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Abstract

We develop the physics of dual kappa Poincare algebra, which we will call dual DSR. First we

show that the dual kappa Poincare algebra is isomorphic to de Sitter algebra and its space-time is

essentially de Sitter space-time. Second, we show how to derive the coproduct rule for Beltrami

and conformal coordinates of de Sitter spacetime. It follows from the current literature on de

Sitter relativity that the speed of light c and the de Sitter length are the two invariant scales of

the physics of dual kappa Poincare. Third, we derive the first Casimir invariant of the dual kappa

Poincare algebra and use this to derive an expression for the speed of light, our fourth result. Fifth,

the field equation for the scalar field is derived from the Casimir invariant. The results for the

coordinate speed of light and the scalar field theory are the same as in de Sitter theory in the planar

coordinate basis. Thus, we have shown that the physics of the dual kappa Poincare algebra (in

the dual bicrossproduct basis), which can be appropriately called dual DSR, is essentially de Sitter

relativity. Finally, we note that dual DSR is not a quantum theory of spacetime but a quantum

theory of momenta.
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I. INTRODUCTION

Doubly special relativity (DSR), the physics of kappa Poincare algebra, is a bottom-up

approach to quantum gravity and was initiated in [1]. It leads to a quantum spacetime

at distance scales of the Planck length, which unfortunately seems to be contradicted by

the recent measurement of the speed of light from a gamma ray burst [2]. But before

this major problem came to light, DSR already faced some difficulties including the so

called soccer ball problem [8], which limits the energy of macroscopic objects to that of the

Planck energy, something that is obviously false. The origin of this problem is the algebraic

properties of space-time and momentum space, i.e., space-time has trivial co-algebra and

non-trivial algebra while momentum space has non-trivial co-algebra and trivial algebra.

The non-trivial co-algebra of the momentum space leads to the soccer ball problem while

the non-trivial algebra of spacetime leads to a quantum gravity that linearly alters the speed

of light with energy. As already noted, the former is obviously false while the latter seems

to be particularly ruled out by the recent measurement of the speed of light from gamma

ray burst [2].

When the author presented the dual kappa Poincare algebra [3], one motivation was to

avoid the soccer ball problem. An obvious way to do this is to have a trivial co-algebra

in momentum space. Following the chain of arguments in kappa Poincare algebra and its

Hopf algebra, the author constructed the dual kappa Poincare algebra with the following

properties - (1) the Lorentz subalgebra remains the same, (2) the space-time has a trivial

algebra but non-trivial co-algebra, (3) the momentum space has trivial co-algebra but non-

trivial algebra, (4) the space-time is not unique as it satisfies a relation similar to the equation

satisfied by the momenta in kappa Poincare algebra.

In this paper, we will develop the physics of dual kappa Poincare algebra. First, we

will show that the dual kappa Poincare algebra is isomorphic to de Sitter algebra. Then

we will complete the proof that the dual kappa Poincare spacetime is the same as de Sitter

spacetime by showing that the different coordinate systems used in de Sitter relativity satisfy

the general relation satisfied by dual kappa Poincare spacetime. These two suggest that the

physics of dual kappa Poincare algebra is the same as de Sitter relativity, which is known to

have two invariant scales - the speed of light c and the de Sitter length [4] [5].

As a byproduct of the equivalence of dual kappa Poincare spacetime to de Sitter space-
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time, we present the coproducts of spacetime in the natural, Beltrami and conformal coor-

dinates starting from the coproduct rule in the planar coordinate basis. The coproducts in

the Beltrami and conformal coordinates are systematically expanded in powers of κ̄, which

is an excellent expansion parameter because of its extremely small value (given the present

size of the universe, about 10−26m−1) [5].

Next we derive the first Casimir invariant of dual kappa Poincare algebra. Unlike in

kappa Poincare algebra where the first Casimir invariant is purely a function of momenta,

the first Casimir of the dual kappa Poincare algebra depends on all the generators - the

momenta, boosts and rotations. From the first Casimir invariant, we derive an expression

for the speed of light. The speed of light we get is the coordinate speed of light in the planar

coordinate system.

Finally, we derive the field equation for a scalar particle from the first Casimir invariant.

Since space-time commutes, the scalar field theory derivation is rather straightforward unlike

in kappa Poincare algebra that involved a five-dimensional differential calculus. In the case

of dual kappa Poincare, we only needed to find a differential realization of the momenta that

is consistent with the algebra. The scalar field theory is that of a scalar field theory in de

Sitter gravity.

