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Abstract

A new hybrid inflationary scenario in the context of f(R,�R)-gravity is proposed. Demanding
the waterfall field to ‘support the potential from below’ [unlike the original proposal by Stewart
in Phys. Lett. B345, 414 (1995)], we demonstrate that the scalar potential is similar to that
of the large-field chaotic inflation model proposed by Linde in Phys. Lett. B129, 177 (1983).
Inflationary observables are used to constrain the parameter space of our model; in the process,
an interesting limit on the number of e-folds N is found.

1 Introduction

Nowadays various modifications of General Relativity (GR) are actively studied, since it may
explain the rapid accelerated expansion in the very early stage of the Universe (i.e. inflation)
and the late time acceleration, without introducing matter fields of desired properties. Inflation
is now the standard paradigm for cosmology, since it elegantly resolves serious philosophical
problems [1] and can explain the present density perturbation of the Universe [2]. It seems
to be quite natural to try to describe inflationary epoch in fundamental physics in which the
mechanism of inflation naturally exists.

One such candidate is supergravity (SUGRA), in which many scalar fields (would-be in-
flaton) arise as the superpartners of fermionic fields. SUGRA is known to be the low energy
effective theory of superstring/M-theory.1 It looks natural to use SUGRA to describe infla-
tion [4, 5]. However, it is well known that inflation in SUGRA suffers from several serious
problems. For instance, when the scalar potential is dominated by F-term during inflation,
the η-problem [6] spoils the flatness of the inflaton potential and hence a slow-roll condition
is violated.2 If D-term dominates the scalar potential [11, 12] during inflation, one can escape
from the above problem too (at least at the classical level). However, the D-term inflation is
known to very sensitive to the gauge charges, because inflaton lies in a vector superfield.

Though not directly related to above theories, the other well-known theory that may ele-
gantly explain inflation exists; it is Quantum Field Theory (QFT) in curved spacetime [15].
Since inflation is expected to take place in very high-energy regime (just a few orders below the

∗Electronic address: iihoshi@kiso.phys.se.tmu.ac.jp
1There are many models of inflation derived from superstring/M-theory, see, e.g. Ref. [3].
2In Ref. [7] a proposal to cure this problem by quantum contribution is described. There also exist proposals

to cause successful inflation during F-term domination, by using particular Ansätze for the Kähler potential [8,9].
See also the recent proposal [10], via embedding of R2-inflation [14] into supergravity, as a solution to the η-
problem.
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Planck scale), it seems to be natural to consider quantum effects of matter onto the spacetime
geometry.3 This theory may be thought of as the extension of the f(R)-theory of gravity [13],
which is the attractive alternative to GR.

An f(R)-gravity Lagrangian, regarded as a phenomenological proposal away from the orig-
inal motivation (curved-space QFT), is an arbitrary function of the Ricci scalar R, so it does
not contain the derivative operator. However, from the viewpoint of general covariance, it
is allowed to include the derivative operator (d’Alembertian �, in particular) into the La-
grangian, leading to the f(R,�R)-gravity that can be thought of as a natural generalization
of the original f(R)-theory:

f(R,�R) = R+
∞
∑

i=1

αiR
i+1 +

∞
∑

j=1

γjR�
jR. (1)

There exists a physical bonus of including the �-operator into the Lagrangian. The derivative
operator naturally induces a parallel transport, so the Ricci scalar can change from point to
point when d’Alembertian � is applied. That is, our Lagrangian (1) may account for an
inhomogeneity that may be present in a very early stage of the Universe. Here we restrict
ourselves to the linear in the �jR-term case: otherwise the theory would suffer from ghosts,
as was pointed out in Ref. [16]. We will also restrict ourselves to the case of linear factor in
the �-operator in the next section, for simplicity. This type of Lagrangian (1) is often used in
the context of inflationary and bouncing cosmologies [17–20].

The significance of the R�R-term on an inflationary scenario is re-examined in this paper,
by adopting the notion of mutated hybrid inflation in GR [21]. In the next section we confirm
that the theory described by the f(R,�R)-Lagrangian is equivalent to Einstein gravity (i.e.
GR) coupled to two scalar fields [22]. We also show that a hybrid inflation can be realized
in f(R,�R)-gravity by using a simple example. In section 3, we promote our toy model to a
more realistic one, by demanding the stability of a waterfall field against a small perturbation.
Inflationary observables of our model are also estimated in that section. In the final section we
summarize the results and discuss some interesting issues related to our model.

