the solutions Ĉµν = r−1C−µν + o(r−1) and Ĉµν = r C+
µν + o(r). Thus, the anti-

selfdual part Ĉ− is dominant in the boundary limit and the selfdual part Ĉ+ is projected out
in the definition of the boundary field.

For the U(1) and SU(2) gauge fields the equations of motion are

∂ν̂

(

êξ−4f̂ µ̂ν̂
)

=
1

4
êg1 (Γ45)

j
i J4

µ̂i
j −

1

4
ǫ̂µ̂ν̂ρ̂σ̂τ̂

(

B̂α
ν̂ρ̂B̂

α
σ̂τ̂ + F̂ I

ν̂ρ̂F
I
σ̂τ̂

)

+Ωij∂ν̂

(

êξ−2
(

1

4
J1

µ̂ν̂
ij − 1√

3
J2

µ̂ν̂
ij +

5

12
J3

µ̂ν̂
ij

))

,
(24)

D̂ν̂

(

êξ2F̂ Iµ̂ν̂
)

=
1

4
êg2 (ΓI45)

j
i J4

µ̂i
j − ǫ̂µ̂ν̂ρ̂σ̂τ̂ D̂ν̂

(

F̂ I
ρ̂σ̂âτ̂

)

+
1√
2
D̂ν̂

(

êξK µ̂ν̂
I

)

, (25)

with J4
µ̂i
j = i ˆ̄χiγ̂µ̂χ̂j − i ˆ̄ψi

ν γ̂
νµ̂ρψ̂ρj and K µ̂ν̂

I = (ΓI)
ij
(

1
2J1

µ̂ν̂
ij + 1√

3
J2

µ̂ν̂
ij − 1

6J3
µ̂ν̂
ij

)

. For the

ansatz âµ = rαaµ the leading order of the linearized equation yields α ∈ {0, 2}, and similarly
for ÂI

µ. Thus, âµ and Âµ are itself finite in the boundary limit and define boundary vector
fields without rescaling.

It remains to analyze the scalar field ϕ̂ with equation of motion

�̂ĝϕ̂− P ′(ϕ̂) =− i√
2
Aij

ˆ̄ψi
µ̂γ̂

µ̂ν̂ψ̂j
ν̂ − iA′ij

ˆ̄ψi
µ̂γ̂

µ̂χ̂j − i√
3

(

A′ij +
1√
6
Aij

)

ˆ̄χiχ̂j

−
√

2

3
ξ2Ĉµ̂ν̂Ĉ

µ̂ν̂ +

√

2

3
ξ−4f̂µ̂ν̂ f̂

µ̂ν̂ − 1√
6
ξ2F̂ I

µ̂ν̂F̂
Iµ̂ν̂

+
1

4
√
3

(

H ij
µ̂ν̂ −

√
2hijµ̂ν̂

)

J1
µ̂ν̂
ij +

1

6

(

H ij
µ̂ν̂ + 2

√
2hijµ̂ν̂

)

J2
µ̂ν̂
ij

− 1

12
√
3

(

H ij
µ̂ν̂ + 5

√
2hijµ̂ν̂

)

J3
µ̂ν̂
ij − 1√

2
ê−1∂ν̂

(

iê ˆ̄ψi
µ̂γ̂

ν̂ γ̂µ̂χ̂i

)

,

(26)

where A′ij := −1
6g

(

ξ−1 + 2ξ2
)

(Γ45)
ij . The linearized equation is given by

r2�gϕ̂− 1

2
r2 (gµν∂rgµν) ∂rϕ̂−D2

r ϕ̂ = 0 , (27)

with Dr = r∂r − 2, and the leading-order part is solved by r2ϕ1(x, r) and r2 log(r)ϕ2(x, r)
with ϕ1/2|r=0 finite. The boundary scalar field is thus defined by extracting the dominant
scaling ϕ̂ =: r2 log(r)ϕ and restricting ϕ to the boundary. In summary, the multiplet of
boundary fields is given by (eaµ, ψ

L
µ i+

, C−µν , A
I
µ, aµ, χ

L
i+
, ϕ)|r=0.
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3.2 Nonlinear theory and subdominant components

The splitting into dominant and subdominant components and the scaling of the dominant
parts as obtained above from the linearized equations of motion fixes the definition of the
boundary fields. It remains to be checked whether the obtained scaling behaviour is consistent
in the nonlinear theory. Furthermore, the subdominant components of some of the fields are
required for the symmetry transformations to be discussed in Section 3.3. These two points
are addressed in the following. Note that this discussion does not include the four-fermion
terms which are not spelled out in [8]. However, as we find quite some cancellations taking
place to ensure consistency of the previously obtained results at the leading orders in the
fermions, we expect that this consistency is not accidental and extends to the four-fermion
terms as well.