All these mean that dual DSR is classical de Sitter relativity, where spacetime is classical

(commutes) and the momenta is quantized (non-commuting). The ideas presented here

have intersections with the ideas of Aldrovandi et al [4] and Guo et al [5]. Of the two

groups, Guo et al argued explicitly that de Sitter relativity in Beltrami coordinates is dual

to Snyder’s theory of non-commuting spacetime (which is one of the basis for DSR theories)

and even pointed out the dual relation between the Planck length (invariant length in DSR)

and the de Sitter length (invariant length in de Sitter). The contributions of this paper

to the topic are (1) it derives de Sitter spacetime and relativity from Poincare algebra and

spacetime following the dual relations in kappa Poincare algebra, (2) derives the coproducts

of spacetime in some of the coordinate systems used in de Sitter relativity, (3) presents the

Casimir invariant of dual kappa Poincare, from which we derive (4) the speed of light, and

(5) scalar field theory.
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II. EQUIVALENCE OF DUAL KAPPA POINCARE AND DE SITTER

In a recent paper [3], the author derived another way of modifying the Poincare alge-

bra such that the Lorentz algebra is maintained, space-time commutes (but does not co-

commute) while the momentum space co-commutes (but does not commute). By structure

and construction this algebra is dual to the kappa Poincare algebra in the bicrossproduct

basis and thus appropriately called dual kappa Poincare algebra. The algebra is given by

the following relations:

[

M̄i, M̄j

]

= iǫijkM̄k, (1a)
[

N̄i, N̄j

]

= −iǫijkM̄k, (1b)
[

M̄i, N̄j

]

= iǫijkN̄k, (1c)
[

M̄i, P̄0

]

= 0, (1d)
[

M̄i, P̄j

]

= iǫijkP̄k, (1e)
[

N̄i, P̄0

]

= iP̄i + iκ̄N̄i, (1f)
[

N̄i, P̄j

]

= iδijP̄0 + iκ̄ǫijkM̄k, (1g)

where M̄i, N̄i and P̄µ are the rotation, boost and momentum generators. Note, we corrected

the sign errors in equations (1b) and (1g) that was given in [3]. The parameter κ̄ is related

to the cosmological constant Λ and de Sitter length l via

κ̄ = Λ
1

2 = l−1, (2)

We will now show that this algebra is isomorphic to de Sitter algebra.

The de Sitter algebra is geometrically understood by embedding de Sitter space-time in

a five-dimensional Minkowski space-time through the hyperboloid [4], [6], [7].

ηAByAyB = y2
0
− ~y · ~y − y2

4
= −l2, (3)

where l is the de Sitter length and ηAB = (+,−,−,−,−) is the five-dimensional metric and

capital Latin letters run from 0 to 4. The isometries of the hyperboloid are generated by

the so(1,4) algebra, the Lorentz algebra of the five-dimensional Minkowski space, which are

also the generators of the de Sitter algebra. The generators are given by

JAB = yAπB − yBπA, (4)
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where πA = iηAB
∂

∂yB
. The so(1,4) algebra is given by

[JAB, JCD] = iηBCJAD + iηADJBC − iηACJBD − iηBDJAC . (5)

This equation contains the so(1,3) Lorentz algebra of the 4 dimensional Minkowski space,

which is the same as equation (5) except the indices A, B etc. are replaced by lower case

Greek letters µ, ν, etc. that run from 0 to 3. The so(1,3) algebra can be rewritten as

[mi, mj] = iǫijkmk, (6a)

[mi, nj] = iǫijknk, (6b)

[ni, nj] = −iǫijkmk, (6c)

where the indices (i,j,k) run from 1 to 3 and

mi = ǫijkJjk, (7a)

ni = J0i. (7b)

From equations (5) and (6) we can identify the the Lorentz subalgebra of the 4D de Sitter

algebra with the flat space Lorentz algebra, i.e.,

mi = ǫijkxjpk, (8a)

ni = x0pi − xip0, (8b)

where (xµ, pµ) are the Minkowski phase space variables. The realization of the transla-

tion generators of de Sitter space depend on the choice of coordinates on the hyperboloid.

However, the translation generator is defined [6]

P̃µ = κ̄J4µ. (9)

Using equation (5), we find that the translation generators satisfy

[

Jµν , P̃ρ

]

= ηµρP̃ν − ηνρP̃µ, (10a)
[

P̃µ, P̃ν

]

= −κ̄2Jµν . (10b)

Equations (5) (with A,B replaced by µ, ν), (10a) and (10b) constitute the de Sitter algebra.

