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1. Introduction

Since Lattice 2007 conference in Regensburg, there has beena paradigm shift in the study
of propagators of the Yang-Mills theory in the Landau gauge [1, 2, 3]. Before that date it was
generally accepted that the gluon propagator in Landau gauge should have gone to zero at lower
momenta with the ghost propagator going to infinity faster than the free case and the running
coupling reaching a non-trivial fixed point at infrared [4].Lattice computations performed at very
large volumes and reaching the considerable dimension of(27f m)4 [2] proved on the contrary
that the scenario to be considered is one having the gluon propagator reaching a finite non-zero
value with a ghost propagator behaving as that of a free particle and the running coupling, once a
definition in the infarerd is agreed, reaching a trivial infrared fixed point. This latter solution was
named the “decoupling solution” to distinguish it from the one firstly assumed true that then was
called “scaling solution”.

The decoupling solution was postulated as early as in the eighties by Cornwall [5] and obtained
in the course of time by several other authors [6, 7, 8, 9, 10, 11]. A preferred technique in this kind
of studies has been solving Dyson-Schwinger equations numerically but, quite recently, we have
been able to provide a strong coupling expansion in quantum field theory [10] and then a theorem
mapping the behavior of Yang-Mills theory on that of a massless scalar field theory at infrared
[11, 12]. This technique opened up the opportunity to get explicit perturbative solutions in the
formal limit of the coupling going to infinity exploiting completely the behavior of the Yang-Mills
theory at low energies. This contribution gives an account of this approach and how it nicely fits
into the scenario so far emerged both from lattice computations and other theoretical analysis.

2. Classical field theories

It is a common way to give an understanding of quantum field theory to start from solutions
of the corresponding classical theory. This provides a set of solutions to start from. Here we will
follow this track and we start by considering the equation ofmotion of a massless scalar field

�φ +λφ3 = j. (2.1)

Our aim is to give an expression for the solution functionalφ [ j] that holds in the limitλ → ∞. But
we can give immediately a solution to the corresponding homogeneous equation. We have

φ(x) = µ
(

2
λ

)
1
4

sn(p·x+θ , i) (2.2)

being sn a Jacobi elliptic function with elliptic modulusi, θ andµ two arbitrary integration con-
stants. This solution holds provided

p2 = µ2
(

λ
2

)
1
2

(2.3)

that is the dispersion relation of a massive free particle. So, all the effect of the nonlinear term
in the equation is to produce mass to the field. This is a dynamical effect and can be seen as the
classical analogous of the Schwinger mechanism. It is important to emphasize that if we consider
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just the limit of a small couplingλ and do perturbation theory we are not able to recover this
solution, rather we could have to cope with some singularities in our expansion. This means that
this solution could be only unveiled if we would be able to do aperturbation expansion in a strong
coupling limit [13]. In order to reach our aim for eq.(2.1) welook for a solution in the form

φ(x) = µ
∫

d4x′G(x−x′) j(x′)+δφ(x). (2.4)

beingµ the same constant obtained above. One can see that is is so provided [14]

δφ(x) = µ2λ
∫

d4x′d4x′′G(x−x′)[G(x′−x′′)]3 j(x′)+O( j3) (2.5)

and�G(x−x′)+λ [G(x−x′)]3 = µ−1δ 4(x−x′) the Green function of the theory for finiteλ . So, in
order to completely solve the classical equation of motion we need to knowG. This can be done in a
straightforward way by consider the theory in d=1+0 and solving for ∂ 2

t G0(t−t ′)+λ [G0(t−t ′)]3 =
µ2δ (t − t ′) [10] and so

G0(ω) =
∞

∑
n=0

(2n+1)
π2

K2(i)
(−1)ne−(n+ 1

2)π

1+e−(2n+1)π
1

ω2−m2
n+ iε

(2.6)

being mn = (2n+ 1) π
2K(i)

(

λ
2

)
1
4 µ and K(i) ≈ 1.3111028777 an elliptic integral. Then, after a

Lorentz boost we get finally the full Green function

G(p) =
∞

∑
n=0

(2n+1)
π2

K2(i)
(−1)ne−(n+ 1

2)π

1+e−(2n+1)π
1

p2−m2
n+ iε

. (2.7)

From the way it depends onλ we see that we have a strong coupling expansion for the solution of
the theory that holds forλ → ∞.

