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Mapping theorem and Yang-Mills theory Marco Frasca

1. Introduction

Since Lattice 2007 conference in Regensburg, there has@@anadigm shift in the study
of propagators of the Yang-Mills theory in the Landau gaJljd?] [3]. Before that date it was
generally accepted that the gluon propagator in Landauegaliguld have gone to zero at lower
momenta with the ghost propagator going to infinity fastemtlthe free case and the running
coupling reaching a non-trivial fixed point at infrard{l [&httice computations performed at very
large volumes and reaching the considerable dimensiof2%fm)# [P] proved on the contrary
that the scenario to be considered is one having the glugmagetor reaching a finite non-zero
value with a ghost propagator behaving as that of a freegba@ind the running coupling, once a
definition in the infarerd is agreed, reaching a trivial &améd fixed point. This latter solution was
named the “decoupling solution” to distinguish it from theedfirstly assumed true that then was
called “scaling solution”.

The decoupling solution was postulated as early as in tigiegby Cornwall[J5] and obtained
in the course of time by several other auth¢y{]4] 7] 8,19 AD,A preferred technique in this kind
of studies has been solving Dyson-Schwinger equations nicafig but, quite recently, we have
been able to provide a strong coupling expansion in quanteich tieory [IP] and then a theorem
mapping the behavior of Yang-Mills theory on that of a masslscalar field theory at infrared
[LT, £2]. This technique opened up the opportunity to gelieikperturbative solutions in the
formal limit of the coupling going to infinity exploiting cophetely the behavior of the Yang-Mills
theory at low energies. This contribution gives an accodtirthis approach and how it nicely fits
into the scenario so far emerged both from lattice compartatand other theoretical analysis.

2. Classical field theories

It is a common way to give an understanding of quantum fieldrghéo start from solutions
of the corresponding classical theory. This provides a eblotions to start from. Here we will
follow this track and we start by considering the equatiomotion of a massless scalar field

Op+A¢@d=j. (2.1)

Our aim is to give an expression for the solution functiopgl that holds in the limiA — co. But
we can give immediately a solution to the corresponding tgemeous equation. We have

1
2\4 :
P(x) = <X> sn(p-x+6,i) (2.2)
being sn a Jacobi elliptic function with elliptic modulysf and u two arbitrary integration con-

stants. This solution holds provided
1
A\ 2
p? = u? (E) (2.3)

that is the dispersion relation of a massive free particle, & the effect of the nonlinear term
in the equation is to produce mass to the field. This is a dycaneiffect and can be seen as the
classical analogous of the Schwinger mechanism. It is itapbto emphasize that if we consider
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just the limit of a small coupling\ and do perturbation theory we are not able to recover this
solution, rather we could have to cope with some singutgritin our expansion. This means that
this solution could be only unveiled if we would be able to duesturbation expansion in a strong
coupling limit [L3]. In order to reach our aim for €g.(2.1) ook for a solution in the form

o(x) — u/d“x’G(x—x’)j(x’) + 50(X). 2.4)
beingu the same constant obtained above. One can see that is isvitepr{i4]
So(x) = A / dX A G(x— X)[G(X — X)[3] (X) +O(j3) (2.5)

andOG(x—X) +A[G(x—X)]3 = u~15%(x—x) the Green function of the theory for finite So, in
order to completely solve the classical equation of motiemeed to knovi. This can be done ina
stralghtforward way by consider the theory in d=1+0 andisgl¥or d2Go(t —t') +A [Go(t —t')]3 =

u23(t —t') [[[qd] and so

m® (—1)" e‘(”+l> 1

(2n+1)

(2.6)

EM;;

1
beingm, = (2n+ l)T’Ei) </\§) "1 and K (i) ~ 1.3111028777 an elliptic integral. Then, after a

Lorentz boost we get finally the full Green function

. T[2 -1 (n+ )T
G(p) = n;(2n+l)K2(i) (1+): 2T 2 mﬁ+|s

2.7)

