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An analogue of the Newton-Wigner position operator is defined for a massive neutral scalar
field in de Sitter space. The one-particle subspace of the theory, consisting of positive-energy
solutions of the Klein-Gordon equation selected by the Hadamard condition, is identified with an
irreducible representation of de Sitter group. Postulates of localizability analogous to those written
by Wightman for fields in Minkowski space are formulated on it, and a unique solution is shown to
exist. A simple expression for the time-evolution of the operator is presented.
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I. INTRODUCTION

The question of the existence and usefulness of a notion
of localization for quantum particles moving at relativis-
tic speed has a long history [1–4]. Although the idea of a
position measurement is one of the most intuitive ideas of
a quantum observable, there is no obvious mathematical
counterpart to it in the relativistic domain. The conflict
with intuition in such a fundamental subject is the main
motivation to work on this problem. But there are also
technical reasons for that. A quantum field theory is usu-
ally applied to the study of particle collision processes,
so one needs to understand how to interpret the theory
in terms of particles. The main question is how to assign
probabilities for the detection of the produced particles
in detectors placed at specific regions of space [5–8], what
amounts to defining a position probability distribution.
Besides that, there is the very fact that classical parti-
cles do exist, i.e., that a classical limit of the underlying
quantum theory exists which describes particles. A po-
sition operator is the natural tool to deal with this limit
[9, 10]. Now the current widespread interest in quantum
effects in curved spacetimes boosted by experimental and
theoretical discoveries in cosmology motivates the anal-
ysis of the problem of localizability in a more general
context. In particular, the present accelerated expansion
of the universe [11, 12] and the existence of an inflation-
ary epoch in the very early universe [13–15] suggest that
there should be eras in the beginning of the universe and
in the distant future when the geometry of the universe
is approximately a patch of de Sitter space, what justifies
our interest in this special geometry. Local effects of de
Sitter geometry on particle dynamics have been investi-
gated at the classical and quantum level [16–18].
In flat Minkowski space, an early solution to the prob-

lem was provided by the work of Newton and Wigner [1],
later reformulated in more rigorous terms by Wightman
[2]. It was proved that a natural set of postulates defines
a unique position operator, at least for massive fields.
But the operator found is frame-dependent, and alterna-
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tive covariant notions of localizability were put forward
since then [3, 4]. The interpretation of these operators
and the possibility of actually measuring them have been
discussed in the context of Quantum Field Theory in
terms of specific models of interaction between a detector
and the quantum field (see [19, 20]). Now, if the parti-
cle moves in a curved spacetime, little is known. There
are additional complications in the analysis, mainly due
to the existence of multiple vacua. In fact, the concept
of particle is not strictly necessary for Quantum Field
Theory in Curved Spacetimes — the general theory can
be formulated without introducing the notion of particles
[21]. Only in special circumstances it still makes sense
to speak of particles. In a flat Minkowski spacetime, for
instance, that is certainly true, and it is also natural that
in regions where the curvature is small one should be able
to speak of particle states — high-energy experiments are
actually performed in a slightly curved space, and parti-
cles are observed. However, there is no clear specification
of the necessary conditions for a particle interpretation
to be available.
We have studied the case of a neutral massive scalar

field in 2d de Sitter space, and have showed that a parti-
cle interpretation of this theory is possible. In de Sitter
space, it is possible to select a unique vacuum state — the
Bunch-Davies vacuum — by requiring physical states to
satisfy the Hadamard condition [22], which corresponds
to the requirement that the averaged energy-stress ten-
sor can be renormalized by a point-splitting prescription
[21]. There is a unique Fock representation asssociated
with the Bunch-Davies vacuum, on which we have writ-
ten localizability conditions analogous to those of [1, 2],
and a position operator which satisfies these conditions
was found. This operator is the natural analogue in de
Sitter space of the Newton-Wigner position operator.