Since the analysis of Section 3.1 crucially relies on the form of the metric (11) in a neighbour-
hood of the boundary, the first thing to be checked is the validity of the Fefferman-Graham
form. Considering the terms in the Lagrangian (1) with the scaling of the fields as obtained in
the previous section, êR̂(ω̂) and the cosmological constant êP (0) are O(r−5) while the other
terms are O(r−3). Thus, the leading order of Einstein’s equations reduces to the form dis-
cussed in the previous section and the Fefferman-Graham form of the metric (11) is justified.
In particular, since there are no O(r−4) terms in the Lagrangian, there is no O(r) contribu-
tion to gµν(x, r) and the expansion in (11) is justified. Next, we consider the spin connection

(14), (15). With the scaling as obtained before, ω̂µab(ê, ψ̂, χ̂) = O(r0) and the other com-

ponents of ω̂µ̂âb̂(ê, ψ̂, χ̂) are of O(r). Therefore, the fermionic terms do not alter the O(r−1)

part of the covariant derivative (16), which was relevant for the previous section. For the
four-dimensional Lorentz-covariant derivative ∇µ defined in (16) we find ∇µ = ∂µ + 1

4ω
ab
µ γab

with

ωµab

∣

∣

r=0
= ωµab(e)−

1

2

(

iψ̄Li+
a γµψ

L
bi+ + 2iψ̄Li+

µ γ[aψ
L
b]i+

+ c.c.
)

. (28)

From (3) the four-dimensional gauge and Lorentz covariant derivative acting on a boundary
spinor is

Dµvi+ = ∇µvi+ +
1

2
ig1aµvi+ +

1

2
ig2A

I
µ (ΓI)

j+
i+

vj+ . (29)

For the remaining fields we study the interaction terms of (1) directly in the field equations.
They turn out to be subdominant in the equations for the boundary-dominant field com-
ponents, such that their scaling is not affected. They do, however, alter the subdominant
components, some of which are in fact not subdominant but play the role of auxiliary fields
on the boundary. We start with the gravitinos, for which the scaling of ψ̂L

µi+
was determined

from the PL-projection of (18) at O(r3/2). One easily verifies that the interaction terms in
(18) are of O(r5/2) and thus the analysis of the previous section is not affected. To determine
the subdominant components we consider the PR projection of the µ̂=µ components. Noting
that (Γα)

j+
i+

= (Γα)
j−

i−
= 0 due to {Γα,Γ45} = 0, and B̂α

µ̂ν̂ (Γα)
j−

i+
=

√
2Ĉµ̂ν̂ (Γ4)

j−
i+

, we find

ψ̂µi+ = r−1/2ψL
µi+

+ r1/2ΦR
µi+

with

ΦR
µi+

∣

∣

∣

r=0
= −1

2
i
(

γ νρ
µ − 2

3
γµγ

νρ
)(

Dνψ
L
ρi+ − 1

4
γ · C−i+j+

γνψ
Rj+
ρ

)

, (30)
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where γ · C := γµνCµν and Cµ̂ν̂ i+j+ := Cµ̂ν̂ (Γ4)i+j+
. Note that ψ

Ri+
µ = C

(

ψ̄
Li+
µ

)T
by the

symplectic Majorana condition, and a possible C+-contribution drops out due to γ · C± =
γ · C±PR/L. For later convenience we define the quantity

Rµν i+(Q) := D[µψ
L
ν]i+

− iγ[µΦ
R
ν]i+

− 1

4
γ · C−i+j+

γ[µψ
Rj+
ν] , (31)

and note that it is anti-selfdual i ⋆ Rµν i+(Q) = −Rµν i+(Q) and satisfies γµRµν i+(Q) = 0.

