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Abstract

The inverse problem with Lemâıtre-Tolman-Bondi (LTB) universe models is dis-

cussed. The LTB solution for the Einstein equations describes the spherically sym-

metric dust-filled spacetime. The LTB solution has two physical functional degrees of

freedom of the radial coordinate. The inverse problem is constructing an LTB model

requiring that the LTB model be consistent with selected important observational data.

In this paper, we assume that the observer is at the center and consider the distance-

redshift relation DA and the redshift-space mass density µ as the selected important

observational data. We giveDA and µ as functions of the redshift z. Then, we explicitly

show that, for general functional forms of DA(z) and µ(z), the regular solution does not

necessarily exist in the whole redshift domain. We clarify the necessary and sufficient

condition for the existence of the regular solution in terms of DA(z) and µ(z). We also

show that this condition is satisfied by the distance-redshift relation and the redshift-

space mass density in ΛCDM models. Deriving regular differential equations for the

inverse problem with the distance-redshift relation and the redshift-space mass density

in ΛCDM models, we numerically solve them for the case (ΩM0, ΩΛ0) = (0.3, 0.7). A

set of analytic fitting functions for the resultant LTB universe model is given. How to

solve the inverse problem with the simultaneous big-bang and a given function DA(z)

for the distance-redshift relation is provided in the Appendix.
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§1. Introduction

Anti-Copernican universe models are widely discussed in recent years as alternatives to

the standard homogeneous cosmology with dark energy components. One of the simplest

ways to construct an anti-Copernican model is to solve the inverse problem, which is the

reconstruction of the universe model from observational data. Although the isotropy of

the universe around us has been confirmed with high accuracy by the observation of the

cosmic microwave background (CMB), this does not automatically imply homogeneity of the

universe. Thus, in solving the inverse problem, we may assume that the universe is spherically

symmetric around us. In addition, we usually assume that the universe is dominated by cold

dark matter, that is, by dust. The spherically symmetric dust-filled spacetime is described

by the Lemâıtre-Tolman-Bondi (LTB) solution.1)–3) The LTB solution has three arbitrary

functions of the radial coordinate approximately corresponding to the density profile, the

spatial curvature and the big-bang time perturbation, with one of them being a gauge degree

of freedom representing the choice of the radial coordinate. These arbitrary functions may

be determined by requiring that the resulting LTB universe be consistent with selected

important observational data (e.g., the distance-redshift relation). However, we should note

that it is not apparent at all if these three functions have sufficient degrees of freedom to fit

all of the important observational data.

In the inverse problem, two approaches have been mainly considered. One is proposed by

Mustapha, Hellaby and Ellis4) in 1998. In this paper, we refer to this work and the approach

used there as MHE and the MHE approach, respectively. In MHE, the angular diameter

distance DA and the redshift-space mass density µ are given as functions of the redshift z

to fix two physical functional degrees of freedom in LTB universe models.

Recently, many authors have succeeded in solving the inverse problem by the MHE

approach,5)–9) and constructed the LTB universe model whose distance-redshift relation and

the redshift-space mass density agree with those in the concordance ΛCDM model. The

other approach is proposed by Iguchi, Nakamura and Nakao in 2002. We refer to this work

as INN in this paper. In the INN approach, one of the conditions is given by the distance-

redshift relation as in the MHE approach, and simultaneous big-bang or a uniform curvature

function is chosen as the other condition. However, they could not go beyond z ∼ 1.6 owing

to a technical problem. In 2008, Yoo, Kai and Nakao succeeded in constructing the LTB

model whose distance-redshift relation agrees with that of the concordance ΛCDM model

in the whole redshift domain and which has uniform big-bang time.10) Independently from

MHE and INN, Célérier solved the inverse problem analytically at small redshifts z ≪ 1

in the form of the Maclaurin series in 1999.11) There are also several works on the inverse
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problem.12)–15)

In the inverse problem, one of the difficulties happens at the point with the maximum

angular diameter distance. At this point, differential equations for the inverse problem

become apparently singular. Related discussions can be found in Refs. 4)–7),16). The point

with the maximum angular diameter distance is a regular singular point of the differential

equations in the INN approach. In Ref. 10), this singularity has been resolved using a

shooting method to solve the differential equations for the inverse problem. On the other

hand, there is no conclusive illustration on how to resolve this apparent singularity in the

MHE approach. The main purpose in this paper is to explicitly show how this singularity

can or cannot be resolved in the MHE approach.

In this paper, we solve the inverse problem by the MHE approach using a different

formulation from MHE. We find that, for general functional forms of DA(z) and µ(z), the

regular solution does not necessarily exist in the whole redshift domain. Then, we represent

the necessary and sufficient condition for the existence of the regular solution in terms of

DA(z) and µ(z). We also show that this condition is satisfied by the distance-redshift relation

and the redshift-space mass density in ΛCDM models. Deriving regular differential equations

for the inverse problem with the distance-redshift relation and redshift-space mass density in

ΛCDM models, we numerically solve them for the case (ΩM0, ΩΛ0) = (0.3, 0.7) and compare

our result with those in previous works.7)–9) We propose a set of analytic fitting functions for

the resultant LTB universe model. We also explain how to solve the inverse problem by the

INN approach with simultaneous big-bang in Appendix C. We use the unit system given by

c = G = H0 = 1 throughout this paper, where c, G and H0 are the speed of light, Newton’s

constant and Hubble constant, respectively.

