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Abstract

In a Schwarzschild-de Sitter space, we consider an equipotential surface which consists

of two holographic screens. Adapting the Bousso-Hawking’s reference point of vanishing

force, we divide the space into two regions, which are from the reference point to each

holographic screen. These two regions can be treated as independent thermodynamical

systems, because the Bousso-Hawking reference point with zero temperature behaves like a

thermally insulating wall. The entropy obtained in this way agrees with the conventional

results; i) when the holographic screens lie at the black hole and cosmological horizons, ii)

in the Nariai limit.
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1 Introduction

Recently, much attention has been focused on the new idea suggested by Verlinde [1] in

which gravity can be explained as an emergent phenomenon originated from the statistical

properties of unknown microstructure of spacetime. The essential part of this idea is based

on two key ingredients: holographic principle and equipartition rule of the energy. With

help of these principles, the Newton’s law of gravity was derived by interpreting it as an

entropic force i.e., force on a test particle at some point was defined as the product of the

entropy gradient and the temperature at that point, and relativistic generalization leads

to the Einstein equations. This entropic formulation of gravity has been used to study

thermodynamics at the apparent horizon of the Friedmann-Robertson-Walker universe [2],

Friedmann equations [3, 4], entropic correction to Newtonian gravity [5, 6, 7], holographic

dark energy [8, 9, 10, 11]. There have been many works for the entropic force in cosmological

models [12, 13, 14, 15] and the black hole backgrounds [16, 17, 18, 19, 20, 21, 22, 23, 24].

In a spacetime admitting timelike killing vector one can define a gravitational potential,

and the holographic screen is given by equipotential surface. In general, the holographic

screen can have multiple disconnected parts depending upon the matter distribution. The

temperature on the holographic screen is given by Unruh-Verlinde temperature associated

with the proper acceleration of a particle near the screen. This prescription works well for

spacetime with a single holographic screen, however, there has been no known work for

multiple holographic screens so far.

On the other hand, the observational evidence for late-time cosmological acceleration [25,

26] gave much impetus on studying the de Sitter space with black holes. Since Schwarzschild-

de Sitter black hole is asymptotically de Sitter space, it has cosmological event horizon in

addition to black hole horizon and these horizons can form holographic screens. In fact,

the potential of Schwarzschild-de Sitter space has two equipotential surfaces for a given

potential value, and the two horizons correspond to equipotential surfaces. In this paper

we investigate the entropic formulation in the background geometry of the Schwarzschild-de

Sitter space, which provides a model for multiple holographic screens.

In the Verlinde’s formalism, two equipotential holographic screens in the Schwarzschild-

de Sitter space have different temperatures. Thus the whole system cannot be treated as a

thermodynamical system in equilibrium. In Ref. [27], Bousso and Hawking set up a refer-

ence point in the radial direction, at which force vanishes. They have pointed out that this

reference point can play a role of a point at infinity in an asymptotically flat space. Besides,

the temperature at this reference point is zero, and thus no thermal exchange can occur
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across this point. This makes the reference point behave like a thermally insulating wall.

Therefore, we can regard the Schwarzschild-de Sitter space as two thermally independent

systems: the inner system in the black hole side and the outer system in the cosmologi-

cal horizon side. Gibbons and Hawking also considered similar construction in a slightly

different context [28]: they constructed two separated thermal equilibrium systems by in-

troducing a perfectly reflecting wall in the Schwarzschild-de Sitter space for the calculation

of the Hawking temperatures of black hole and cosmological horizons.

Based on the above consideration, we apply the Verlinde’s formalism to each system.

In the Schwarzschild-de Sitter case we choose the holographic screen of equipotential sur-

face having spherical symmetry. With this choice of holographic screen we show that the

thermodynamic relationship E = 2TS holds for each holographic screen, where E, T , and

S are the quasilocal energy given by Komar mass, temperature, and entropy, respectively.

We then check this result with the known cases: i) when the holographic screens lie at the

black hole and cosmological horizons, ii) in the Nariai limit.

In the following section, we briefly review the Verlinde’s formalism of entropic ap-

proach to gravitational interaction. In section 3, we apply the Verlinde’s formalism to a

Schwarzschild-de Sitter space which provides a prototype of multiple holographic screens.

Finally, we summarize our results. In this paper, we adopt the convention c = kB = ~ = 1.

2 Verlinde’s entropic formalism

According to the Verlinde’s formalism [1], gravity is an entropic force emerging from coarse

graining process of information for a given energy distribution. In this process, information is

stored on holographic screens. In the nonrelativistic case, the holographic screens correspond

to Newtonian equipotential surfaces and the holographic direction is given by the gradient

of the potential.