From the way it depends ohwe see that we have a strong coupling expansion for the solafi
the theory that holds fok — oo,

We can work with an identical technique also for a classicahgéMills theory. Given the
equations of motion

oM A — <1— %) 0, (0 A2) + g F3AH (0, A — 0, A%) + 0 T3P0 (ADAS) + g FAPCFCIeAPHAT AS = — B
(2.8)

being as usua the coupling andr the contribution of the gauge fixing term. Now we note that,

for the homogeneous equation, a set of exact solutions egyalbe found, all depending just

on the time variable, if we select some components of thentiateand we take all of them equal

[LH]. This solutions are just replicas of the exact solutiéithe scalar field in the rest frame. But

we cannot just boost these solutions to get exact ones asMalsgheory has another symmetry

playing a role, the gauge symmetry, and we can only hope ih@f spproximate solutions that at

leading order can map the scalar field solution. In the géwase we can always check the same

technique applied to the scalar field and write down

/\/d“x’Dab (x=X) % (X) + 5AR,. 2.9)

Indeed, also in this case is possible an expansion in powehe @urrents as already guessed in
the eighties[[16]. So, we are arrived to an identical stungbblock as the one met in the eighties:
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The correct expression for the gluon propagator in theiiattdimit [[L7,[16]. The propagator of the
gluon field can be immediately obtained through the follaywinapping theorem that shows how,
in the low energy limit, both the massless scalar field andydoeg-Mills theory map producing
massive solutions already at classical level. We have priwe following mapping theorerifL],

2]

Theorem 1. An extremum of the action
S— /d&[%(dq))z—%(p"} (2.10)

is also an extremum of the SU(N) Yang-Mills Lagrangian whesmmroperly chooses{Awith some
components being zero and all others being equal,aredNg?, being g the coupling constant of
the Yang-Mills field, when only time dependence is retailethe most general case the following
mapping holds

AL(x) = njie(x) +O(1/VNg), (2.11)
beingn some constants properly chosen, that becomes exact footeez gauge.
This theorem was definitively proved in R¢F]12] after aici#m by Terence Tao. Tao agreed

with the correctness of this latter pro¢f[18]. So, we cartewdown immediately the gluon propa-
gator in the Landau gauge. One has

ab - PuPv 1
Auv(p) = Oap (nuv > ; 2 _|_ r +0 <\/Ng> (2.12)
being
B (_1)n+1e—(n+%)n
Bh=(2n+1) K20) 1te @in (2.13)
and
m (N& i
M= (2n+1)—= K(0) <7> A. (2.14)

It should be emphasized that the constaris the same seen in the high-energy limit for QCD.
Here appears as an integration constput [19]. A couple ofwambs are in order. We see from this
propagator that the leading order in a strong coupling esiparfor a classical Yang-Mills theory
is made by a free massive field: This is a classical versiohe@fSchwinger mechanism at work.
Mass arises from a finite nonlinearity in the equations offibld. So, it is surely a nontrivial task
to solve also the classical equations on a lattice providedamsider the interesting limit of a finite
coupling. The next question to be asked is if this is the niybpagator to use for the corresponding
guantum Yang-Mills theory. To answer this question we camgahis propagator with the results
obtained solving numerical Dyson-Schwinger equatiphR@§., The result is given in fij.1.
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Figure 1: Numerical solutions of Dyson-Schwinger equations: (IRH&)‘.[B]; (right) Ref.].

The only fitting parameter has been the gluon mass fixed to 787 add 278 MeV respec-
tively. The agreement is really striking. We just note a $igtrepancy in the intermediate regime
but this should be expected as our propagator is just an sippate one that holds in the deep in-
frared limit. Indeed, as we will see below, this is the pragag of a free theory with a massive
particle and its excited states. Higher order correctiomsexpected to modify this propagator
producing a momenta dependent mass improving the agreatsanin the intermediate regime
as also put forward by Cornwall in the eighti¢ [5]. Indeedeeent lattice analysig [R1] shows
that a good fitting with a propagator like the one given hemukhbe expected to require at least
four masses, very similar to the physical masses of glugbhliained on the latticg [PP,]23]. This
agreement improves taking a mass depending on momenta-as p? 271

A mass depending on momenta should be expected by accofmtinigher order corrections
[L4] in the same form as given irf [21]. The theory is renormeli fixing the cut-off through
the physical constam\. Higher order corrections should improve the situationngjva gluon
propagator fitting on all the range of energies in agreeméthttive one given by Cornwal[]5].