§2. Equations

2.1. LTB dust universe

As mentioned in the introduction, we consider a spherically symmetric inhomogeneous

universe filled with dust. This universe is described by an exact solution of the Einstein

equations, known as the LTB solution. The metric of the LTB solution is given by

ds2 = −dt2 +
(∂rR(t, r))2

1− k(r)r2
dr2 +R2(t, r)dΩ2, (2.1)

where k(r) is an arbitrary function of the radial coordinate r. The matter is dust whose

stress-energy tensor is given by

T µν = ρuµuν, (2.2)
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where ρ = ρ(t, r) is the mass density, and ua is the four-velocity of the fluid element. The

coordinate system in Eq. (2.1) is chosen in such a way that uµ = (1, 0, 0, 0).

The area radius R(t, r) satisfies one of the Einstein equations,

(∂tR)2 = −k(r)r2 +
2M(r)

R
= −k(r)r2 +

m(r)r3

3R
, (2.3)

where M(r) is an arbitrary function related to the mass density ρ by

4πρ =
∂rM

R2∂rR
=

1
2
r2m(r) + r3

6
∂rm(r)

R2∂rR
(2.4)

and we have defined

M(r) =
m(r)r3

6
. (2.5)

Following Ref. 17), we write the solution of Eq. (2.3) in the form,

R(t, r) = (6M(r))1/3(t− tB(r))
2/3S(x) = rm(r)1/3(t− tB(r))

2/3S(x), (2.6)

x = k(r)r2
(
t− tB(r)

6M(r)

)2/3

= k(r)m(r)−2/3(t− tB(r))
2/3, (2.7)

where tB(r) is an arbitrary function that determines the big-bang time, and S(x) is a function

defined implicitly as

S(x) =





cosh
√−η − 1

61/3(sinh
√−η −√−η)2/3

; x =
−(sinh

√−η −√−η)2/3

62/3
for x < 0 ,

1− cos
√
η

61/3(
√
η − sin

√
η)2/3

; x =
(
√
η − sin

√
η)2/3

62/3
for x > 0 ,

(2.8)

and S(0) = (3/4)1/3. The function S(x) is analytic for x < (π/3)2/3. Some characteristics of

the function S(x) are given in Refs. 10) and 17).

2.2. Basic equations

As shown in the preceding subsection, the LTB solution has three arbitrary functions:

k(r), m(r) and tB(r). One of them is a gauge degree of freedom for rescaling of the radial

coordinate r. We fix the remaining two functional degrees of freedom imposing the following

physical conditions.

• The angular diameter distance is given by DA(z) as a function of the redshift.

• The redshift-space mass density is given by µ(z) as a function of the redshift.

To determine tB(r), k(r) and m(r) from the above conditions, we consider a past directed

outgoing radial null geodesic that emanates from the observer at the center. This null

geodesic is expressed in the form

t = t(z), (2.9)

r = r(z). (2.10)
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We assume that the observer is located at the symmetry center r = 0 and observes the light

ray at t = t0. To fix the gauge freedom to rescale the radial coordinate r, we adopt the

light-cone gauge condition such that the relation

t = t0 − r (2.11)

is satisfied along the observed light ray.

Then, basic equations to determine tB, k and m are given as follows:

1. Null geodesic equations

The null geodesic equations in the LTB solution are given as

(1 + z)
dt

dz
= − ∂rR

∂t∂rR
, (2.12)

(1 + z)
dr

dz
=

√
1− k(r)r2

∂t∂rR
. (2.13)

One of these equations can be derived from the other one and the null condition.

Therefore, one of them is sufficient under the null condition.

2. Null condition

By virtue of the light-cone gauge condition, the null condition on the observed light

ray takes the very simple form of

∂rR =
√
1− kr2. (2.14)

3. Distance-redshift relation

As mentioned, we assume that the angular diameter distance is given by DA(z). Then,

we have

R = DA(z). (2.15)

4. Redshift-space mass density

We define the total mass of a shell between z and z + dz as

M := 4πD2
Aρ

∂rR√
1− kr2

dr

dz
dz. (2.16)

Then, we consider the redshift-space mass density µ defined by

µ =
M

4πD2
A

⇔ µ = ρ
dr

dz
. (2.17)

As mentioned, we assume that the redshift-space mass density is given as a function

of the redshift. Thus, we have

ρ
dr

dz
= µ(z). (2.18)
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2.3. Rewriting the basic equations as differential equations

We can regard r(z), m(z), k(z) and tB(z) as mutually independent functions of the

redshift z. Basic equations to determine these functions are (2.13), (2.14), (2.15) and (2.18).