II. THE QUANTIZED FIELD IN SPHERICAL

COORDINATES

A. Normal modes

The simplest way of looking at 2d de Sitter space dS2 is
to consider it a submanifold embedded in a 3d Minkowski
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space M3. Choosing a metric ηab = diag(1,−1,−1) for
M3, one has

dS2 = {X ∈M3 | X2 = XaXbgab = −α2} ,

where α > 0 is the de Sitter radius. The space so ob-
tained is a hyperboloid, with topology S × R. One may
think of it as a spatial circle evolving in time. The sym-
metry group is the de Sitter groupO(2, 1), i.e., the isome-
tries are Lorentz transformations in the ambient space.
Changing to the so-called spherical coordinates,

X0 = α sinh(t/α) ,

X1 = α cosh(t/α) cos θ ,

X2 = α cosh(t/α) sin θ ,

the geometry of dS2 is described by the metric coeffi-
cients:

g00 = 1 , g01 = 0 , g11 = −α2 cosh2(t/α) .

The volume density is
√−g = α cosh(t/α), and the

D’Alembertian is

� = ∂tt +
1

α
tanh(t/α)∂t −

1

α2 cosh2(t/α)
∂θθ .

The Klein-Gordon equation reads

(�− m2 + ξR

~2
)φ = 0 .

The scalar curvature is related to the de Sitter radius by
R = −2/α2. Put µ2 = m2 + ξR. After separation of
variables, the Klein-Gordon equation becomes

ψ′′ = −k2ψ ⇒ ψk(θ) =
1√
2π

eikθ , k ∈ Z ,

T ′′ +
1

α
tanh(t/α)T ′ +

(

µ2

~2
+

k2

α2 cosh2(t/α)

)

T = 0 .

In order to solve the time-dependence of the angular
momentum modes described by the index k, put x =
i sinh(t/α), and get:

(1− x2)
d2T

dx2
− 2x

dT

dx
+

[

−α
2µ2

~2
− k2

1− x2

]

T = 0 . (1)

This is an associated Legendre equation. The solutions
are associated Legendre functions P k

ν (x), Q
k
ν(x), with

ν(ν + 1) = −α2µ2/~2. The coefficient ν is given by

ν =
−1±

√

1− 4α2µ2/~2

2
. (2)

If µ2 is positive, then ν is either a real number in the
interval [−1, 0] or a complex number with real part equal
to −1/2 and some nonzero imaginary part. If µ2 = 0,
then ν = 0, 1. If it is negative, then ν assumes real
values.

We will first restrict to µ2 > 0. The squared mass
is always positive, so this restriction corresponds in fact
to not allowing a large negative coupling with the scalar
curvature. In this case, a nice pair of linearly independent
solutions of (1) is given by

T k
ν (i sinh(t/α)) , T k

ν (−i sinh(t/α)) ,

where

T k
ν (z) := e−ikπ/2P k

ν (z)θ(t) + eikπ/2P k
ν (z)θ(−t)

is the Legendre function in ‘Ferrer’s notation’ [23]. The
function T k

ν (z) is the analytic continuation of the Legen-
dre function (defined by a convergent series in |z−1| < 2)
to the complex plane cut along the real axis in the inter-
val [−1, 1]. It doesn’t matter which root ν of (2) is taken:
both give the same function (that follows from the sym-
metry T k

ν = T k
−ν−1).

The functions T k
ν (z) have the desired property that

[T k
ν (ix)]

∗ = T k
ν (−ix), i.e., the linearly independent solu-

tions are complex conjugate (see Appendix A). Positive-
energy solutions are identified with normal modes of the
form

uk(θ, t) ∝ eikθT k
ν (i sinh(t/α)) .

It must be checked that this choice is valid. Two out of
the three required conditions [21] were already checked:
(i) the space of solutions is decomposed in a direct sum
of positive and negative energy solutions; (ii) the com-
plex conjugate of a positive energy solution is a negative
energy solution. The third condition is that the positive
energy modes have a positive norm. The norm is defined
with the help of the invariant sesquilinear form

〈f |g〉 = ia(t)

∫

St

dθ(f∗∂tg − ∂tf
∗g) , (3)

where St is any spatial slice of constant time t, and
a(t) = α cosh(t/α) is the corresponding scale factor in
de Sitter space — the radius of the circle St. It is clear
why condition (ii) is required: positive and negative en-
ergy modes are then automatically orthogonal.
Let us check that the modes are orthogonal and have

positive norm (put now y = sinh(t/α)).