3. Quantum field theory

In order to formulate a strong coupling expansion for quanfield theory of the scalar field
we start with the following generating functional

Z[j) = Z[0) exp[i / d4x<%(0(p)2—%(p“+ jrp)] | (3.1)

We want to evaluate it in the formal limik — . In order to do this and to exploit our ability to
solve the classical theory in the same limit we do the resgaif variablesxc — vAx.

z1i| - z0ewp iy [ ax( 5007 - 30"+ Fio) | (3.2)

Now, if we take the solution serieg = S oA ~"¢h and rescale the curreft— j/A being this
arbitrary, it is easy to see that the leading order is obthmesolving the equation of the classical
theory Do+ A @3 = j. But we already know how to manage this equation, as disdussthe
preceding section, and a strong coupling expansion is pigrgjwen. We point out that this is
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completely consistent with our preceding formulatiprj [0 now the treatment is fully covariant.
We are just using our ability to solve the classical theorgwi\the proof of triviality in the infrared
of the scalar field theory is just a small step away. We recp(Peh) and we get at the leading order
the following Gaussian generating functional

Zo[j] = Z[0exp {12 /d“x’d“x” ()G — %) j()(’)] . (3.3)

This result is really important because gives an expliamdestration that, in the infrared limit, the
four-dimensional massless scalar field theory reachesialtfixed point but the spectrum is that
of a massive patrticle, i.e. the theory displays a mass gdp,aliits excitations with the spectrum

of a harmonic oscillator .
mn:(2n+1)i_ <£>4u. (3.4)
2K(i) \ 2

These are just the poles of the propagator of the classieahttand we will see below why they
can be interpreted in this way. If we force this result prdieg that Kéllen-Lehman representation
holds, this says to us that, at the trivial infrared fixed pdime theory has no bound states but just
free massive particles and their excited states. Thesesgtaturn can be used as asymptotic states
to build the low-energy limit of the theory.

We can take all this to the case of a quantum Yang-Mills theBry, by using the propagator
(B.12), or in some other gauge by using the mapping theorathtre change of variablep (2.9),

we get for the generating functional

2[j] = Z[0] exp[lz/ dX d*X! J3 (XD, (X — XY (x) +O(j3)] +0 <\/_iNg> . @5
This functional has a Gaussian form and describes a theofseefmassive particles and their
excitation spectrum. This implies that the theory reachresnfrared trivial fixed point. These
particles are the asymptotic states to build upon a quartieory in the infrared limit for the Yang-
Mills field. As such, these should be observable states #rabe termed "glueballs”. This holds in
the limit of the coupling going to infinity describing the hgs of Yang-Mills field at the infrared
fixed point. If we look at this generating functional we ndiattthe ghost field disappeared. For the
given propagator, with our change of variables in the pattbgiral, the ghost field just decouples
and we can write down its propagator as

Ganl(p) = —%w(%‘g) . (3.6)

The next to leading term was computed on the lattice by Cecchind Mendes g = 0 [24]. From
this we can conclude that, in a strong coupling expansiohéninverse of the 't Hooft coupling,
we get the decoupling solution.