The accompanying phase space algebra and the action of rotations and boosts on space-time

depend on the coordinate system used.
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Equations (1a) to (1c) of the dual kappa Poincare algebra are the same as equations (6a)

to (6c), they represent the Lorentz subalgebra. Equations (1d) and (1e) are the same as

equations (10a) with µ = i, ν = j. However, equations (1f) and (1g) are not the same as

equation (10a) with µ = i, ν = 0. Lastly, in dual kappa Poincare algebra

[

P̄0, P̄i

]

= iκ̄P̄i, (11a)
[

P̄i, P̄j

]

= 0, (11b)

which are definitely not the same as equation (10b) of de Sitter algebra. Thus, it looks like

the dual kappa Poincare algebra is not the same as de Sitter algebra. However, consider the

following simple transformations:

Ñi = N̄i, (12a)

M̃i = M̄i, (12b)

P̃0 = P̄0, (12c)

P̃i = P̄i + κ̄N̄i. (12d)

Equations (12a) and (12b) guarantee the same Lorentz subalgebra. Equations (12b) and

(12c) will also leave unchanged equations (1d) and (1e), which are the same as in de Sitter

algebra. Using equations (1f) and (1g) and equations (12a) and (12b), we find

[

Ñi, P̃j

]

= iδijP̃0, (13a)
[

Ñi, P̃0

]

= iP̃i, (13b)
[

P̃0, P̃i

]

= −iκ̄2Ñi, (13c)
[

P̃i, P̃j

]

= −iκ̄2ǫijkM̃k. (13d)

Now, equations (13a) and (13b) are the same as equation (10a) for µ = 0, ν = i while

equations (13c) and (13d) are the same as equation (10b). Thus, by a simple transformation

defined by equation (12d) the dual kappa Poincare algebra is isomorphic to de Sitter algebra.

Since dual kappa Poincare algebra is isomorphic to de Sitter algebra, their space-times

must be the same. And indeed this will be shown true to be true in the following. Reference

(3) clearly shows that the space-time of kappa Poincare is not unique. Expressed in terms
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of a reference Minkowski space-time, the dual kappa Poincare space-time are given by

X̄0 = f̄(x0, ~x · ~x), (14a)

X̄i = xiḡ(x0, ~x · ~x), (14b)

with inverses given by

x0 = F̄ (X̄0,
~̄X · ~̄X), (15a)

xi = X̄iḠ(X̄0,
~̄X · ~̄X). (15b)

Equations (14a) and (14b) are are derived by imposing that the rotation generators M̄i leave

time invariant and rotate the spatial coordinates. The action of boosts N̄i on space-time are

given by

[

N̄i, X̄0

]

= iD̄(X̄0,
~̄X · ~̄X)X̄i, (16a)

[

N̄i, X̄j

]

= iδijĀ(X̄0,
~̄X · ~̄X) + iX̄iX̄jB̄(X̄0,

~̄X · ~̄X), (16b)

where

Ā = F̄ ḡ, (17a)

B̄ = Ḡ2

(

2F̄
∂ḡ

∂(~x · ~x) +
∂ḡ

∂x0

)

, (17b)

D̄ = Ḡ

(

2F̄
∂f̄

∂(~x · ~x) +
∂f̄

∂x0

)

. (17c)

Since Ā, B̄ and D̄ satisfy the non-linear equation

∂Ā

∂X̄0

D̄ + 2
∂Ā

∂( ~̄X · ~̄X)

[

Ā+ ( ~̄X · ~̄X)B̄
]

− ĀB̄ = 1, (18)

out of the two functions f̄ , ḡ (or equivalently F̄ , Ḡ), one is left unspecified. Thus, there is no

unique dual kappa Poincare space-time. Equations (14) to (18) are similar to the relations

satisfied by the momenta in kappa Poincare algebra, thus the label dual kappa Poincare

algebra is appropriate for the algebra we are considering here.

We will now show that the known coordinate systems used in describing de Sitter space-

time satisfy equation (18). In reference (3), the dual kappa Poincare algebra in the dual

bicrossproduct basis was presented. Its space-time X̄µ is given in terms of a reference
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Minkowski space-time xµ by the transformations

X̄0 = f̄ =
1

κ̄
ln (κ̄x0 +

√

κ̄2(x2

0
− ~x · ~x) + 1), (19a)

X̄i = xiḡ = xi

1

κ̄x0 +
√

κ̄2(x2

0
− ~x · ~x) + 1

, (19b)

with the inverses

x0 = F̄ =
1

κ
sinh (κ̄X̄0) +

κ̄

2
~̄X · ~̄X exp (κ̄X̄0), (20a)

xi = X̄iḠ = X̄i exp (κ̄X̄0). (20b)