Combining Eqs. (2.4) and (2.18), we find

3m
dr

dz
+ r

dm

dz
= 24πµ

√
1− kr2

D2
A

r2
≡ A, (2.19)

where we have used the relation

∂rm =
dm/dz

dr/dz
. (2.20)

Differentiating Eq.(2.6) with z, we have

B
dr

dz
+ C

dm

dz
+D

dk

dz
+ E

dτ

dz
=

dDA

dz
, (2.21)

where

B = m1/3(t− tB)
2/3S − 2

3
rm1/3(t− tB)

−1/3(S + xS ′), (2.22)

C =
1

3
rm−2/3(t− tB)

2/3(S − 2xS ′), (2.23)

D = rm−1/3(t− tB)
4/3S ′, (2.24)

E = −2

3
rm1/3(t− tB)

−1/3(S + xS ′). (2.25)

From Eqs. (2.6) and (2.14), we have

F
dr

dz
− C

dm

dz
−D

dk

dz
− E

dtB
dz

= 0, (2.26)

where

F =
√
1− kr2 −m1/3(t− tB)

2/3S. (2.27)

For ∂t∂rR, we find the expression

∂t∂rR = G∂rm+H∂rk + I∂rtB + J, (2.28)

where

G = ∂tC =
1

6
rm−2/3(t− tB)

−1/3 1

S2
, (2.29)

H = ∂tD =
2

3
rm−1/3(t− tB)

1/3(2S ′ + xS ′′), (2.30)

I = ∂tE =
1

6
rm1/3(t− tB)

−4/3 1

S2
, (2.31)

J =
2

3
m1/3(t− tB)

−1/3(S + xS ′). (2.32)
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Then, Eq. (2.13) can be rewritten as

J
dr

dz
+G

dm

dz
+H

dk

dz
+ I

dtB
dz

=

√
1− kr2

1 + z
. (2.33)

Solving Eqs. (2.19), (2.21), (2.26) and (2.33) for dr/dz, dm/dz, dk/dz and dτ/dz, we

have
dr

dz
=

1

B + F

dDA

dz
, (2.34)

dm

dz
=

1

r

(
A− 3m

dr

dz

)
=

1

r

(
A− 3m

B + F

dDA

dz

)
, (2.35)

dk

dz
=

2

r

{√
1− kr2

1 + z
Ẽ − (F Ĩ + ẼJ)

dr

dz
+ r(C̃Ĩ − ẼG̃)

dm

dz

}
, (2.36)

dtB
dz

= −2

r

{√
1− kr2

1 + z
D̃ − (FH̃ + D̃J)

dr

dz
+ r(C̃H̃ − D̃G̃)

dm

dz

}
, (2.37)

where C̃ = C/r, D̃ = D/r, Ẽ = E/r, G̃ = G/r, H̃ = H/r and Ĩ = I/r, and we have used

the relation

D̃Ĩ − ẼH̃ =
1

2
. (2.38)

§3. Solution near the center

Before numerically solving Eqs. (2.34) - (2.37), we need to identify the boundary con-

ditions for the differential equations at the center. Since the center is the regular singular

point of the differential equations, the boundary conditions must be appropriately chosen

for a regular solution. For this purpose, we consider the Maclaurin series expansion of the

functions near the center as follows:

r = r1z +
1

2
r2z

2 +O(z3), (3.1)

m = m0 +m1z +O(z2), (3.2)

k = k0 + k1z +O(z2), (3.3)

tB = tB1z +O(z2). (3.4)

Hereafter, each value at (t, r) = (t0, 0) is denoted by the subscript 0.

As shown in Ref. 10), imposing the regularity at the center, we find

R = r +O(r2), (3.5)

m = m0 +O(r), (3.6)

m0 = 8πρ0 := 8πρ(t0, 0), (3.7)

k0 = x0m
2/3
0 t

−2/3
0 = −1 +

m0

3
, (3.8)

S0 = m
−1/3
0 t

−2/3
0 . (3.9)
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Since S satisfies

S + xS ′ =

√
3

2

√
1

S
− 3x for x ≤

(π
6

)2/3

, (3.10)

S + xS ′ =

√
3

2

√
1

S
− 3x for x >

(π
6

)2/3

, (3.11)

we find

S0 + x0S
′
0 =

3

2
m

−1/3
0 t

1/3
0 , (3.12)

where we have assumed

Ωm0 =
m0

3
≤ 1 ⇔ k0 ≤ 0 ⇒ x0 ≤ 0 <

(π
6

)2/3

. (3.13)

We assume the following expansion form of the angular diameter distance and the

redshift-space mass density:

DA = z +
1

2
DA2z

2 +O(z3), (3.14)

8πµ = δ0 + δ1z +O(z2). (3.15)

Then, from zero-th order of Eq. (2.34), we can find

r1 = 1. (3.16)

Equation (2.35) can be expanded as

dm

dz
= −3

m0 − δ0
z

+O(1). (3.17)

Therefore, we have to impose the condition

m0 = δ0 (3.18)

so that dm/dz is finite at the center. Assuming the above relation, we can find

r2 = 1 +DA2 (3.19)

from the second order in Eq. (2.34). In the same manner as in the above, we obtain

m1 = −3

4
((2 +DA2) δ0 − δ1) , (3.20)

k1 = 2 +DA2 −
1

4
(2 +DA2)δ0 +

δ1
4
, (3.21)

tB1 =
−2(3t0 + 2)δ20 + 3(δ1 + 12)t0δ0 − 3DA2((δ0 − 6)t0 + 2)δ0 + 18δ1(t0 − 1)

8(δ0 − 3)δ0
(3.22)
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from the 1st orders of Eqs. (2.35)–(2.37), where we have used the equation

x(2SS ′′ + S ′2) + 5SS ′ +
9

4
= 0 (3.23)

to reduce the order of differentiation of S. Then, we can use these expressions near the

center instead of solving Eqs. (2.34)–(2.37). If DA(z) and µ(z) are analytic at the center,

we can derive higher order expressions for Eqs. (3.1)–(3.4) from Eqs. (2.34)–(2.37).