〈uk|ul〉 = −δkl2π cosh2(t/α)
[

T k
ν (−iy)T k ′

ν (iy) + c.c.
]

.

Invoke now the identity (from [23])

(1 − z2)

[

T k
ν (z)

d

dz
T k
ν (−z)−

d

dz
T k
ν (z)T

k
ν (−z)

]

=
2

γk
,

(4)
where γk ≡ Γ(−ν − k)Γ(ν − k + 1), and Γ is Euler’s
Gamma function, to get

〈uk|ul〉 = δkl
4π

γk
.
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Now we show that this number is positive for any k.
Consider first the case k = 0. Then

1

Γ(−ν)Γ(ν + 1)
=

sin[(ν + 1)π]

π
,

where ν is either a real number in the interval (−1, 0), or
a complex number of the form −1/2 + ix, x ∈ R. In the
first case, ν + 1 is in the interval (0, 1), so sin[(ν + 1)π]
is positive. In the second case, sin[(ν + 1)π] = cosh(πx),
positive too. For general k, first note that, for k positive,

1

γk
=

∏k
l=1(−ν − l)(ν − l + 1)

Γ(−ν)Γ(ν + 1)
=

∏k
l=1(α

2µ2 + l2 − l)

Γ(−ν)Γ(ν + 1)
.

It is clear that the product is positive (l2 ≥ l when l is
integer). A similar trick does the work for negative k.
Thus all norms positive, and the normalized states are

uk(t, θ) =

√

γk
2
T k
ν (i sinh(t/α))

eikθ√
2π

. (5)

Until now, we have restricted to µ2 > 0. In this
case, the index ν is either a real number or has the form
ν = −1/2 + iλ, with λ ∈ R. But solutions with a real ν
are purely real and not oscillatory, resembling little what
one expects from particle wavefunctions. Later we will
show that the dynamics of the position probability distri-
bution depends on how the phases of the normal modes
change with time, so that a purely real time-evolution
is not interesting for our purposes. Therefore, we take
ν = −1/2 + iλ in what follows, what is equivalent to
requiring µ > ~/2α. We will keep the index ν in the
Legendre functions, for convenience, but from now on we
restrict to these values. In this case, the space of solutions
of the wave equation corresponds to a representation of
the de Sitter group in the so-called principal series (the
continuous representations C0

q with q > 1/4 in [24]).

B. Canonical quantization and one-particle

subspace

After fixing the positive-energy modes of the classi-
cal field, canonical quantization in de Sitter space fol-
lows pretty much the same steps as in Minkowski space
[21, 25]. The quantized neutral massive scalar field is
expanded in the form

φ̂(t, θ) =
∞
∑

k=−∞

(akuk + a∗ku
∗
k) , (6)

where the uk are the chosen orthonormal modes, and the
coefficients ak, a

∗
k are annihilation and creation operators

satisfying the commutation relations

[ak, a
∗
l ] = δkl [ak, al] = [a∗k, a

∗
l ] = 0 .

The expansion in Eq. (6) can be seen as the analogue of
a momentum space representation of the field. A Fock

representation is obtained in the usual way: the vacuum
|Ω〉 is defined as the state annihilated by all annihila-
tion operators, ak|Ω〉 = 0, ∀k, and many-particle states
are created by the application of creation operators to
the vacuum. Of course, the choice of a specific set of
modes as the positive-energy solutions is not innocuous
— it is equivalent to the choice of a vacuum, as is well-
known. Our choice leads to the Bunch-Davies vacuum,
the unique representation selected by the Hadamard con-
dition [26]. An explicit evaluation of the two-point func-
tion is presented in Appendix B, and the result is the
same as obtained in [27], where flat coordinates are used.
The position operator will be defined in the one-

particle subspace of the theory; call it H. The vectors
φ ∈ H are normalized superpositions of positive-energy
solutions, and can be represented explicitly as

φ(t, θ) =
∑

k

φkuk(t, θ) ,
∑

k

|φk|2 = 1 , φk ∈ C .