2 Embedding mutated hybrid inflation into f(R,�R)-model

In this paper we focus on the f(R,�R)-gravity theory with the action:

I[g] =
1

2κ24

∫

d4x
√−g f(R,�R). (2)

The matter action is not considered in this paper. Let us consider the following naive Ansatz

[16, 17]:
f(R,�R) = R+ αR2 + γR�R, (3)

where α and γ are some constants. As is shown below, it is physically unacceptable Ansatz; it
should be appended by another higher-order term in the scalar curvature.

As is well known, the action (2) with our choice (3) is dynamically equivalent to the scalar-
tensor gravity with two scalar fields (see, e.g. Ref [22]),

I[g,Φ, ψ] =
1

2κ24

∫

d4x
√−g

[

ΦR+ γψ�ψ −
{

ψ(Φ − 1)− αψ2
}

]

. (4)

3The pioneering work of this subject by Starobinsky [14] uses curved-space QFT.
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This equivalence is easily seen by considering a field equation of the Φ-field. Inserting ψ = R
that comes from δS/δΦ = 0 into (4), we recover the original action with (3). According to the
ordinary procedure, we carry out a frame change to the so-called Einstein frame given by

gµν → g̃µν = Φgµν .

Then the action (4) becomes

I[g, φ, ψ]

=
1

2κ24

∫

d4x
√−g

[

R− κ24(∂φ)
2 − γe−βκ4φ(∂ψ)2 − e−2βκ4φ

{

ψ
(

eβκ4φ − 1
)

− αψ2
}]

, (5)

where we have omitted the tilde for simplicity, and have reparametrized Φ as

Φ = eβκ4φ; β =

√

2

3
.

Thus, in order for the theory to be ghost-free, a parameter γ must satisfy

γ > 0. (6)

As is desired, the action (5) describes two scalar fields minimally coupled to Einstein gravity.
Note that the ψ-field, which we will identify as the waterfall field below, has a noncanonical
kinetic term. This is a generic feature of gravity theory derived from f(R,�R)-Lagrangian:
only a single scalar acquires a canonical kinetic term with the physical sign.

Now we will focus on the potential term. It can be written as

V (φ,ψ) =
1

2κ24
e−2βκ4φ

[

−α
(

ψ − eβκ4φ − 1

2α

)2

+
1

4α

(

eβκ4φ − 1
)2

]

, (7)

where we assume
α > 0 (8)

via connection to the Starobinsky’s model [14].4 Now we identify the φ-field as the inflaton.
At each value of φ, we assume that our waterfall field ψ maximizes the potential V , in order to
generate the huge potential energy that is required for inflation. That is, the inflaton potential
V (φ) is ‘propped up’ by the ψ-field as

ψ =
eβκ4φ − 1

2α
. (9)

Applying Eq.(9) to the potential (7), we recover the Starobinsky’s potential [14]

V (φ) =
1

8ακ24
(1− e−βκ4φ)2,

but with a noncanonical kinetic term K(φ), due to the contribution from the ψ-field,

K(φ) = −1

2
(∂φ)2 − γe−βκ4φ

8α2κ24
(∂eβκ4φ)2

= −1

2

(

1 +
γ

6α2
eβκ4φ

)

(∂φ)2. (10)

That is, the inclusion of a R�R-term may be interpreted as a modification of the kinetic term
of inflaton, without altering the potential of R2-inflation model.

4The α < 0 case is omitted from our discussion.
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Figure 1: An example of the inflaton potential V (φ).

3 Inflationary observables of our model

The configuration (9) of a waterfall field corresponds to the apex of the potential V in ψ-
direction and is unstable against a small fluctuation. Because V is not bounded from below
in ψ-direction, such a fluctuation would lead to a divergence V → −∞. This implies that the
Ansatz (3) is physically unacceptable. So, we add the R4-term to the Lagrangian (3), whose
role will be clarified later:

I[g] =
1

2κ24

∫

d4x
√−g

(

R+ αR2 + ξR4 + γR�R
)

, (11)

which is dynamically equivalent to

I[g,Φ, ψ] =
1

2κ24

∫

d4x
√−g

[

ΦR+ γψ�ψ −
{

ψ(Φ− 1)− αψ2 − ξψ4
}

]

.