It should be noted that all the initial valuables at the center are determined by the

input valuables δ0 and H0 = 1 from the regularity. We do not have any additional degree

of freedom to put a boundary condition for the differential equations differently from the

situation in Ref. 10). We also note that the normalization H0 = 1 implicitly determines the

value of t0 through Eq. (3.9).

§4. Regularity at the point with the maximum distance

To obtain a physically reasonable solution, the right-hand side of Eq. (2.34) must be

positive definite. Since the sign of dDA/dz changes at the point with the maximum angular

diameter distance, at which dDA/dz = 0, B + F must be 0 at this point and the sign of

B + F must change. As shown in Appendix A, we can derive the equation

B + F =
1

1 + z
(1−Q(z)) , (4.1)

where

Q(z) = 4π

∫ z

0

(1 + z)µ(z)DA(z)dz. (4.2)

Therefore, the input functions DA(z) and µ(z) must satisfy

Q(zm) = 4π

∫ zm

0

(1 + z)µ(z)DA(z)dz = 1 (4.3)

for the regularity at z = zm, where dDA/dz|z=zm = 0. This condition has not been pointed

out in previous studies.4), 7), 8)

Let us consider the angular diameter distance and the redshift-space mass density in a

homogeneous and isotropic universe model with ΩM0, ΩK0 and ΩΛ0. In this case, the angular

diameter distance is given by

DA(z) = DΛCDM(z) :=

{
1

1+z

∫ z

0
1

HΛCDM
dz for ΩK0 = 0,

1
(1+z)

√
−ΩK0

sin
[√

−ΩK0

∫ z

0
1

HΛCDM
dz

]
for ΩK0 6= 0,

(4.4)

where

HΛCDM =
√

(1 + z)3ΩM0 + (1 + z)2ΩK0 +ΩΛ0. (4.5)
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The redshift-space mass density is given by

µ(z) = µΛCDM(z) :=
3

8π
ΩM0

(1 + z)3√
1 +ΩK0(1 + z)2D2

ΛCDM

(
dDΛCDM

dz
+

DΛCDM

1 + z

)
. (4.6)

Then, the following equations are satisfied:

d

dz

[
(1 + z)2HΛCDM

dDΛCDM

dz

]
= −3

2

(1 + z)3

HΛCDM

ΩM0DΛCDM, (4.7)

d

dz

√
1 +ΩK0(1 + z)2D2

ΛCDM =
(1 + z)

HΛCDM

ΩK0DΛCDM for ΩK0 6= 0, (4.8)

d

dz

[
(1 + z)2D2

ΛCDM

]
=

(1 + z)

HΛCDM
DΛCDM for ΩK0 = 0. (4.9)

Using these equations, we can find

Q(z) = 4π

∫ z

0

(1 + z)µΛCDM(z)DΛCDM(z)dz

=

∫ z

0

3

2
ΩM0(1 + z)2Ω−1

K0

d

dz

√
1 +ΩK0(1 + z)2D2

ΛCDM

=

∫ z

0

− d

dz

[
(1 + z)2HΛCDM

dDΛCDM

dz

]
dz = 1− (1 + z)2HΛCDM

dDΛCDM

dz
(4.10)

for ΩK0 6= 0. We can also derive the same equation for the case ΩK0 = 0, as pointed out

in Ref. 8). Therefore, the condition (4.3) is automatically satisfied for homogeneous and

isotropic universes with ΩM0, ΩK0 and ΩΛ0. In this case, we have

B + F = (1 + z)HΛCDM
dDΛCDM

dz
. (4.11)

Then, Eq. (2.34) can be replaced by

dr

dz
=

1

(1 + z)HΛCDM
. (4.12)

The set of differential equations (4.12), (2.35)–(2.37) does not have any singular point other

than the center.

On the other hand, if we consider a dark energy component with the equation of state

p = wρ (w 6= −1) instead of the cosmological constant Λ, the condition (4.3) cannot be

satisfied. We numerically calculated the value of Q(zm), with ΩM0 = 0.3 and ΩX0 = 0.7,

where ΩX0 is the density parameter of the dark energy component. The result is shown in

Fig. 1. This result shows that there is no regular solution for the inverse problem with

DA and µ for a homogeneous universe model with a dark energy component with w 6= 1

in the whole redshift domain. In other words, the existence of the regular solution for the

inverse problem cannot be guaranteed for general input functions DA(z) and µ(z) without

the condition (4.3).
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Fig. 1. Q(zm) as a function of w. DA and µ are given by those in homogeneous and isotropic

universe models with ΩM0 = 0.3 and ΩX0 = 0.7.