We can work with an identical technique also for a classical Yang-Mills theory. Given the
equations of motion

∂ µ∂µAa
ν −

(

1− 1
α

)

∂ν(∂ µAa
µ)+g fabcAbµ(∂µAc

ν −∂νAc
µ)+g fabc∂ µ(Ab

µAc
ν)+g2 f abc f cdeAbµAd

µAe
ν =− jaν

(2.8)
being as usualg the coupling andα the contribution of the gauge fixing term. Now we note that,
for the homogeneous equation, a set of exact solutions can always be found, all depending just
on the time variable, if we select some components of the potential and we take all of them equal
[15]. This solutions are just replicas of the exact solutionof the scalar field in the rest frame. But
we cannot just boost these solutions to get exact ones as Yang-Mills theory has another symmetry
playing a role, the gauge symmetry, and we can only hope in a set of approximate solutions that at
leading order can map the scalar field solution. In the general case we can always check the same
technique applied to the scalar field and write down

Aa
µ = Λ

∫

d4x′Dab
µν(x−x′) jbν(x′)+δAa

µ . (2.9)

Indeed, also in this case is possible an expansion in powers of the currents as already guessed in
the eighties [16]. So, we are arrived to an identical stumbling block as the one met in the eighties:
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The correct expression for the gluon propagator in the infrared limit [17, 16]. The propagator of the
gluon field can be immediately obtained through the following mapping theorem that shows how,
in the low energy limit, both the massless scalar field and theYang-Mills theory map producing
massive solutions already at classical level. We have proved the followingmapping theorem[11,
12]

Theorem 1. An extremum of the action

S=

∫

d4x

[

1
2
(∂φ)2− λ

4
φ4

]

(2.10)

is also an extremum of the SU(N) Yang-Mills Lagrangian when one properly chooses Aaµ with some
components being zero and all others being equal, andλ = Ng2, being g the coupling constant of
the Yang-Mills field, when only time dependence is retained.In the most general case the following
mapping holds

Aa
µ(x) = ηa

µφ(x)+O(1/
√

Ng), (2.11)

beingηa
µ some constants properly chosen, that becomes exact for the Lorenz gauge.

This theorem was definitively proved in Ref.[12] after a criticism by Terence Tao. Tao agreed
with the correctness of this latter proof [18]. So, we can write down immediately the gluon propa-
gator in the Landau gauge. One has

∆ab
µν(p) = δab

(

ηµν −
pµ pν

p2

) ∞

∑
n=0

Bn

p2−m2
n+ iε

+O

(

1√
Ng

)

(2.12)

being

Bn = (2n+1)
π2

K2(i)
(−1)n+1e−(n+ 1

2)π

1+e−(2n+1)π (2.13)

and

mn = (2n+1)
π

2K(i)

(

Ng2

2

)

1
4

Λ. (2.14)

It should be emphasized that the constantΛ is the same seen in the high-energy limit for QCD.
Here appears as an integration constant [19]. A couple of comments are in order. We see from this
propagator that the leading order in a strong coupling expansion for a classical Yang-Mills theory
is made by a free massive field: This is a classical version of the Schwinger mechanism at work.
Mass arises from a finite nonlinearity in the equations of thefield. So, it is surely a nontrivial task
to solve also the classical equations on a lattice provided we consider the interesting limit of a finite
coupling. The next question to be asked is if this is the rightpropagator to use for the corresponding
quantum Yang-Mills theory. To answer this question we compared this propagator with the results
obtained solving numerical Dyson-Schwinger equations [6,20]. The result is given in fig.1.
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Figure 1: Numerical solutions of Dyson-Schwinger equations: (left)Ref.[6]; (right) Ref.[20].

The only fitting parameter has been the gluon mass fixed to 737 Mev and 278 MeV respec-
tively. The agreement is really striking. We just note a small discrepancy in the intermediate regime
but this should be expected as our propagator is just an approximate one that holds in the deep in-
frared limit. Indeed, as we will see below, this is the propagator of a free theory with a massive
particle and its excited states. Higher order corrections are expected to modify this propagator
producing a momenta dependent mass improving the agreementalso in the intermediate regime
as also put forward by Cornwall in the eighties [5]. Indeed, arecent lattice analysis [21] shows
that a good fitting with a propagator like the one given here should be expected to require at least
four masses, very similar to the physical masses of glueballs obtained on the lattice [22, 23]. This
agreement improves taking a mass depending on momenta asm2+cp2 [21].