We continue with the tensor field Ĉµ̂ν̂ . Using 1
2 (γµν ± i ⋆ γµν) = γµνPR/L we find the inter-

action terms subdominant in the anti-selfdual part of (22), which was used to determine the
scaling Ĉ−µν = r−1C−µν . In the selfdual part of (22) the interaction terms are not subdominant,

but rather fix Ĉ+
µν = r−1C+

µν with

C+
µν

∣

∣

r=0
=

1

4
i (Γ4)

i+j+ ψ̄R
ρi+γ

[ργµνγ
σ]ψL

σj+ . (32)

Thus, Ĉ+
µν is in fact not subdominant with respect to Ĉ−µν . However, since its boundary value

is completely fixed in terms of the other boundary fields, Ĉ+
µν plays the role of an auxiliary

field on the boundary. From the (µ̂ν̂)=(µr) components we find the subdominant Ĉµr = Cµr

with

Cµr

∣

∣

r=0
=

1

2
ire−1ǫ νρσ

µ DνĈρσ + ψ̄R
ρi+

(

γ ρσ
µ ΦR

σj+ +
1√
3
γµγ

ρχL
j+

)

(Γ4)
i+j+ . (33)

For the spin-12 fermions χ̂L
i+

= r3/2χL
i+

was obtained from the PL projection of (20) at O(r3/2).

The only additional contribution at that order is ∝ γργ ·C+
i+j+

ψ
Rj+
ρ which is a three-fermion

term by (32) and we expect it to be cancelled by contributions of four-fermion terms in (1).
We conclude that – up to the four-fermion terms not considered here – the obtained scaling
for χ̂L

i+
is not affected by the interaction terms. The subdominant righthanded part is fixed

from the PR-projection of (20) and we find χ̂i+
= r3/2χL

i+
+ r5/2 log(r)χR

i+
with

χR
i+

∣

∣

∣

r=0
= i /DχL

i+ − 1√
2
ϕγµψL

µi+ − i

2
√
6
γργµν

(

F I
µν (ΓI)

j+
i+

−
√
2fµνδ

j+
i+

)

ψL
ρj+

+
i

2
√
3
γργ · C−i+j+

Φj+L
ρ − 1√

3
γργµCµr i+j+ψ

j+R
ρ .

(34)

In the equations for the gauge fields (24), (25) the leading-order terms are those involving J4
µ̂i
j

(the gravitino part thereof) and J1
µν
ij , both of which are of O(r−3). However, since (ΓI)

j−
i+

=

(ΓI)
j+

i−
= 0 due to [ΓI ,Γ45] = 0, their leading-order parts cancel exactly in both equations,

such that the previous analysis of the linearized equations is not altered. For the scalar field
we have to check that the interaction terms are subdominant with respect to the O(r2) and
O(r2 log(r)) parts of (26). Similar to the case of the gauge fields, there are cancellations

between different terms at leading order. From (32) the Jµν
1ij term and the ĈµνĈ

µν term add

up to zero at leading order, and also −iA′ij ˆ̄ψi
µ̂γ̂

µ̂χ̂j and − 1√
2
ê−1∂ν̂

(

iê ˆ̄ψi
µ̂γ̂

ν̂ γ̂µ̂χ̂i

)

cancel. The

remaining terms are subleading and thus the cancellations justify the analysis of the linearized
equations also for ϕ̂. We conclude that the scaling behaviours obtained from the linearized
equations of motion with the modifications for the subdominant components discussed here
are consistent in the nonlinear theory as given by (1).
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3.3 Induced boundary symmetries

Having obtained the multiplet of boundary fields in the previous section we now discuss the
symmetries on the boundary. To this end we determine the residual bulk symmetries from the
constraints (13) and examine their action on the boundary fields, which is defined straight-
forwardly e.g. δφ := limr→0 f(r)

−1δ̂φ̂ for a boundary field φ = limr→0 f(r)
−1φ̂. Relevant to

us are solutions to the constraints (13) which act nontrivially on the boundary fields, and
in the following we discuss certain special solutions which generate the general symmetry
transformation of the boundary fields.