§5. Numerical results

5.1. Numerical integration

In this subsection, we consider the distance-redshift relation DA and the redshift-space

mass density µ for a homogeneous and isotropic universe with (ΩM0, ΩX0) = (0.3, 0.7), where

ΩX0 is the density parameter for the dark energy component whose equation of state is given

by p = wρ. The distance-redshift relation satisfies the following second-order differential

equation and boundary conditions:18), 19)

d2DA

dz2
= −

(
2

1 + z
+

dH/dz

H

)
dDA

dz
− (1 + z)DA

2H2

(
3ΩM0 + (1 + w)ΩX0(1 + z)w−2

)
, (5.1)

DA(0) = 0 ,
dDA

dz

∣∣∣∣
z=0

= 1, (5.2)

where

H =
√
(1 + z)3ΩM0 + (1 + z)w+1ΩX0. (5.3)

The redshift-space mass density is given by the same expression as Eq. (4.6).

We numerically integrated Eqs. (2.34)–(2.37). Equation (4.12) is used instead of Eq.

(2.34) for the case w = −1. Near the center, solutions can be given in forms of the Maclaurin

series, as shown in Appendix B. We use these expressions near the center instead of solving

the differential equations. As shown in Fig. 2, we can find a regular solution in the whole

redshift domain only for w = −1. For w = −1, r(z), m(z), k(z) and tB(z) are depicted in

Fig. 3. m, k and tB are depicted as functions of r in Fig. 4. The energy density ρ on the

t = t0 time slice is depicted as a function of circumferential radius R(t0, r) in Fig. 5. This

hump type profile has already been found in Ref. 7) and consistent results can be seen in

11



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  0.5  1  1.5  2

r

Redshift

w=   -2

w=-1.5

w=   -1

w=-0.5

w=    0

Fig. 2. Radial coordinate along the past directed null geodesic as a function of redshift for each

value of w.

Refs. 8) and 9). Our result for w = −1 is also consistent with the result in these previous

papers.
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Fig. 3. r, k, m and tB as functions of z.

5.2. Gauge transformation and fitting functions

We propose fitting functions for the given solution. Before that, for convenience, we

perform a gauge transformation r̃ = r̃(r). Hereafter, the “̃ ” represents the quantities in the

new gauge. We consider the new gauge defined by

M(r) = M̃(r̃) =
4π

3
r̃3ρ0. (5.4)

Then, the relation between r and r̃ is given by

r̃3 =
m(r)

m0
r3. (5.5)
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The curvature function k̃(r̃) and the big-bang time t̃B(r̃) are given by

k̃(r̃)r̃2 = k(r)r2, (5.6)

t̃B(r̃) = tB(r). (5.7)

We propose analytic fitting functions for k̃ and t̃B as

k̃fit(r̃) = − 7

10
+ 0.728893r̃− 0.634917r̃2 + 0.303959r̃3 − 0.073768r̃4 − 0.00878216r̃

r̃ + 0.303959
,(5.8)

t̃Bfit(r̃) = −0.21319r̃ − 0.013605r̃2 + 0.000925931r̃3 +
0.298252r̃2

r̃ + 1.5439
. (5.9)

The differences in the angular diameter distance and redshift-space mass density between

the ΛCDM model and LTB model with k̃(r̃) = k̃fit(r̃) and t̃B(r̃) = t̃Bfit(r̃) are less than 1%,

as shown in Fig. 7.
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ΛCDM model and LTB model with k̃(r̃) = k̃fit(r̃) and t̃B(r̃) = t̃Bfit(r̃).

§6. Summary

As part of the summary, we describe a theorem and two corollaries based on the analysis

in the previous sections after giving three definitions for convenience.
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Definition 1

We say that DA(z) is reasonable as a function for the distance-redshift relation if it

satisfies the following:

• DA(z) is a C1 function on z > 0 and dDA

dz
is piecewise smooth on z > 0.

• DA(z) > 0 for z > 0 and DA(0) = 0.

• dDA

dz

∣∣
z=0

= 1/H0 = 1.

• dDA

dz
= 0 at z = zm.

• DA(z) is C
2 and d2DA

dz2
< 0 at z = zm

• dDA

dz
6= 0 for z 6= zm.

Definition 2

We say that µ(z) is reasonable as a function for the redshift-space mass density if it

satisfies the following:

• µ(z) is finite and positive definite.

• µ(z) is a piecewise smooth function on z > 0.

Definition 3

We say that an LTB universe model is observationally regular if the LTB universe model

is regular on the past light-cone of the observer at the center except for the big-bang initial

singularity.