(7)
The scalar product in H is simply 〈φ|ψ〉 = ∑

φ∗kψk. We
are going to think of the one-particle subspace as de-
scribing the quantum dynamics of a single relativistic
particle in de Sitter space, following the usual physical
interpretation of Fock space: φ(t, θ) will be the spacetime
representation of the wavefunction associated with the
particle. Some problems with this interpretation might
be expected — it has been repeatedly remarked that the
concept of a particle for quantum fields in curved space-
times is not well-defined. Nevertheless, it is just as clear
that there are situations where a particle-like behavior
is evident. As remarked in [28], particle physics experi-
ments are actually performed in a curved spacetime, and
we do see particle tracks in experiments. To understand
how to deal with a quantum field theory in a curved
spacetime under circumstances where a particle-like be-
havior is possible is one of the purposes of this paper.

C. Group action on the space of positive-energy

solutions

The spaceH of positive-energy solutions was described
in a given system of spherical coordinates (t, θ), but there
is a whole family of systems (t′, θ′) related by isometries
in the de Sitter group O(2, 1). We want to prove that the
definition of H is coordinate-independent, i.e., that the
choice of positive-energy modes fixed by the Hadamard
condition is preserved by the action of the group, as well
as to find out how the group acts on these modes. Any
element of O(2, 1) is the product of an element of the

restricted de Sitter group O(2, 1)↑+ of Lorentz transfor-
mations of determinant 1 which do not reverse the direc-
tion of time, and possibly parity P and time reversal T.
Next we describe the action of the generators of Lorentz
transformations and discrete symmetries in H.
There are three linearly independent generators in the

algebra of O(2, 1), which may be taken as the infinites-
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imal boosts along the rectangular axes, N1t and N2t,
and the generator of rotations, N12. The question is
how these transformations act on the modes defined in
Eq. (5). The case of rotations is quite simple. A trans-
formation U12(φ) = exp(φN12) which rotates the space
by an angle φ changes angles in spherical coordinates ac-
cording to θ 7→ θ − φ, while the coordinate t remains
unaffected. The generator of rotations is N12 = −∂/∂θ.
Its action on the basis vectors is just N12 uk = −ik uk,
i.e., the basis {uk} is that of the eigenvectors of the Her-
mitian operator iN12.
Now consider the case of N1t. Since Lorentz transfor-

mations are naturally described in the flat coordinates
of the ambient Minkowski space M , let us describe the
modes uk in the same coordinates:

uk =

√

γk
4π

T k
ν (−iX0/α)

(X1 + iX2)k

[α2 + (X0)2]k/2
.

An infinitesimal Lorentz transformation along the axis
X1 is given by

(X0)′ = X0 + λX1 ,

(X1)′ = X1 + λX0 ,

(X2)′ = X2 ,

where λ is the infinitesimal parameter of the transforma-
tion (the transformation is Lorentz to first order in λ).
Thus the variation of uk is

N1t uk =
∂uk
∂X0

(−X1) +
∂uk
∂X1

(−X0) .

A similar equation holds for boosts along the axis X2.
Evaluating the derivatives and using a few relations be-
tween Legendre functions from [23], one finds that the
action of the generators of de Sitter group is

N12uk = −ikuk ,

N1tuk = − i

2
|ν + k|uk−1 −

i

2
|ν − k|uk+1 , (8)

N2tuk =
1

2
|ν + k|uk−1 −

1

2
|ν − k|uk+1 .

These equations show the space H of positive-energy so-
lutions is closed under the action of the infinitesimal gen-

erators. Thus H is a representation space for O(2, 1)↑+,
the action of a Lorentz transformation L on a wavefunc-
tion φ(x) ∈ H being given by φ(x) 7→ φ(L−1x). The
Casimir operator which characterizes the irreducible rep-
resentations is C = N2

12−N2
1t−N2

2t, and is easily verified
to be C = −ν(ν + 1) for the above expressions.
Now let us introduce the discrete symmetries of parity

P and time-reversal T. We represent parity as the rever-
sal of the axis X2 in the ambient Minkowski space. Then
parity just reverses the sign of the angular coordinate of
a wavefunction in H, Pφ(t, θ) = φ(t,−θ). In particular,
for the basis vectors uk, one may use the identity