In a curved spacetime with a timelike Killing vector ξµ, the generalized Newton’s poten-

tial is given by

φ =
1

2
ln(−ξµξµ). (1)

This potential can be used to define a foliation of space. For a particle with a four velocity

uµ, its proper acceleration is given by aµ = uν∇νu
µ. In terms of the potential φ and the

Killing vector ξµ, the velocity and the acceleration can be written as

uµ = e−φξµ, (2)

aµ = −∇µφ, (3)
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where the Killing equation has been used to derive Eq. (3). In Eq. (3), the acceleration is

normal to holographic screen. The Unruh-Verlinde temperature on the screen is defined as

T =
1

2π
eφnµ∇µφ, (4)

where nµ is the unit outward pointing vector normal to the screen and to the Killing vector.

The “outward” indicates that the potential increases along nµ, i.e., the normal vector can

be written as

nµ =
∇µφ√
∇νφ∇νφ

. (5)

In Eq. (4), a redshift factor eφ is inserted because the temperature is measured with respect

to the reference point. For asymptotically flat space this reference point corresponds to

spatial infinity. In the Schwarzschild-de Sitter case, we choose this reference point as the

Bousso-Hawking reference point [27] to be explained in the next section.

We denote the number of bits on the holographic screen S by N which is assumed to be

proportional to the area of the screen [1],

N =
A

G
. (6)

Applying the equipartition rule of the energy, each bit of holographic screen contributes an

energy T/2 to the system, and the total energy on the holographic screen can be written as

E =
1

2

∮
S
TdN. (7)

Note that in the above expression the temperature T on the screen is not constant in general.

Substituting Eqs. (4) and (6) into Eq. (7), the energy associated with the holographic screen

can be rewritten as

E =
1

4πG

∮
S
nµ∇µe

φdA. (8)

This expression is the conserved Komar mass associated with timelike Killing vector ξµ.

3 Schwarzschild-de Sitter black hole

Now, we consider a spherically symmetric Schwarzschild-de Sitter black hole as a model of

multiple holographic screens. The Schwarzschild-de Sitter space is described locally by the

line element,

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2(dθ2 + sin2 θ dϕ2), (9)

with

f(r) = 1− 2GM

r
− 1

3
Λr2, (10)
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Figure 1: The Schwarzschild-de Sitter space has the event horizon of the black hole at r = rb
and the cosmological event horizon at r = rc. At r = rg, the proper acceleration vanishes.
For a given potential value, there exist two screens at r = r1 and r = r2, and each screen
has different temperature. Note that the unit normal vectors on both screens direct to the
surface r = rg.

where G and M are the gravitational Newton’s constant and the mass parameter, respec-

tively, and the cosmological constant will be taken as Λ = 3/`2. When 0 < M < Mmax ≡
`/(32/3G) static region exists between two horizons with radii rb and rc, the black hole and

cosmological event horizons. For M = Mmax, the two horizons coincide, the Nariai limit. In

the Nariai limit, there exists no timelike Killing vector.

In order to get the potential of the Schwarzschild-de Sitter spacetime, we first consider

a timelike Killing vector of Eq. (9), given by

ξµ = γ (∂/∂t)µ , (11)

where γ is a normalization constant. If space is asymptotically flat, we may choose the

standard Killing vector normalization, γ = 1. Since Schwarzschild-de Sitter space is not

asymptotically flat, we encounter a difficulty in taking the normalization of Killing vector.

To avoid this, Bousso and Hawing [27] chose a normalization such that the norm of the

Killing vector becomes unity at the region where the force vanishes, the gravitational at-

traction is exactly balanced out by the cosmological repulsion. Adopting this normalization

corresponds to choosing a special observer who follows geodesics.

Since the magnitude of the acceleration of a particle in the Schwarzschild-de Sitter space-

time is obtained as a =
√
aµaµ = |f ′(r)|/

√
2f(r), the geodesic point with no acceleration is

given by

rg = (GM`2)1/3. (12)

With this normalization, the gravitational potential is obtained from Eq. (1),

φ =
1

2
ln(γ2f) =

1

2
ln
f(r)

f(rg)
. (13)
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Figure 2: We consider the force free reference point of Bousso and Hawking as a separating
boundary dividing the system into two subsystems. Since the temperature of each subsystem
is above zero and the boundary between them is maintained at zero, thermal exchange does
not occur between the two subsystems.

For a given potential value φs, there exist two equipotential surfaces at r = r1 and r = r2

as shown in Fig. 1. Then, the Unruh-Verlinde temperature on each screen is given by

T =
1

2π
eφnµ∇µφ = γ

|f ′(r)|
4π

, (14)

where the unit normal vector nµ is given by nµ = δµr
√
f for r < rg and nµ = −δµr

√
f for

r > rg. Note that the temperature of the holographic screen at r = r1 is different from that

of the screen at r = r2. The temperature on each screen is given by

Ti =
γ

2π

∣∣∣∣GMr2i − ri
`2

∣∣∣∣ , (15)

where i = 1, 2.