The constraint that ê
r
r and êar be preserved yields that, for an arbitrary λ(x),

X̂r = rλ(x), Σ̂a
r = −eaµ∂rX̂µ . (35)

We parametrize the U(1) and SU(2) gauge transformations by σ̂(x, r) and τ̂ I(x, r), respec-
tively, and using (35) the remaining constraints are

∂rX̂
µ =gµρ

(

r∂ρλ(x) + i ˆ̄ψi
ργ̂

r ǫ̂i
)

, (36a)

∂rσ̂ =âµ∂rX̂
µ +

1√
3
iξ2 ˆ̄χiγ̂r ǫ̂i , (36b)

∂r τ̂
I =ÂI

µ∂rX̂
µ +

1√
6
iξ−1 ˆ̄χiγ̂r ǫ̂

j
(

ΓI
)

ij
, (36c)

∇̂r ǫ̂i + γ̂rTij ǫ̂
j =−

(

∂rX̂
µ
)

ψ̂µi +
1

6
√
2

(

γ̂ ν̂ρ̂
r − 4δν̂r γ̂

ρ̂
)(

Hν̂ρ̂ij +
1√
2
hν̂ ρ̂ij

)

ǫ̂j . (36d)

Thus, (13) is solved for ǫ̂ ≡ 0, λ ≡ 0 and X̂ µ̂ = (Xµ(x), 0), Σ̂â
ĉ = δâaδ

c
ĉ Σa

c(x), τ̂
I = τ I(x)

and σ̂ = σ(x), acting as four-dimensional diffeomorphisms δX , local Lorentz transformations
δΣ and SU(2)⊗U(1) gauge transformations δτI , δσ , respectively, on the boundary fields.

Furthermore, consider δ̂w:=δX̂w
+δǫ̂w+δΣ̂w

+δσ̂w+δτ̂Iw , with nonzero X̂r = rλ accompanied by

ǫ̂wi = O(r3/2), by X̂µ
w, σ̂w, τ̂

I
w of O(r2) and by Σ̂a

w b = 0, Σ̂a
w r = O(r) to solve (35), (36). All

transformations preserve the boundary fields, except for δX̂w
which acts as a Weyl rescaling.

The Weyl weights of the boundary fields are fixed by the scaling of the bulk fields from which
they are defined, e.g. for φ := limr→0 r

αφ̂ we have δwφ := limr→0 r
αδ̂wφ̂ = −αλ(x)φ.

Finally, we set λ ≡ 0 and consider non-vanishing ǫ̂i solving (36d). Similarly to the mass
terms in the spinor field equations, the Tij-term in (36d) affects a splitting of the chiral
components when solving the leading order in r. We find the two independent solutions

ǫ̂i+ = r−1/2ǫLi+ + o(r1/2) and ǫ̂i+ = r1/2ǫRi+ + o(r1/2) with ǫ
L/R
i+

|r=0 finite. X̂µ, σ̂ and τ̂ I of

O(r2) and Σ̂a
r = O(r) are fixed by solving the remaining constraints, such that δX̂, Σ̂, σ̂, τ̂I

transform the subleading modes of the bulk fields only. On the boundary fields we thus have
a purely fermionic transformation δ̂ǫ̂.

We define ζi+ := ǫLi+(x, 0), ζ
i+:= ǫRi+(x, 0), such that ζ i+ is related to ζi+ by the symplectic

Majorana condition, and similarly ηi+ := ǫRi+(x, 0), η
i+ := ǫLi+(x, 0). To leading order in the
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fermionic fields the ζ-transformations of the boundary fields are

δζe
a
µ = iψ̄Li+

µ γaζi+ + c.c. , δζψ
L
µi+ = Dµζi+ − 1

4
γ · C−i+j+

γµζ
j+ ,

δζA
I
µ =

1√
2
i
(

Φ̄Ri+
µ ζj+ − 1√

3
χ̄Li+γµζj+

)

(

ΓI
) j+

i+
+ c.c. ,

δζaµ =
1

2
i
(

Φ̄Ri+
µ ζi+ +

2√
3
χ̄Li+γµζi+

)

+ c.c. , δζϕ =
1√
2
iχ̄Ri+ζi+ + c.c. ,

δζχ
L
i+ = − 1√

2
iϕζi+ +

1

2
√
6
γµν

(

F I
µν (ΓI)

j+
i+

−
√
2fµνδ

j+
i+

)