Theorem

For a set of a reasonable angular diameter distance DA(z) and a reasonable redshift-

space mass density µ(z), there exists the observationally regular LTB universe model whose

distance-redshift relation and redshift-space mass density for the observer at the center agree

with DA(z) and µ(z), respectively, if and only if DA(z) and µ(z) satisfy

4π

∫ zm

0

(1 + z)µ(z)DA(z)dz = 1. (6.1)

Proof

Since

B + F =
1

1 + z

(
1− 4π

∫ z

0

(1 + z)µ(z)DA(z)dz

)
,

Eq. (6.1) is equivalent to B + F = 0. We can find that (1 + z)(B + F ) is a monotonically

decreasing function of z, and B + F can vanish only once in z > 0. If B + F 6= 0 at z = zm,

since dDA/dz|z=zm
= 0, we have dr/dz|z=zm

= 0 from Eq. (2.34). Then, from Eq. (2.18),

we find that ρ must be infinite at z = zm for a finite value of µ(zm). Therefore, B + F must

vanish at z = zm for the existence of the regular solution. That is, Eq. (6.1) is a necessary

15



condition for the existence of the regular solution. If the condition (6.1) is satisfied, from

L’Hôpital’s rule, we have

dr

dz

∣∣∣∣
z=zm

= − d2DA/dz
2

4πµ(z)DA(z)

∣∣∣∣
z=zm

> 0. (6.2)

Then, we can find an observationally regular LTB solution solving Eqs. (2.34)–(2.37). Q.E.D.

Corollary-1

For an observationally regular LTB universe model in which µ(z) and DA(z) are reason-

able, the distance-redshift relation DA(z) and µ(z) satisfy 4π
∫ zm
0

(1 + z)µ(z)DA(z)dz = 1.

Proof

Since Eqs. (2.34)–(2.37) are applicable for any LTB universe model, 4π
∫ zm
0

(1+z)µ(z)DA(z)dz =

1 must be satisfied so that an LTB universe model is observationally regular. Q.E.D.

Corollary-2

There exist observationally regular LTB universe models whose distance-redshift relation

and redshift-space mass density coincide with those in ΛCDM models.

Proof

As shown in the text, DΛCDM(z) and µΛCDM(z) satisfy the condition (6.1). Then, this

corollary is an immediate consequence from the above theorem. Q.E.D.

The condition (6.1) has been explicitly derived in this paper for the first time. Without

this condition, we cannot obtain the LTB universe model beyond z = zm. We demonstrated

this using DA(z) and µ(z) for flat homogeneous and isotropic universe models with the dark

energy component whose equation of state is given by p = wρ. If w 6= −1, we cannot obtain

the regular LTB solution beyond z = zm by solving the differential equations (2.34)–(2.37).

In §5, we have obtained the LTB universe model that realizes the distance-redshift relation

and the redshift-space mass density in the ΛCDM model with (ΩM0, ΩΛ0) = (0.3, 0.7). Then,

we introduced analytic fitting functions for this numerically obtained LTB model. The LTB

model with these analytic fitting functions realize the distance-redshift relation and the

redshift-space mass density in the ΛCDM model within 1% accuracy.
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Appendix A

Derivation of Eq. (4.1)

Before the derivation, we provide some useful equations.

• From the expression for B + F , we can find

B + F = −∂tR + ∂rR. (A.1)

• Differentiating Eq. (2.3) with t, we have

∂2
tR = −mr3

6R2
. (A.2)

• Differentiating Eq. (2.14) with z along the light-cone, we have

d

dz
∂rR =

d

dz

√
1− kr2 ⇔ ∂2

rR = ∂t∂rR + ∂r
√
1− kr2, (A.3)

where we have used the relation

d

dz
=

dr

dz
∂r +

dt

dz
∂t =

dr

dz
(∂r − ∂t) . (A.4)

• Differentiating Eq. (2.3) with r and dividing both sides by
√
1− kr2, we have

∂r
√
1− kr2 − mr3

6R2
=

∂t∂rR∂tR√
1− kr2

− ∂r (mr3)

6R
√
1− kr2

. (A.5)

First, differentiating Eq. (A.1) with the redshift z, we have

d

dz
(B + F ) =

dr

dz

(
∂2
rR + ∂2

tR − 2∂t∂rR
)
. (A.6)

Using Eqs. (A.2) and (A.3), we can rewrite the above equation as

d

dz
(B + F ) =

dr

dz

(
∂r
√
1− kr2 − mr3

6R2
− ∂t∂rR

)
. (A.7)

Then, using Eqs. (A.5) and (2.14), we have

d

dz
(B + F ) =

dr

dz

(
∂t∂rR√
1− kr2

(∂tR− ∂rR)− ∂r(mr3)

6R
√
1− kr2

)

=
dr

dz

(
− ∂t∂rR√

1− kr2
(B + F )− ∂r(mr3)

6R
√
1− kr2

)
. (A.8)

Using Eqs. (2.13), (2.18) and (2.34), we can find

d

dz
(B + F ) = −B + F

1 + z
− 4πµDA

⇔ d

dz
((1 + z)(B + F )) = −4π(1 + z)µDA. (A.9)