Then the potential (7) turns out to be

V (φ,ψ) =
1

2κ24
e−2βκ4φ

[

−α
(

ψ − eβκ4φ − 1

2α

)2

+
1

4α

(

eβκ4φ − 1
)2

− ξψ4

]

, (12)

while the kinetic term does not change. Here we assume

ξ < 0 (13)

that gives the lower limit to the ψ-direction of the potential V . The problem stated above is
thus resolved. As before, we impose Eq.(9) on a waterfall field. Then we have the inflaton
potential (see Fig. 1)

V (φ) =
1

32α4κ24

(

1− e−βκ4φ
)2

[

4α3 − ξ
(

eβκ4φ − 1
)2

]

. (14)

Having established a physically reasonable potential (14), our next task is to observe that
our model gives reasonable inflation. Well-known formalism for slow-roll inflation assumes
scalar fields with canonical kinetic terms [23]. So we need to bring the kinetic term (10) to the
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canonical one. To do this, we use the techniques described below, instead of finding a exact
solution χ = χ(φ) s.t. K(φ) → −1

2
(∂χ)2.5

In a small-φ region (κ4φ . 1), we may approximate our Lagrangian as

K(φ) ≃ −1

2
(∂φ)2,

V (φ) ≃ β2

8α
φ2 − β3κ4

8α
φ3.

Thus the slow-roll conditions [24]

ε≪ 1, |η| ≪ 1 where ε =
1

2κ24

(

V ′

V

)2

, η = κ−2
4

V ′′

V
, (15)

immediately give κ4φ > 1, and we have the contradiction with our initial assumption κ4φ . 1.
Hence, inflation cannot occur in this region. This fact allows us to focus only on a large-φ
region, i.e. κ4φ & 1.

In a large-φ region (κ4φ & 1), the kinetic and potential terms are approximately given by

K ≃ −1

2
· γ

6α2
eβκ4φ(∂φ)2 = −1

2
(∂ϕ)2,

V ≃ −ξ
32α4κ24

(

e2βκ4φ − 4eβκ4φ
)

=
−ξ

32α2γ

(

(ακ4)
2

γ
ϕ4 − 4ϕ2

)

(16)

respectively, where we have defined a rescaled inflaton

ϕ =
γ1/2

ακ4
eβκ4φ/2. (17)

The potential V (ϕ) in terms of the rescalced inflaton ϕ is similar to the Linde’s chaotic one [25]
of quartic order. The difference is that we now have the potential that is polynomial in ϕ. Slow-
roll conditions (15) give us

κ4ϕ & 2

√

2 +
γ

α2
. (18)

The value ϕend, where inflation ends, is also found from Eq.(15). Solving ε(ϕend) = 1, where
there is a violation of slow-roll condition, gives

κ4ϕend = 2

√

2 +
γ

α2
. (19)

The scalar spectral index ns in terms of slow-roll parameters [24] is:

ns = 1− 6ε+ 2η

= 1− 24

(κ4ϕ)2
− 112(γ/α2)

(κ4ϕ)4
+O

(

(κ4ϕ)
−6

)

, (20)

where the right hand side is evaluated at the horizon crossing of a physically interesting scale,
as usual. The number of e-foldings N is

N = κ24

∫ ϕ

ϕend

V

V ′
dϕ

≃ (κ4ϕ)
2

8
− 2 + γ/α2

2
− γ/α2

2
lnϕ. (21)

5In fact, there exists an exact solution that brings our kinetic term (10) to the canonical form. However, it
is not very convenient for calculation of inflationary observables.
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Figure 2: A relation between the e-folds N and the tensor-to-scalar ratio r, Eq.(26), is depicted.

This equation can be solved approximately as follows:

(κ4ϕ)
−2 ∼= 1

8N

(

1− 2 + γ/α2

2N
+

(2 + γ/α2)2

4N2

)

+O(N−4). (22)

Inserting this equation into Eq.(20), we find that the scalar spectral index of our model is given
by

ns ∼= 1− 3

N
+

12 − γ/α2

4N2
− (2 + γ/α2)(3 − 2γ/α2)

2N3
.6 (23)

From this equation, we obtain the following condition that relates the two parameters:

γ/α2 =
1

8

(

−2 +N +
√

196(1 −N) + 193N2 − 64(1 − ns)N3

)

. (24)

An equation (24) itself gives an interesting speculation on the number of e-folds N . For
example, let us substitute the most recent WMAP7 observation for the scalar spectral index,
ns = 0.963 ± 0.012 (with 95% CL) [2], into this equation. Then, the reality condition for a
coefficient γ/α2 implies that the e-folds N of our model is bounded from above,

N < 61 (when ns = 0.951),

N < 81 (when ns = 0.963),

N < 120 (when ns = 0.975). (25)

This is a bonus of our model: without knowing the detail of reheating after inflation [28], the
upper limit on the e-folds N (which is very sensitive to the ns) is found.