ζj+ − 1√
3
iγµCµr i+j+ζ

j+ ,

δζC
−
ab = 2i (Γ4)

i+j+
(

ζ̄i+R̂ab j+(Q) +
1

4
ηacψ̄

µR
i+
γ[νγbµγ

c]δζψ
L
νj+

)

,

(37)

where R̂µν i+(Q) := Rµν i+(Q) − 1
2
√
3
iγµνχ

L
i+
. These correspond to N=2 (Q-)supersymmetry

transformations of the boundary fields. The η-transformations are given by

δηe
a
µ = 0 , δηψ

L
µi+ = −iγµηi+ , δηaµ =

1

2
iψ̄Li+

µ ηi+ + c.c. ,

δηC
−
ab =

1

2
i (Γ4)

i+j+ ηacψ̄
µR
i+
γ[νγbµγ

c]δηψ
L
νj+ , δηϕ = 0 ,

δηχ
L
i+ = − 1

2
√
3
γ · C−i+j+

ηj+ , δηA
I
µ =

1√
2
iψ̄Li+

µ ηj+
(

ΓI
) j+
i+

+ c.c. ,

(38)

and correspond to special conformal (S-)supersymmetry or super-Weyl transformations. The
constrained field components ΦR

µi+
, C+

µν and Cµr are given by (30), (32) and (33), respectively,

and the covariant derivative by (29). With χR
i+

as given in (34) the transformation of the
scalar field may be rewritten as

δζϕ =
1√
2
ζ̄ i+γµ

(

Dµ − δζ(ψµ)− δη(Φµ)
)

χL
i+ + c.c. , (39)

where δζ(ψµ) denotes a field-dependend ζ-supersymmetry transformation with parameter
ζi+ = ψL

µi+
, and analogously for δη(Φµ) with ηi+ = ΦR

µi+
.

The commutators of Q- and S-superymmetries can be derived from (7) and we find

[δζ2 , δζ1 ] = δXζ
+ δΣ

(

Xµ
ζ ω

ab
µ

)

+ δΣ

(

2iζ̄
i+
1 ζ

j+
2 C−ab

i+j+
+ c.c.

)

+ δσζ
+ δτI

ζ
, (40a)

[δη, δζ ] = δWeyl

(

ζ̄ i+ηi++ c.c.
)

+ δΣ

(

−ζ̄ i+γabηi++ c.c.
)

+ δσηζ
+ δτI

ηζ
, (40b)

[δη2 , δη1 ] = 0 , (40c)

where in (40a) the diffeomorphism is Xµ
ζ = −iζ̄ i+1 γµζ2i++ c.c. and the gauge transformations

are σζ = Xµ
ζ aµ, τ

I
ζ = Xµ

ζ A
I
µ. The gauge transformations in (40b) are σηζ = 1

2 iζ̄
i+ηi++ c.c.

and τ Iηζ =
1√
2
i (ΓI)

j+
i+

ζ̄ i+ηj++ c.c..

Altogether, we find the boundary degrees of freedom with properties as given in Table 1 and
with the fermionic symmetry transformations (37), (38). The off-shell degrees of freedom are
given as the difference of field components and gauge degrees of freedom, e.g. for the chiral
gravitino we count 16 components from which 2 · 4 degrees of freedom are removed for the
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eaµ ψL
µi+

aµ, A
I
µ χL

i+
C−µν ϕ

w −1 −1
2 0 3

2 −1 2

s 2 3
2 1 1

2 1 0

n 5 −8 3 −4 6 1

c 0 1
2 0 1

2 1 0

Table 1: Boundary fields with Weyl weights w, spin s and n off-shell degrees of freedom. The
fermions are SU(2) doublets and c denotes the U(1) charges.

chiral ζ and η supersymmetry transformations. Likewise, of the 16 vielbein components 4
degrees of freedom are subtracted for diffeomorphisms, 6 for local Lorentz and 1 for Weyl
transformations. As seen from Table 1, the total numbers of bosonic and fermionic degrees of
freedom, both being 24, match nicely, and the boundary fields fill theN=2Weyl multiplet, see
[20, 21]. The bulk SU(2)⊗U(1) gauge symmetry has become the chiral U(2) transformations
contained in SU(2, 2|2) to close the commutator of Q- and S-supersymmetries.