We can draw some conclusions also about the running coupifeghote that we have derived
the generating functional at the infrared fixed point whetakies the Gaussian form, i.e. the theory
is trivial there. Using the standard definition of an infiarenning coupling[[25]

as(p) = 2-D(P[Z(P)*, (3.7)
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noting that
[ p2
Z(p)=1,D(p) = Bh5—5—, 3.8
(p) ) (p) n;j npz—nﬁ+|5 ( )
for the dressing functions of the ghost and gluon propagatspectively, it is not difficult to verify
that

2
as(p) = %szf(p) (3.9)

with f(0) # 0. With this definition, the running coupling is seen to go ¢o, at lower momenta,

asp?. This confirms that Yang-Mills theory is trivial in this limi It should be emphasized that
this is not true for QCD due to the presence of quarks. Thig kihbehavior is also seen in
supersymmetric QCD where the beta function of the theoryagtty known [2b]. Here, we can

get the beta function for the theory from the scaling of theoglpropagator. One gets

9G(p) _ 4, 9G(P)

o - 2/6(p) =0 (3.10)

beingy = 0. So,B(A) = 4A at the trivial fixed point. This is in agreement with recenalgsis
[B7,[28]. So, from the mapping theorem one IBdg) = 4N’ and the 't Hooft coupling is seen to
go to zero ag” instead, in agreement with a picture of the vacuum of the Ydilig theory as an
instanton liquid [2P].

4. Comparison with lattice

Finally, we compare the gluon propagator in the Landau gautelattice data. We get the
following results:

op)eev?)

p’[GeVv?]

Figure 2: Ref. [3] - SU(3)(16fm)* - my = 236 MeV
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Figure 3: Ref. [B]] - SU(2)(19.2fm)* - mg = 317 MeV
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Figure 4: Ref. [3] - SU(3)(27fm)* - my = 545 MeV

From this we realize immediately that the agreement im@awereasing the volume of the
lattice becoming really striking with the computation of&hieri and Mendeq][2]. But we note
also, as expected, that the error becomes larger in thenatkate region as also happens with

numerical Dyson-Schwinger equatiofis [6, 20]. Finally, dependence on the gauge group is lost
into the gluon mass at this ord¢r]31]. Gluon mass is diffef@neach group but this is not relevant.

Anyhow a value of the string tension about 400 to 440 MeV iseexgd and all should agree on
this. It would be interesting just to fit the deep infraredioagn the same way as done by Oliveira
[PT]] to get the full spectrum of the theory as [n][#2} 23] attsiarge volumes. Indeed, from the
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definition of two-point function one has
DY (t—t',0) = (TA](t,0)A(t',0)). (4.1)

So, using the mapping theorem one has immediately
DY (t—t',0) = niny § Bye ™) (4.2)
n=0

from which we can read immediately the spectrum of the thesrglone in lattice computation.
1

We have as expected, = (2n+ 1)%\/0 being,/o = (Ng?/2) * A the string tension to be fixed

experimentally. We can compare this spectrum with lattimegutations[[32] with respect to the

set of pure numbers

_ M
Th_\/a'

Agreement is fairly good as seen from the following tableSt(3)

Excitation| Lattice | Theoretical | Error
o - 1.198140235 -
or+ 3.55(7) | 3.594420705 1%
o+ 5.69(10)| 5.990701175 5%

o* - 2.396280470 -
2+ 4.78(9) | 4.792560940 0.2%
2+ - 7.188841410 -

We expect the missing states to appear at higher volumesafitlifig the gluon propagator as
stated above. For the other states the agreement is re@tingt

5. Conclusions

We were able to provide a strong coupling expansion thatshiotidh for classical and quan-
tum field theory. The important conclusion to be drawn froiis #pproach is that the decoupling
solution is the one obtained when applied to Yang-Mills tiged/ery good agreement with nu-
merical solutions of Dyson-Schwinger equations and ktticmputations give a strong support to
the correctness of this technique. A set of states of fregcfgare obtained to obtain a quantum
field theory describing the low-energy limit of Yang-Millsgory. Higher order corrections can be
computed giving a propagator with a mass running with momehRinally, we expect to see the
spectrum of the theory extracted from the propagator in gepdnfrared limit. This would be a
striking and unexpected merging of different lattice cotagions.
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