A mass depending on momenta should be expected by accountingfor higher order corrections
[14] in the same form as given in [21]. The theory is renormalized fixing the cut-off through
the physical constantΛ. Higher order corrections should improve the situation giving a gluon
propagator fitting on all the range of energies in agreement with the one given by Cornwall [5].

3. Quantum field theory

In order to formulate a strong coupling expansion for quantum field theory of the scalar field
we start with the following generating functional

Z[ j] = Z[0]exp

[

i
∫

d4x

(

1
2
(∂φ)2− λ

4
φ4+ jφ

)]

. (3.1)

We want to evaluate it in the formal limitλ → ∞. In order to do this and to exploit our ability to
solve the classical theory in the same limit we do the rescaling of variablesx→

√
λ x.

Z[ j] = Z[0]exp

[

i
1
λ

∫

d4x

(

1
2
(∂φ)2− 1

4
φ4+

1
λ

jφ
)]

. (3.2)

Now, if we take the solution seriesφ = ∑∞
n=0λ−nφn and rescale the currentj → j/λ being this

arbitrary, it is easy to see that the leading order is obtained by solving the equation of the classical
theory�φ + λφ3 = j. But we already know how to manage this equation, as discussed in the
preceding section, and a strong coupling expansion is promptly given. We point out that this is
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completely consistent with our preceding formulation [10]but now the treatment is fully covariant.
We are just using our ability to solve the classical theory. Now, the proof of triviality in the infrared
of the scalar field theory is just a small step away. We recall eq.(2.5) and we get at the leading order
the following Gaussian generating functional

Z0[ j] = Z[0]exp

[

i
2

∫

d4x′d4x′′ j(x′)G(x′−x′′) j(x′′)

]

. (3.3)

This result is really important because gives an explicit demonstration that, in the infrared limit, the
four-dimensional massless scalar field theory reaches a trivial fixed point but the spectrum is that
of a massive particle, i.e. the theory displays a mass gap, with all its excitations with the spectrum
of a harmonic oscillator

mn = (2n+1)
π

2K(i)

(

λ
2

)
1
4

µ . (3.4)

These are just the poles of the propagator of the classical theory and we will see below why they
can be interpreted in this way. If we force this result pretending that Källen-Lehman representation
holds, this says to us that, at the trivial infrared fixed point, the theory has no bound states but just
free massive particles and their excited states. These states in turn can be used as asymptotic states
to build the low-energy limit of the theory.

We can take all this to the case of a quantum Yang-Mills theory. So, by using the propagator
(2.12), or in some other gauge by using the mapping theorem, and the change of variables (2.9),
we get for the generating functional

Z[ j] = Z[0]exp

[

i
2

∫

d4x′d4x′′ jaµ(x′)Dab
µν(x

′−x′′) jbν(x′′)+O( j3)

]

+O

(

1√
Ng

)

. (3.5)

This functional has a Gaussian form and describes a theory offree massive particles and their
excitation spectrum. This implies that the theory reaches an infrared trivial fixed point. These
particles are the asymptotic states to build upon a quantum theory in the infrared limit for the Yang-
Mills field. As such, these should be observable states that can be termed "glueballs”. This holds in
the limit of the coupling going to infinity describing the physics of Yang-Mills field at the infrared
fixed point. If we look at this generating functional we note that the ghost field disappeared. For the
given propagator, with our change of variables in the path integral, the ghost field just decouples
and we can write down its propagator as

Gab(p) =− δab

p2+ iε
+O

(

1√
Ng

)

. (3.6)

The next to leading term was computed on the lattice by Cucchieri and Mendes atβ = 0 [24]. From
this we can conclude that, in a strong coupling expansion in the inverse of the ’t Hooft coupling,
we get the decoupling solution.