4 Conclusion

In this note we have studied SU(2)⊗U(1) gauged N=4 supergravity on asymptotically-AdS5
backgrounds. We have constructed the multiplet of fields induced on the conformal boundary
and determined the induced representation of the local bulk symmetries on the boundary
fields. This has shown that the boundary degrees of freedom, which are given in Table 1, fill
the N=2 Weyl multiplet and that the complete local N=2 superconformal transformations
are induced, with Q- and S-supersymmetry transformations given in (37), (38).

For the constructions we have employed gauge fixings for the bulk symmetries, which were
chosen such that they do not cause a fixing of the symmetries induced on the boundary.
Different gauge fixings are expected to yield the same boundary fields and symmetries, pos-
sibly gauge fixed and/or with additional gauge degrees of freedom. An interesting task is to
study this in the BRST approach. Note also that, instead of the definition as boundary limit,
one may define the boundary field as pullback of the rescaled bulk field, and that the two
definitions agree for the cases discussed here.

There are at least three possible applications of our results. The first does not directly involve
duality relations, while the following two are devoted to the AdS/CFT correspondence, and
to algebraic holography and deformations of the original AdS/CFT conjecture, respectively.

A common issue in the study of black-hole thermodynamics and in the AdS/CFT cor-
respondence is the regularization of the on-shell action of the gravitational theory. For
asymptotically-AdS spaces a well-established method is the holographic renormalization [13],
i.e. introducing a cutoff on the radial coordinate and supplementing the action by boundary
terms, such that removing the cutoff yields a finite action. Remarkably, as shown in [22], for
lower-dimensional theories these holographic counterterms coincide with the boundary terms
required by supersymmetry. With the results shown here one can calculate the holographic
counterterms for the N=4 supergravity, and may check whether the relation to the boundary
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terms required by supersymmetry also applies in that case.

In the AdS/CFT correspondence the multiplet of boundary fields is coupled to the multiplet
of currents of the dual SCFT and, in particular, the expectation value of the stress-energy
tensor is calculated from the variation of the renormalized on-shell bulk action with respect to
the boundary metric. The conformal anomaly of the dual theory is given by the trace of the
stress-energy tensor and the purely-gravitational part was calculated in [14]. With our results
one may extend this to a holographic calculation of the full conformal anomaly including the
matter-field contributions for N=2 SCFTs.

Finally, a duality relation reminiscient of the AdS/CFT correspondence has been formulated
and proven in [16] in the context of algebraic QFT. Although it is unclear whether the bulk
theory considered here can be fit into the framework of algebraic QFT, we may still try to
interpret the results in that context5. While the physical interpretation of the boundary theory
in [16] is not immediately clear, the constructions in [17], where the boundary Wightman
field is constructed as boundary limit of the rescaled AdS Wightman field, suggest that the
boundary fields constructed here indeed constitute the field content of the boundary theory.
This may also be understood in the context of [18], where it was shown that, replacing the
Dirichlet boundary conditions employed in the AdS/CFT correspondence by Neumann or
mixed boundary conditions, the boundary metric can be promoted to a dynamical field. An
interesting task left for the future is to combine our results with the appropriate boundary
conditions to construct a dynamical conformal supergravity on the boundary.
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A Conventions

In this appendix we give a summary of the conventions for the usp(4) generators, which
agree with those of [8], and for the spacetime γ-matrices. All spacetime quantities are five-
dimensional, so we omit hats for better readability. The γ-matrices are chosen such that
γabcde = ǫabcde with ǫ01234 = 1. With the charge conjugation matrix C satisfying

Cγ̂µ̂C
−1 = γ̂Tµ̂ , CT = C−1 = −C, C⋆ = C (41)

the supercharges and hence all the spinors satisfy the symplectic Majorana condition

(χi)
† γ0 =: χ̄i =

(

χi
)T
C . (42)

Fermionic fields are by convention anticommuting and complex conjugation changes their
order. Antisymmetrized indices are defined as X[µYν] :=

1
2(XµYν −XνYµ).