Equations (19) and (20) define the planar coordinates of de Sitter space-time [7], which is

usually presented with the fifth coordinate of the hyperboloid given by

x4 =
1

κ̄
cosh

X̄0

κ̄
− κ̄

2
( ~̄X · ~̄X) exp (κ̄X̄0). (21)

What is the relevance of completing the Minkowski space-time (x0, ~x) to de Sitter space-

time (x0, ~x, x4) in defining the dual kappa Poincare space-time (X̄0,
~̄X)? Kowalski-Glikman

[8] showed that the geometrical basis of the bicrossproduct kappa Poincare algebra is de

Sitter momentum space. Since the dual bicrossproduct basis of the dual kappa Poincare

algebra has the same structure as the bicrossproduct basis of kappa Poincare algebra in

momentum space for the latter but in space-time for the former, then the same argument

for the completion to de Sitter space-time holds. In particular, without the completion to

de Sitter space-time equation (19) would have led to a trivial co-product instead of

∆(X̄0) = X̄0 ⊗ 1 + 1⊗ X̄0, (22a)

∆(X̄i) = X̄i ⊗ 1+ exp (−κ̄X̄0)⊗ X̄i. (22b)

By construction of the dual kappa Poincare algebra, its space-time is not unique because

one of the two functions f̄ and ḡ (or equivalently F̄ and Ḡ) is left unspecified. The dual

kappa Poincare space-time satisfies a non-linear constraint given by equations (17) and (18).

In the case of the dual bicrossproduct basis, which is the same as the planar coordinates of

de Sitter space-time, equations (17), (19) and (20) yield

Āp =
1

2κ̄
(1− exp (−2κ̄X̄0)) +

κ̄

2
( ~̄X · ~̄X), (23a)

B̄p = −κ̄, (23b)

D̄p = 1. (23c)
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These satisfy equation (18). What we will show is that some of the other known coordinates

used in de Sitter space-time also satisfy equation (18) and this should conclusively prove

that the space-time of dual kappa Poincare is de Sitter space-time. We have not verified

that all the coordinate systems used in describing de Sitter space satisfy equation (18) but

since these different coordinate systems are different ways of parametrizing the hyperboloid

given by equation (3), then the different coordinate systems can be related to one another.

And if one satisfies equation (18), the others should also satisfy equation (18). Thus we will

only verify the dual kappa Poincare space-time relation for a few of de Sitter space-time

coordinate systems.

(a) Natural coordinates

This is the simplest case since

yµ = Xn
µ . (24)

The fifth coordinate of the hyperboloid is given by

yn
4
=
√

(Xn)2 + l2. (25)

From equation (24) we read off

f̄n = y0, (26a)

ḡn = 1, (26b)

F̄n = Xn
0
, (26c)

Ḡn = 1. (26d)

from which we get

Āc = Xc
0
, (27a)

B̄c = 0, (27b)

D̄c = 1, (27c)

which obviously satisfy equation(18). Thus, we have shown that the natural coordinate

system used in de Sitter space-time satisfy the dual kappa Poincare spacetime condition.

The coproduct rule for the natural coordinates of de Sitter spacetime (equivalent to equa-

tion (22)) easily follows from the classical basis of DSR [11] because the natural coordinates

of de Sitter spacetime is dual to the classical basis of DSR. From the coproduct rule of the
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momenta in the classical basis of DSR, we infer the coproduct rule for the natural coordinates

given by

∆(Xn
i ) = Xn

i ⊗K+ 1⊗Xn
i , (28a)

∆(Xn
0
) =

1

2κ̄

(

K⊗K−K
−1 ⊗K

−1
)

+H (28b)

where

K = κ̄
[

Xn
0
+ ((Xn

0
)2 − ~Xn · ~Xn + l2)

1

2

]

, (29a)

H =
κ̄

2

(

K
−1 ~Xn · ~Xn ⊗K+ 2K−1Xn

i ⊗Xn
i +K

−1 ⊗K
−1 ~Xn · ~Xn

)

(29b)

(b) Beltrami coordinates

The Beltrami coordinates [10] of de Sitter space-time are given by

yµ =
Xb

µ
√

1− κ̄2((Xb
0
)2 − ~Xb · ~Xb)

. (30)

The fifth coordinate of the hyperboloid in terms of the Beltrami coordinates is

yb
4
= (1− κ̄2X2)−

1

2 . (31)