Since (B + F )|z=0 = 1, we have

B + F =
1

1 + z

(
1− 4π

∫ z

0

(1 + z)µDAdz

)
. (A.10)
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Appendix B

Series Expansion of the Solution

We consider the distance-redshift relation DA and the redshift-space mass density µ

for homogeneous and isotropic universes with (ΩM0, ΩX0, ΩK0 = 1 − ΩM0 − ΩX0) as input

functions for the inverse problem given by a set of equations, Eqs. (2.34) - (2.37). For the

solution near the center, we write functions r(z), m(z), k(z) and tB(z) in the Maclaurin

series as follows:

r = r1z +
1

2
r2z

2 +
1

6
r3z

3 +
1

24
r4z

4 +O(z5), (B.1)

m = m0 +m1z +
1

2
m2z

2 +
1

6
m3z

3 +O(z4), (B.2)

k = k0 + k1z +
1

2
k2z

2 +
1

6
k3z

3 +O(z4), (B.3)

tB = tB1z +
1

2
tB2z

2 +
1

6
tB3z

3 +O(z4). (B.4)

Substituting these expressions into Eqs. (2.34)–(2.37), we can find the values of each coeffi-

cient as shown below. For notational simplicity, we use y := 3w + 1.

r(z) = z +
1

4
(−ΩM0 −ΩX0y − 4)z2

+
1

24

(
3Ω2

M0 + (6ΩX0y + 8)ΩM0 +ΩX0(y((3ΩX0 − 2)y + 8)− 4) + 24
)
z3

+
1

192

(
−15Ω3

M0 − 9(5ΩX0y + 4)Ω2
M0 − 3(ΩX0(y(3(5ΩX0 − 2)y + 26)− 8) + 24)ΩM0

+ ΩX0

(
y
(
(3(6− 5ΩX0)ΩX0 − 4)y2 − 42ΩX0y + 28y + 24ΩX0 − 92

)
+ 56

)
− 192

)
z4

+ O
(
z5
)
, (B.5)

m(z) = 3ΩM0 +
9ΩM0z

2
+

3

80
ΩM0(−50ΩM0 + 24ΩX0 + 10ΩX0y + 60)z2

+
3

80
ΩM0

(
25Ω2

M0 − 12ΩX0ΩM0 + 20ΩX0yΩM0 − 50ΩM0 − 5Ω2
X0y

2 + 5ΩX0y
2 + 22ΩX0

− 12Ω2
X0y + 20ΩX0y + 10

)
z3 +O

(
z4
)
, (B.6)

k(z) = −1 +ΩM0 +

(
ΩM0 −

ΩX0y

2
− 1

)
z

+
1

240

(
−100Ω2

M0 + 2(ΩX0(25y + 36) + 80)ΩM0 − 5ΩX0(y((8− 3ΩX0)y + 16) + 16)− 60
)
z2

+
1

480

(
100Ω3

M0 + (ΩX0(50y − 72)− 200)Ω2
M0

+ (ΩX0(y(50y −ΩX0(65y + 72) + 190) + 148) + 100)ΩM0

− 5ΩX0(y(y((3(ΩX0 − 2)ΩX0 + 4)y + 4) + 24) + 8)
)
z3 +O

(
z4
)
, (B.7)
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tB(z) = −(ΩX0(3t0 − 2)y)z

4(ΩM0 − 1)

+
ΩX0

1920(ΩM0 − 1)3

(
−8(−36ΩM0t0 + 48t0 − 8)(ΩM0 − 1)2

− 10(24ΩX0ΩM0 − 18ΩX0t0ΩM0 + 48t0ΩM0 − 32ΩM0 − 84ΩX0

+ 108ΩX0t0 − 48t0 + 32)y2(ΩM0 − 1)

+ 4
(
90t0Ω

2
M0 − 60Ω2

M0 + 90t0ΩM0 − 60ΩM0 − 180t0 + 120
)
y(ΩM0 − 1)

)
z2

+
ΩX0

1920(ΩM0 − 1)3

(
−5

(
2(12t0 +ΩX0(−18t0 + 3ΩX0(3t0 − 4) + 20)− 8)Ω2

M0

+
(
(92− 81t0)Ω

2
X0 + 32(6t0 − 5)ΩX0 − 48t0 + 32

)
ΩM0

+ 2(12t0 + 3ΩX0(−26t0 +ΩX0(28t0 − 23) + 20)− 8)
)
y3

− 10(ΩM0 − 1)(−24ΩX0Ω
2
M0 + 27ΩX0t0Ω

2
M0 − 18t0Ω

2
M0 + 12Ω2

M0 + 30ΩX0ΩM0

− 54ΩX0t0ΩM0 − 30t0ΩM0 + 20ΩM0 + 84ΩX0 − 108ΩX0t0 + 48t0 − 32)y2

+ 4(ΩM0 − 1)(−45t0Ω
3
M0 + 30Ω3

M0 − 36ΩX0t0Ω
2
M0 + 120t0Ω

2
M0 − 40Ω2

M0 − 40ΩX0ΩM0

+ 126ΩX0t0ΩM0 − 255t0ΩM0 + 90ΩM0 + 60ΩX0 − 120ΩX0t0 + 180t0 − 80)y

− 8(ΩM0 − 1)2
(
18t0Ω

2
M0 − 9t0ΩM0 + 18ΩM0 − 48t0 + 8

))
z3 +O

(
z4
)
. (B.8)

Appendix C

Inverse Problem with tB(r) = 0

Here, we show how to solve the inverse problem using the INN approach with tB(r) = 0

for a given angular diameter distance DA(z). This has been carried out in Ref. 10) by

solving a set of four differential equations parametrized by an affine parameter on the null

geodesic. Here, we do not use the affine parameter but the redshift z as the independent

variable. In this procedure, the number of differential equations is reduced to three.