5 [16] relies on the precise properties of AdS space, so we may regard the bulk theory as expanded around
an AdS background for that purpose.
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The usp(4) symplectic metric Ω and its inverse satisfy ΩijΩ
jk = δ k

i , Ωij = (Ωji)
∗ and are

used to raise and lower spinor indices via

ǫi = Ωijǫj , ǫi = Ωijǫ
j . (43)

The so(5) Clifford algebra generators Γm satisfy (Γm) k
i (Γn)

j
k + (Γn)

k
i (Γm) j

k = 2δmnδ
j

i ,
which yields canonical Clifford matrices only for these specific index positions. With the
charge conjugation matrix Ω we have

Ωik (Γm) j
k =: (Γm)ij = − (Γm)ji . (44)

The conjugate is denoted by (Γm)ij =
(

(Γm)ij
)∗

and the so(5) generators satisfy (Γmn)
ij =

(Γmn)
ji. The convention for ǫαβ is ǫ45 = ǫ45 = 1.

B Comparison to [20]

To connect the superconformal transformations (37), (38), (39) to the results obtained in [20]
we first redefine the tensor field as Cµν := Cµν − i (Γ4)

i+j+ ψ̄R
[µ i+

ψL
ν] j+

such that, to leading
order in the fermions,

δζC−ab = 2i (Γ4)
i+j+ ζ̄i+R̂ab j+(Q) , δηC−ab = 0 , (45)

while the transformations of the other fields change by C−→ C− only. With the field redefi-
nitions

ψL
µi+ =:

κ√
2
Ψµι , ΦR

µi+ +
1

2
√
3
γµχ

L
i+ =:

κ√
8
Φµι , R̂µν i+(Q) =:

κ√
8
R̂′µν ι(Q) ,

ζi+ =:
√
2ζ ′ι , ηi+ =:

1√
2
η′ι , C−µν i+j+

=:
κ

4
T−µν ις , χL

i+ =:

√

3

8
κχ′ι , (46)

aµ =:
κ

2
Aµ , iAI

µ (ΓI)
j+

i+
=:

κ√
8
V ς
µ ι , ϕ =:

√

3

8
κϕ′ ,

where ι := i+, ς := j+, the expressions for the auxiliary fields are

ωµab = ωµab(e) −
1

4
κ2

(

iΨ̄ι
aγµΨbι + 2iΨ̄ι

µγ[aΨb]ι + c.c.
)

,

Φµι = −1

2
i
(

γνργµ − 1

3
γµγ

νρ
)(

DνΨρι −
κ

16
γ · T−ις γνΨς

ρ

)

+
1

2
γµχ

′
ι ,

R̂′µν ι(Q) = 2D[µΨν]ι − iγ[µΦν]ι −
κ

8
γ · T−ις γ[µΨς

ν]
.

(47)

With the Fierz identity

viwj =
1

4
vkwk δ

i
j +

1

4
vk(Γm) l

k wl (Γm) i
j − 1

8
vk(Γmn)

l
k wl (Γmn)

i
j (48)
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the transformations (37), (38) to leading order in the fermions are

δeaµ = −iκζ̄ ′ιγaΨµι + c.c. ,

δΨµι = 2κ−1Dµζ
′
ι −

1

8
γ · T−ις γµζ ′

ς − iκ−1γµη
′
ι ,

δT−ab ις = 8iζ̄ ′[ιR̂
′
ab ς](Q) ,

δV ς
µ ι =

(

2ζ̄ ′ςΦµ ι − 3ζ̄ ′ςγµχ
′
ι − 2Ψ̄ς

µη
′
ι − h.c.

)

traceless
,

δAµ = −1

2
iζ̄ ′ιΦµ ι −

3

4
iζ̄ ′ιγµχ

′
ι +

1

2
iΨ̄ι

µη
′
ι + c.c. ,

δχ′ι = − 1

12
γ · T−ις η′

ς − iϕ′ζ ′ι +
i

12
γ ·

(

T−ις
←
/D
)

ζ ′
ς − 1

3
γ ·R(A) ζ ′ι −

1

6
iγ · R(V ) ς

ι ζ ′ς ,

δϕ′ = ζ̄ ′ιγµ
(

Dµ − κ

2
δζ′(Ψµ)−

κ

2
δη′(Φµ)

)

χ′ι + c.c. ,

(49)

where iF I
µν(ΓI)

j+
i+

=: κ√
8
Rµν(V ) ς

ι and fµν =: κ
2Rµν(A). These are the results obtained in

[20] in Euclidean signature up to differences in the phase factors.
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