The inverse of equation(30) gives

Xµ =
yµ

√

1 + k̄2y2
. (32)

From these we derive,

f̄b =
y0

√

1 + κ̄2y2
, (33a)

ḡb =
1

√

1 + κ̄2y2
, (33b)

F̄b =
X0√

1− κ̄2X2
, (33c)

Ḡb =
1√

1− κ̄2X2
. (33d)

From equations (33a) to (33d), we get Āb, B̄b and D̄b with values the same as those given

by equation (27), which means the Beltrami coordinates of de Sitter space also satisfies the

condition for space-time of dual kappa Poincare.
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We will now derive the coproduct rule for Beltrami coordinates. We can easily relate

the Beltrami coordinates to the planar coordinates by making use of the relations of both

coordinate systems to the hyperboloid. The result is

X̄B
0
=

1

κ
sinh (κ̄X̄0) +

¯̄κ
2
( ~̄X · ~̄X) exp (κ̄X̄0)

(1 + Γ)
1

2

, (34a)

X̄B
i =

X̄i exp (κ̄X̄0)

(1 + Γ)
1

2

, (34b)

Γ = sinh2 (κ̄X̄0) +
κ̄4

4

(

~̄X · ~̄X
)2

exp (2κ̄X̄0)−
1

2
κ̄2

(

~̄X · ~̄X
)

exp (2κ̄X̄0)−
1

2
κ̄2

(

~̄X · ~̄X
)

.

(34c)

The coproduct rules can be systematically expanded in powers of κ̄, which is a valid ex-

pansion parameter because its value is very small. We do this by (i) doing a Maclaurin

expansion of equations (34a) to (34c) in terms of X̄0 and ~̄X · ~̄X (note, there is no operator

ordering problem because the coordinates commute), (ii) using the coproduct rules for the

planar coordinates given by equation (22), (iii) employing the following coproduct rules

∆(AB) = ∆(A)∆(B), (35a)

(A⊗ B)(C ⊗D) = AC ⊗BD, (35b)

and (iv) expressing the planar coordinates in terms of the Beltrami coordinates as given by

X̄i =
X̄B

i

1 + κ̄X̄B
0

, (36a)

X̄0 =
1

κ̄
ln









1 + κ̄X̄B
0

(

1− κ̄2((X̄B
0
)2 − ~̄

XB · ~̄
XB)

)

1

2









. (36b)

The resulting coproduct rule for the Beltrami coordinates, expanded up to order κ̄, are

∆(X̄B
i ) = X̄B

i ⊗ 1 + 1⊗ X̄B
i + κ̄[X̄B

i ⊗ X̄B
0
+ 1⊗ X̄B

i X̄
B
0
] + . . . , (37a)

∆(X̄B
0
) = X̄B

0
⊗ 1+ 1⊗ X̄B

0
+

κ̄

2
[(

~̄
XB · ~̄

XB)⊗ 1+ 1⊗ (
~̄
XB · ~̄

XB)

− (X̄B
0
)2 ⊗ 1− 1⊗ (X̄B

0
)2 + 2X̄B

i ⊗ X̄B
i ] + . . . .

(37b)

(c) Conformal coordinates

This is arrived at through stereographic projections from the hyperboloid coordinates yA

(see equation 3) to a 4D space-time (Xc
0
, Xc

i ) and it is given by [4], [9].

yµ =
1

[1− 1

4l2
((Xc

0
)2 − ~Xc · ~Xc)]

Xc
µ. (38)
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For completeness and comparison with the planar coordinates, we give the fifth component

of the hyperboloid in conformal coordinates

yc
4
=
√

l2 + y2 = l
(1 + X2

4l2
)

(1− X2

4l2
)
, (39)

where y2 = y2
0
− ~y · ~y. The inverse is given by

Xc
µ = −2l2

y2

(

1±
√

1 +
y2

l2

)

yµ

=
2yµ

1 + (1 + κ̄2y2)

(40)

From these we identify

f̄c = −2l2

y2

(

1±
√

1 +
y2

l2

)

y0, (41a)

ḡc = −2l2

y2

(

1±
√

1 +
y2

l2

)

, (41b)

F̄c =

(

1− (Xc)2

4l2

)

−1

Xc
0
, (41c)

Ḡc =

(

1− (Xc)2

4l2

)

−1

. (41d)

If the conformal coordinates of de Sitter is to satisfy the condition for dual kappa Poincare

space-time, the corresponding Āc, B̄c and D̄c should satisfy equation (18). Indeed this is

true since the values are the same as those given in equation (27).