The temperature becomes zero at the Bousso-Hawking reference point r = rg from

Eq. (14). Now, assume that the region between the black hole and cosmological horizons is

separated by a boundary at the reference point r = rg as shown in Fig. 2. Then the two

regions divided by this boundary cannot have thermal exchange between them because the

temperature on this boundary is kept at zero always in our static geometry setup. Thus,

we can regard this boundary as a thermally insulating wall. Therefore, the two regions

separated by the surface at r = rg can be thought as independent systems: the total

system becomes the sum of two independent systems, the inner (r < rg) and outer (r > rg)

regions. The concept of thermally insulating wall in our consideration is similar to that of

perfectly reflecting wall in the Gibbons-Hawking’s work [28]: they constructed two separated

thermal equilibrium systems by introducing a perfectly reflecting wall in Schwarzschild-de
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Figure 3: The geodesic point with no acceleration is plotted by the dashed line. The metric
approaches the pure dS spacetime as the mass parameter of Schwarzschild-de Sitter space
goes to zero. (0 < M1 < M2 < M3 < Mmax)
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Figure 4: The geodesic point with no acceleration is plotted by the dashed line. The metric
approaches the Schwarzschild black hole as the cosmological constant Λ = 3/`2 goes to zero.
(`min < `1 < `2 < `3 <∞)

Sitter space for the calculation of the Hawking temperatures of black hole and cosmological

horizons.

This can be also understood as follows. The line element (9) approaches the pure de Sitter

spacetime when M goes to zero and the pattern of the metric for r > rg has a similarity

to that of the pure de Sitter spacetime (see Fig. 3). And the spacetime approaches the

Schwarzschild black hole with asymptotically flat spacetime when Λ goes to zero and the

pattern of the metric for r < rg has the similarity to that of the Schwarzschild black hole (see

Fig. 4). This suggests that the whole system has the characteristics of both Schwarzschild

black hole and pure de Sitter spacetime.

Plugging the potential (13) into the energy (8) gives the same result from the Komar

energy for the Schwarzschild-de Sitter black hole,

E =
1

4πG

∮
S
∇µξνσµnνdA, (16)

where σµ is the unit normal timelike vector perpendicular to the hypersurface surrounded
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by the screen S. Since σµ = −
√
f δtµ, the Komar energy (16) becomes

Ei = γ
r2i |f ′(ri)|

2G
= γ

∣∣∣∣M − r3i
G`2

∣∣∣∣ , (17)

for each screen at r = ri (i = 1, 2).

If the associated holographic entropy is given by

Si =
Ai
4G

=
πr2i
G
, (18)

then with Eqs. (15) and (17) the thermodynamic relation Ei = 2TiSi holds for each system.

This relation certainly holds for event horizons.1 When the spacetime is static and spheri-

cally symmetric, we can also get this relation directly from Eq. (7) with the relation (18),

since the temperature on the holographic screen is constant. Note that the thermodynamic

relation E = 2TS does not hold for the whole system, since the energy and entropy are

additive and the temperatures on the holographic screens are different.

Now, we check the validity of our formulation in two specific cases. First, we consider

the case when the holographic inner and outer screens become the event horizon of black

hole and the cosmological horizon, respectively. As the locations of the holographic screens,

r1 and r2, move to the two roots of f(r) = 0, rb and rc, as shown in Fig. 1, the inner

screen becomes the black hole event horizon and the outer one becomes the cosmological

event horizon. The temperatures on the screens seen by an observer located at the Bousso-

Hawking reference point are given by

Tb/c =
1√

1− (9G2M2Λ)1/3
1

4π

∣∣∣∣∣2GMr2b/c − 2Λrb/c
3

∣∣∣∣∣ . (19)

Since the system is composed of the sum of two independent systems, the total entropy

is given by the sum of the entropies of subsystems,

S = S1 + S2. (20)

In the present case, S1 and S2 correspond to the usual entropy of the black hole and cos-

mological horizons, respectively. And thus, our result agrees with the previously obtained

entropy of Schwarzschild-de Sitter space [28, 31, 32, 33, 34].

Next, we consider the case when the two event horizons, rb and rc, approach each other,

1 In Refs. [29, 30], it was shown that this relation holds when the equipartition rule of energy is assumed
for event horizons of stationary spacetimes.
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the Nariai limit [35]. In this case, the temperature and the energy on each horizon become

Ti −→ TNariai =

√
3

2π`
, (21)

Ei −→ ENariai =
√

3

(
M2`

G

)1/3

. (22)

In this limit, the entropy of each system becomes

Si −→
πr2g
G
. (23)

The total entropy is the sum of the two subsystems’, thus it is twice of the above given

entropy (23). This agrees with the entropy of the Schwarzschild-de Sitter black hole in the

Nariai limit obtained in Refs. [33, 34].

In summary, we apply the Verlinde’s entropic formalism of gravity to the Schwarzschild-

de Sitter space as a model of multiple holographic screens. Since the Unruh-Verlinde temper-

ature vanishes at the Bousso-Hawking reference point, we can regard two regions separated

by zero temperature barrier as thermodynamically isolated systems and thus independently

apply the entropic formalism to each region. We confirm that the Verlinde’s formalism

agrees with the conventional result at least in the following cases; i) when the holographic

screens become event horizons, ii) in the Nariai limit.
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