We can draw some conclusions also about the running coupling. We note that we have derived
the generating functional at the infrared fixed point where it takes the Gaussian form, i.e. the theory
is trivial there. Using the standard definition of an infrared running coupling [25]

αs(p) =
g2

4π
D(p)[Z(p)]2, (3.7)
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noting that

Z(p) = 1, D(p) =
∞

∑
n=0

Bn
p2

p2−m2
n+ iε

, (3.8)

for the dressing functions of the ghost and gluon propagators respectively, it is not difficult to verify
that

αs(p) =
g2

4π
p2 f (p) (3.9)

with f (0) 6= 0. With this definition, the running coupling is seen to go to zero, at lower momenta,
as p2. This confirms that Yang-Mills theory is trivial in this limit. It should be emphasized that
this is not true for QCD due to the presence of quarks. This kind of behavior is also seen in
supersymmetric QCD where the beta function of the theory is exactly known [26]. Here, we can
get the beta function for the theory from the scaling of the gluon propagator. One gets

µ
∂G(p)

∂ µ
−4λ

∂G(p)
∂λ

−2γG(p) = 0 (3.10)

beingγ = 0. So,β (λ ) = 4λ at the trivial fixed point. This is in agreement with recent analysis
[27, 28]. So, from the mapping theorem one hasβ (g) = 4Ng2 and the ’t Hooft coupling is seen to
go to zero asp4 instead, in agreement with a picture of the vacuum of the Yang-Mills theory as an
instanton liquid [29].

4. Comparison with lattice

Finally, we compare the gluon propagator in the Landau gaugewith lattice data. We get the
following results:
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Figure 2: Ref. [30] - SU(3)(16fm)4 - m0 = 236 MeV
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Figure 3: Ref. [31] - SU(2)(19.2fm)4 - m0 = 317 MeV
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Figure 4: Ref. [2] - SU(3)(27fm)4 - m0 = 545 MeV

From this we realize immediately that the agreement improves increasing the volume of the
lattice becoming really striking with the computation of Cucchieri and Mendes [2]. But we note
also, as expected, that the error becomes larger in the intermediate region as also happens with
numerical Dyson-Schwinger equations [6, 20]. Finally, thedependence on the gauge group is lost
into the gluon mass at this order [31]. Gluon mass is different for each group but this is not relevant.
Anyhow a value of the string tension about 400 to 440 MeV is expected and all should agree on
this. It would be interesting just to fit the deep infrared region in the same way as done by Oliveira
[21] to get the full spectrum of the theory as in [22, 23] at such large volumes. Indeed, from the
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definition of two-point function one has

Dab
µν(t − t ′,0) = 〈TAa

µ(t,0)A
b
ν(t

′,0)〉. (4.1)

So, using the mapping theorem one has immediately

Dab
µν(t − t ′,0) = ηa

µηb
ν

∞

∑
n=0

Bne−imn(t−t ′) (4.2)

from which we can read immediately the spectrum of the theoryas done in lattice computation.

We have as expectedmn = (2n+1) π
2K(i)

√
σ being

√
σ =

(

Ng2/2
)

1
4 Λ the string tension to be fixed

experimentally. We can compare this spectrum with lattice computations [22] with respect to the
set of pure numbers

πn =
mn√

σ
.

Agreement is fairly good as seen from the following table forSU(3)

Excitation Lattice Theoretical Error

σ - 1.198140235 -

0++ 3.55(7) 3.594420705 1%

0++∗ 5.69(10) 5.990701175 5%

σ ∗ - 2.396280470 -

2++ 4.78(9) 4.792560940 0.2%

2++∗ - 7.188841410 -

We expect the missing states to appear at higher volumes and by fitting the gluon propagator as
stated above. For the other states the agreement is really striking.

5. Conclusions

We were able to provide a strong coupling expansion that holds both for classical and quan-
tum field theory. The important conclusion to be drawn from this approach is that the decoupling
solution is the one obtained when applied to Yang-Mills theory. Very good agreement with nu-
merical solutions of Dyson-Schwinger equations and lattice computations give a strong support to
the correctness of this technique. A set of states of free particle are obtained to obtain a quantum
field theory describing the low-energy limit of Yang-Mills theory. Higher order corrections can be
computed giving a propagator with a mass running with momenta. Finally, we expect to see the
spectrum of the theory extracted from the propagator in the deep infrared limit. This would be a
striking and unexpected merging of different lattice computations.
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