To derive the coproduct rules for the conformal coordinates, we follow the same proce-

dure we used in the Beltrami coordinates. Using the conformal coordinates - hyperboloid

coordinates relation given by equation (40) (we will use the second relation) and the hyper-

boloid - planar coordinates relation given by equation (15), we derive the conformal-planar

coordinates relations

X̄c
0
=

2

κ̄
sinh (κ̄X̄0) + κ̄( ~̄X · ~̄X) exp κ̄X̄0

[

1 + (1 + Γ)
1

2

] , (42a)

X̄c
i =

2X̄i exp κ̄X̄0
[

1 + (1 + Γ)
1

2

] , (42b)

where Γ is given by equation (34c). Doing a Maclaurin series expansion and making use

of the coproduct rules given by equation (35) and making use of the inverse relations to
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equations (42a) and (42b), which gives

X̄0 =
1

κ̄
ln

[

1 + κ̄X̄c
0
+ κ̄2

4
( ~̄ c
X · ~̄ c

X)

1− κ̄2

4
( ~̄ c
X · ~̄ c

X)

]

, (43a)

X̄i =
X̄c

i

1 + κ̄X̄c
0
+ κ̄2

4
( ~̄ c
X · ~̄ c

X)
, (43b)

we get the coproduct rules up to order κ̄

∆(X̄c
0
) = X̄c

0
⊗ 1+ 1⊗ X̄c

0
+ κ̄X̄c

i ⊗ X̄c
i + . . . , (44a)

∆(X̄c
i ) = X̄c

i ⊗ 1+ 1⊗ X̄c
i + κ̄X̄c

i ⊗ X̄c
0
+ . . . . (44b)

Thus, we have established that the spacetime of dual kappa Poincare algebra is de Sitter

spacetime. We also worked out the coproduct rules for some of the coordinate systems

used in de Sitter spacetime. The lowest order corrections to flat spacetime coproducts are

given by the κ̄ terms in equations (37) and (43). From [4], [5], which showed that de Sitter

relativity has two invariant scales - the speed of light and de Sitter length, it follows that

the physics of dual kappa Poincare algebra can be appropriately called dual DSR.

III. THE CASIMIR INVARIANT AND THE SPEED OF LIGHT

The Casimir invariants of an algebra commute with all the generators of that algebra.

The first Casimir invariant is particularly significant because the speed of light and the scalar

field theory are derivable from it. In the case of Poincare algebra, where the first Casimir is

given by

C(p0, ~p · ~p) = p2
0
− ~p · ~p = m2. (45)

The speed of light is given by
(

∂p0

∂p

)

m→0

= 1. (46)
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In the case of kappa Poincare algebra in the bicrossproduct basis with algebra given by

[Mi,Mj ] = iǫijkMk, (47a)

[Mi, Nj ] = iǫijkNk, (47b)

[Ni, Nj ] = −iǫijkMk, (47c)

[Mi, P0] = 0, (47d)

[Mi, Pj] = iǫijkPk, (47e)

[Ni, P0] = iPi, (47f)

[Ni, Pj] = iδij

[

κ

2

(

1− exp (−2
P0

κ
)

)

+
1

2κ
~P · ~P

]

− i

κ
PiPj, (47g)

the first Casimir invariant is given by

C(P0, ~P · ~P ) =

[

2κ sinh(
P0

2κ
)

]2

− (~P · ~P ) exp (
P0

κ
) = m2. (48)

The second equality in equation (48) follows from the Poincare limit (κ → ∞), which gives

P0 → p0 and Pi → pi. From this Casimir invariant, we derive the speed of light
(

∂P0

∂P

)

m→0

≈ (1 +
P

κ
). (49)

Equation (49) gives an energy or frequency dependent speed of light that apparently is not

consistent with the recent gamma ray burst experiment [2].

We will follow the same procedure in deriving the speed of light in dual kappa Poincare

algebra. However, in this case, we find that the Casimir invariant cannot just be a function

of P̄0 and ~̄P · ~̄P . The dual kappa Poincare algebra is given by equation (1) while its phase

space algebra is given by

[

X̄µ, X̄ν

]

= 0, (50a)
[

P̄i, X̄0

]

=
[

P̄i, P̄j

]

= 0, (50b)
[

P̄0, X̄0

]

= i, (50c)
[

P̄i, X̄j

]

= −iδij , (50d)
[

P̄0, X̄i

]

= −iκ̄X̄i, (50e)
[

P̄0, P̄i

]

= iκ̄P̄i. (50f)

These equations mean that in dual kappa Poincare, space-time commute but not co-commute

and the momenta co-commute but do not commute, which are opposite to those in kappa