For concreteness, from now on we work with a central value that is indicated by WMAP7
observations, ns ∼= 0.963. Then the tensor-to-scalar ratio r = 16ε [24] is given by (see Fig. 2)

r ∼= 16

N

(

1− 1

N
+

2 + γ/α2

N2

)

=
16

N

{

1− 7

8N
+

1

8N2

(

14 +
√

196(1 −N) + 193N2 − 2.37N3

)

}

. (26)

6Note that the original Starobinsky’s model [14] predicts (see Refs. [26,27])

ns ≃ 1−
2

N
+ (sub-leading terms).

The big difference from our model is the second term in the R.H.S. of Eq.(23). This is because our inflationary
model is mainly dominated by ϕ4-term.
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The WMAP7 observations (in combinations with BAO + SN) of the tensor-to-scalar ratio,
r < 0.20 [2], severely constrain our model. As Eq.(26) indicates, in order to be consistent with
observations, the e-folds of our model should take N ∼= 80, which is all but the maximum value

of the N [see Eq.(25)].
Hence, we work with N = 80, giving r = 0.198. Then Eq.(24) becomes

γ/α2 = 20.4. (27)

The COBE normalization V 1/4 = 0.027ε1/4κ−1
4 at k ∼= kpivot = 0.002Mpc−1 [29] gives another

relation. Applying a slow-roll parameter ε of our model to this normalization, we find

V =
5.3× 10−7

Nκ44

{

1− 7

8N
+

1

8N2

(

14 +
√

196(1 −N) + 193N2 − 2.37N3

)

}

=
6.6× 10−9

κ44
, (28)

where N = 80 is used in the last line. In the meanwhile, applying Eq.(22) [combined with
N = 80 and Eq.(27)] to the potential (16), then it becomes

V =
35.3(−ξ)
κ24α

4
. (29)

Combining Eqs.(28) and (29), we obtain the other condition relating two parameters:

−ξ
α4

=
1.9× 10−10

κ24
. (30)

Note that we are left with only a single free parameter [with the one sign; see, e.g. Eq.(13)].

4 Conclusions and discussions

We studied classical dynamics of inflation derived from f(R,�R)-gravity. We observed that
multiscalar nature of this gravity theory allowed us to apply it to hybrid-type inflationary
model-building. Under the assumption that a waterfall field supports the inflaton potential,
we found that our model exhibits a large-field inflationary behavior, and is similar to Linde’s
chaotic model of the quartic order [25]. By using the observational data of WMAP satellite [2]
and the COBE normalization [29] we found two conditions, Eqs.(27) and (30), that should be
satisfied by the coefficients in the action. They severely restrict the parameter space of our
inflationary model. Notable point is that we are left with only a single free parameter with
the odd sign.

It is also found that the limit on the gravitational wave production r < 0.20 [2] together
with Eq.(25) almost fixes the number of e-folds N of our model to be eighty (when a central
value for the scalar spectral index ns = 0.963 is used). This is essentially due to the fact that
our potential, under a large-field approximation, is dominated by the quartic-order term in the
rescaled inflaton (17), which is widely known as a ‘creator’ of large gravitational waves. This
fact may indicate that we should treat our original potential (14) without any approximation,
and construct a more viable model that creates smaller gravitational waves. Exact analysis of
our potential may improve the situations. It may also happen that the inclusion of only the
linear factor in the �-operator is not sufficient to build a realistic model of inflation and we
may have to include more higher-order terms in d’Alembertian.
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The study of a cosmological perturbation theory [30] is of great importance. The PLANCK
satellite mission [31] is expected to remove the ambiguity in the primordial non-Gaussianity [32]
of cosmic perturbations. The WMAP gives two distinct conditions on the non-Gaussianity
parameter fNL [2]. The perturbation theory of our model is expected to give certain restrictions
on the parameter space, so that it will be possible to test our model soon.
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