C.1. Basic equations

Basic equations are derived by replacing the condition (2.18) with tB(z) = 0. Then, we

have the following three coupled first-order differential equations:

dr

dz
=

1

B + F

dDA

dz
, (C.1)

dm

dz
=

1

DG− CH

(√
1− kr2

1 + z
D − (HF +DJ)

dr

dz

)
, (C.2)

dk

dz
=

1

D

(
F
dr

dz
− C

dm

dz

)
. (C.3)
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C.2. Solutions near the center

We perform the Maclaurin series expansion as (3.1)–(3.14). Substituting these expres-

sions into Eqs. (C.1)–(C.3), we find

r(z) = z +
1

2
(DA2 + 1)z2 +

1

12
(4DA2 + 2DA3 +m0)z

3 +O
(
z4
)
, (C.4)

m(z) = m0 +
m0(m0 +DA2(6− 9t0)− 18t0 + 9)z

(m0 + 6)t0 − 6
+O

(
z2
)
, (C.5)

k(z) =
m0 − 3

3
+

(m0 − 3)(m0 − 6DA2(t0 − 1)− 12t0 + 12)z

3((m0 + 6)t0 − 6)
+O

(
z2
)
. (C.6)

Then, we find that the parameter m0 can be freely chosen differently from the MHE ap-

proach.∗) We use this degree of freedom to guarantee B + F = 0 at z = zm.

C.3. Numerical procedure to solve the differential equations

For illustrative purposes, we rewrite Eqs. (C.1)–(C.3) in abstract forms as

dr

dz
=

1

X(z, r,m, k)

dDA

dz
, (C.7)

dm

dz
= Y

(
z, r,m, k,

dr

dz

)
, (C.8)

dk

dz
= Z

(
z, r,m, k,

dr

dz
,
dm

dz

)
. (C.9)

Then, the procedure to solve Eqs.(C.1)-(C.3) is summarized in follows:

1. We determine a trial value for m0.

2. We solve the differential equations from the center, where, near the center, we use the

expressions (C.4)–(C.6) instead of solving the differential equations.

3. We stop integrating the equations at z = zb < zm and read off the values of r, m and

k at this point. We label these values as rb−, mb− and kb−.

4. We determine values of mm and km, where the subscript “m” denotes the value at

z = zm.

5. We numerically solve the equation X(zm, rm, mm, km) = 0 for rm.

6. At z = zm, Eq. (C.7) can be rewritten as

dr

dz

∣∣∣∣
z=zm

=
d2DA

dz2

dX
dz
(z, r,m, k, dr/dz, dm/dz, dk/dz)

∣∣∣∣∣
z=zm

. (C.10)

∗) We accept a nonvanishing first derivative of the density at the center, which gives a weak singularity

at the center.10), 13)
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Then, Eqs. (C.8)–(C.10) can be regarded as simultaneous equations for dr/dz|z=zm,

dm/dz|z=zm and dk/dz|z=zm. We numerically solve them.

7. We integrate the differential equations (C.1)–(C.3) from z = zm backward.

8. We stop integrating the equations at z = zb and read off the values of r, m and k at

this point. We label these values as rb+, mb+ and kb+.

9. We define deviations δr, δm and δk as follows:

δr := rb− − rb+, (C.11)

δm := mb− −mb+, (C.12)

δk := kb− − kb+. (C.13)

10. Operations 1–9 give the deviations δr, δm and δk for given values of m0, mm and

km. That is, we can define δr = δr(m0, mm, km), δm = δm(m0, mm, km) and δk =

δk(m0, mm, km) as functions of m0, mm and km using operations 1–9. Then, repeat-

ing operations 1–9 and using the Newton-Raphson method, we numerically solve the

equations

δr(m0, mm, km) = 0, (C.14)

δm(m0, mm, km) = 0, (C.15)

δk(m0, mm, km) = 0 (C.16)

for m0, mm and km. Eventually, we have functional forms of r(z), m(z) and k(z) in

z < zm without discontinuity at z = zb.

11. Finally, we solve the differential equations (C.1)–(C.3) from z = zm forward with initial

conditions r(zm) = rm, m(zm) = mm and k(zm) = km given above.

C.4. Results

We performed operations 1–11 in the previous subsection using the distance-redshift

relation in the ΛCDM model with (ΩM0, ΩΛ0) = (0.3, 0.7). The result is consistent with that

in Ref. 10). We performed the same gauge transformation as that given in §5. Then, we

find a fitting function for k̃(r̃) as20)

k̃fit(r̃) =
0.545745

0.211472 +
√
0.026176 + r̃

− 2.22881
(
0.807782 +

√
0.026176 + r̃

)2 . (C.17)

The angular diameter distance in the LTB universe model with k̃(r̃) = k̃fit(r̃) is depicted in

the Fig. 8. The deviation of the distance from that in the ΛCDM model is within 0.1%.
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