14



Poincare [3]. If we look for a Casimir invariant that is purely a function of P̄0 and ~̄P · ~̄P ,

the algebra given by equation (1) will yield C̄ = 0, i.e., a trivial Casimir invariant. Thus,

we need to expand the dependence of the Casimir. Since the Casimir invariants are scalars,

it should depend only on ~̄M · ~̄M , ~̄N · ~̄N , ~̄M · ~̄N + ~̄N · ~̄M and ~̄N · ~̄P + ~̄P · ~̄N . There is no

~̄M · ~̄P + ~̄P · ~̄M because this term is zero as can be seen from the fact that (see [3])

M̄i = ǫijkX̄jP̄k. (51)

Assume the following ansatz for the Casimir invariant

C̄ = P̄ 2

0
− ~̄P · ~̄P + a ~̄N · ~̄N + b ~̄M · ~̄M + c( ~̄N · ~̄P + ~̄P · ~̄N) + d( ~̄M · ~̄N + ~̄N · ~̄M). (52)

Taking the commutator with P̄0, we get a = 0, c = −κ̄, d = 0. Taking the commutator

with P̄i, we get b = −κ̄2. With these values, we find that the commutators with M̄i and N̄i

are trivially satisfied. Thus we find that the Casimir invariant of the dual kappa Poincare

algebra in the dual bicrossproduct basis is

C̄ = P̄ 2

0
− ~̄P · ~̄P − κ̄2 ~̄M · ~̄M +−κ̄( ~̄N · ~̄P + ~̄P · ~̄N). (53)

In the Poincare limit, i.e., κ̄ → 0, we find equation (53) reducing to the Poincare first Casimir

invariant, thus C̄ = m2 and the Casimir invariant for the dual kappa Poincare algebra seems

to be correct.

Equation (53) is one of the main results of this paper. And we will use this result to

derive the speed of light by following the same prescription in Poincare and kappa Poincare

algebras. First we derive an expression for N̄i in terms of the dual kappa Poincare coordinates

and momenta. Using equations (20b), (34a), (34b) of [3], we find

N̄i = − 1

2κ̄
P̄i + X̄iP̄0 −

κ̄

2
P̄i(

~̄X · ~̄X) +
1

2κ̄
P̄i exp (−2κ̄X̄0). (54)

This expression for N̄i has operator ordering ambiguity in the second and third terms because

of the non-commutativity of P̄0 with X̄i (see equation (50e)) and the non-comutativity of X̄i

with P̄j. And if we do not operator order these two terms, we find that the Lorentz algebra

relations given by equations (1b) and (1c) will not be satisfied. The operator-ordered N̄i

that is consistent with the dual kappa Poincare algebra given by equations (1a) to (1g) is

N̄i = − 1

2κ̄
P̄i +

1

2
(X̄iP̄0 + P̄0X̄i)−

κ̄

4

(

P̄i(
~̄X · ~̄X) + ( ~̄X · ~̄X)P̄i

)

+
1

2κ̄
P̄i exp (−2κ̄X̄0). (55)
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These consistency calculations, which make use of the dual kappa Poincare phase space

algebra (equation (50)), are straightforward but rather long and tedious.

Using equations (51), (55) and (1g), we express the Casimir invariant as

C̄ = P̄ 2

0
− ( ~̄P · ~̄P ) exp (−2κ̄X̄0)− κ̄[( ~̄P · ~̄X)P̄0 + P̄iP̄0X̄i + 3iP̄0]

+
κ̄2

2
[2( ~̄P · ~̄P )( ~̄X · ~̄X) + P̄i(

~̄X · ~̄X)P̄i − 2( ~̄X · ~̄X)( ~̄P · ~̄P )− 2i( ~̄X · ~̄P ) + 2( ~̄X · ~̄P )2] = m2.

(56)

From this expression, we find the speed of light in dual DSR

(

∂P̄0

∂P̄

)

m→0

≈ exp (−κ̄X̄0) (57)

Thus, we find that the speed of light in the dual bicrossproduct basis of the dual kappa

Poincare algebra is the coordinate velocity of light in the planar coordinates as given by

ds2 = 0 with

ds2 = dX̄2

0
− exp (2κ̄X̄0)d

~̄X · d ~̄X. (58)

This result is expected because the spacetime of the dual kappa Poincare algebra in the dual

bicrossproduct basis is the planar coordinates of de Sitter gravity.

IV. SCALAR FIELD THEORY

In the Poincare case, the scalar field theory - the Klein-Gordon equation, is derived from

the first Casimir invariant and a differential realization of the momentum operator, which in

turn follows from the phase space algebra. In the kappa Poincare algebra, the field theory is

rather involved because of the non-commuting spacetime. Expressed in terms of Minkowski

spacetime, the scalar field theory of kappa Poincare is given by the non-local expression [12]

S =

∫

d4x

{

1

2
(∂µφ)

∗

√
1 + ∂2(∂µφ) +

m2

2
φ∗

√
1 + ∂2φ

}

, (59)

where ∂2 = ∂2

0
− ~∂ · ~∂.

In the case of dual kappa Poincare algebra, we do not expect a non-local field theory

because spacetime is commutative. Also, given the results in section II, we expect a local

field theory in de Sitter gravity. This will be shown stating from the Casimir invariant given

by equation (49). The phase space algebra given by equation (43) is realized by the following
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differential realization of the momentum operators

P̄0 = i
∂

∂X̄0

− ik̄X̄j

∂

∂X̄j

, (60a)

P̄i = −i
∂

∂X̄j

. (60b)

Substituting these in equation (56), we find the scalar field equation

[

− ∂2

∂X̄2

0

− 3κ̄
∂

∂X̄0

+ exp (−2κ̄X̄0)
∂2

∂X̄2

i

−m2

]

φ = 0. (61)

This is precisely the Klein-Gordon equation in de Sitter spacetime given by

[

1
√

|g|
∂µ

(

√

|g|gµν∂ν
)

−m2

]

φ = 0, (62)

with the metric given by equation (58). Thus, the field theory derived from the Casimir

invariant of the dual kappa Poincare algebra in the dual bicrossproduct basis is de Sitter

scalar field theory in planar coordinates.

V. CONCLUSION

This paper discussed the physics of dual kappa Poincare algebra. We showed that the dual

kappa Poincare algebra in the dual bicrossproduct basis is isomorphic to de Sitter algebra

thus hinting that the spacetime of dual kappa Poincare algebra is de Sitter spacetime.

Indeed, this is true as we verified next that the planar, conformal, Beltrami and natural

coordinates of de Sitter spacetime satisfy the general condition of dual kappa Poincare

spacetime (equation (18)). We also presented in this paper the coproduct rules for the

conformal, natural and Beltrami coordinates of de Sitter relativity. Following the arguments

of Aldrovandi et al and Guo et al, the physics of dual kappa Poincare spacetime has two

invariant scales - the speed of light and the de Sitter length. This means that the the physics

of dual kappa Poincare algebra can be appropriately called dual DSR.

We then derived the Casimir invariant of dual DSR in the dual bicrossproduct basis. The

Casimir invariant is also dependent on ~M and ~N unlike in the DSR case. From this Casimir

invariant, we derived the speed of light and it is the same as the coordinate speed of light in

the planar coordinates. The field theory derived from the Casimir invariant is then shown

to be scalar field theory in de Sitter gravity in the planar coordinate basis.
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We note that dual DSR is classical de Sitter gravity unlike DSR, which leads to quantum

spacetime. Unfortunately, it seems from the recent gamma ray burst measurement that

spacetime does not seem to have a granular structure even at the length scale of the Planck

length. On the other hand, de Sitter gravity seems to account for the large scale structure of

the Universe. What this paper showed is how to derive de Sitter gravity from the Poincare

algebra (with flat spacetime), deformed as measured by the parameter κ̄, which is the inverse

of the de Sitter length.

Finally, we note that the non-commuting momenta suggests a minimum value for the

momentum of physical processes. This momentum must be observer-independent as the

analogy with DSR suggests. Since the minimal momenta does not have big enough energy

to change gravity profoundly, this is not expected to lead to a quantum theory of gravity.

However, it may lead to a better understanding of quantum theory in a de Sitter background.

The minimum momentum may lead to a dual generalized uncertainty principle just like the

existence of minimal length in DSR led to a generalized uncertainty principle [13]. If the

generalized uncertainty principle leads to a universal but very small effect of quantum gravity

in all physical systems, including the hydrogen atom, because an extra term proportional

to p4 is induced in all Hamiltonians [14], then in dual DSR the dual generalized uncertainty

principle is expected to add a universal and very small x4 term in all Hamiltonians. This

may be a testable effect of long distance physics (de Sitter gravity) on short-ranged physical

systems. In the case of the harmonic oscillator, it may mean that a double potential well

(if the appropriate sign of the coefficient of x4 can be had) should be considered with its

concomitant symetry breaking effects. These ideas are currently being explored.
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