√
γk T

k
ν (z) =

√
γ−k T

−k
ν (z) (9)

(which is proved using the inversion formula for gamma
functions and Eq. (A2)), in order to get

Puk = u−k . (10)

The action of T has a particularity connected with the
restriction to the space of positive-energy states. The ge-
ometrical realization of the transformation is the reversal
of the time coordinate in the ambient Minkowski space.
But this cannot be represented as φ(t, θ) 7→ φ(−t, θ),
since the result is a negative-energy state. In order that
the transformation is closed in H, we take the anti-
unitary representation Tφ(t, θ) = φ∗(−t, θ). But then
the action of the operator on modes uk is the same as
that of parity, with the difference that the action is anti-
linear,

Tuk = u−k (anti-linear) . (11)

III. NEWTON-WIGNER LOCALIZATION

A. Definition of the localization system

The notion of localization of relativistic particles in
Minkowski space provided by the Newton-Wigner (NW)
position operator was introduced in [1]. In that paper, a
list of properties is postulated, which are assumed to hold
for any reasonable relativistic position operator, and it is
proved that there is a unique operator satisfying them.
A more direct way to understand this position operator
is described in [29]. Let us review the basic argument.
Consider a massive scalar field in Minkowski space. The
one-particle subspace of the theory consists of vectors
φ(p) ∈ L2(R, dp/ω), with ω =

√

p2 +m2, i.e., the scalar
product is

〈φ|ψ〉 =
∫

dp

ω
φ∗(p)ψ(p) .

Now absorb a factor
√
ω in each wavefunction: i.e., con-

sider the unitary transformation Mω : L2(R, dp/ω) →
L2(R, dp), whose action is φ(p) 7→ φNW (p) = φ(p)/

√
ω.

Then introduce a unitary operator of time-evolution Ut :
L2(R, dp) → L2(R, dp), represented by the transforma-
tion φNW (p) 7→ (Ut φNW )(p) = exp(−iωt/~)φNW (p).
Finally, Fourier transform the result in order to get a
spatial representation,

φNW (t, x) =
1√
2π

∫

dp eipx/~e−iωt/~ φNW (p) .

That gives the Newton-Wigner wavefunction. The prob-
ability density that the particle is detected at the point
x in time t is P (t, x) = |φNW (t, x)|2. The position oper-
ator itself, at time t, is the multiplication operator in the
spatial representation at the same time,

(qtφ)NW (t, x) = xφNW (t, x) .



5

Some difficulties show up if one tries to repeat the same
steps in the case of de Sitter space. First, there is no
canonical definition of a momentum space representation.
We overcome this problem by looking at the mode expan-
sion as a convenient (for our purposes) de Sitter analogue
of the Fourier transform. It is clear that a mode ex-
pansion is a coordinate dependent concept, therefore the
resulting position operator will depend on the choice of
coordinates. But even in Minkowski space, the Newton-
Wigner operator is not a covariant object: there is a dis-
tinct operator associated with each reference frame. The
problem found in Minkowski space is just carried over
into de Sitter space, and we do not attempt to solve it
here.
The second point is the absence of a time-translation

isometry in dS2, what makes the time-evolution of indi-
vidual modes much more complicated than in Minkowski
space. Two aspects are relevant here: there is no definite
frequency ωk associated with each mode, so that time-
evolution in momentum space is not just multiplication
by varying phases exp(−iωt/~) as before; and the oscil-
lation of the field goes on together with a damping of the
field amplitude, forced by the expansion of the universe
(for increasing |t|). We will see that these effects can be
isolated: the damping factor will be analogous to the fac-
tor

√
ω absorbed in the definition of the Newton-Wigner

wavefunction, while the oscillating phases will be respon-
sible for the time-evolution of the position operator.
Let us now proceed to the definition of the de Sitter

version of Newton-Wigner localization. Later we will in-
terpret the results drawing an analogy with the discussion
above. We assume that a localization system in de Sitter
space is:

I: A family of unitary transformations Wt : H → L2(S),
φ 7→ φNW (t, θ), where L2(S) is the Hilbert space
of square-integrable functions on the circle S;

II: If U12(α) ∈ SO(1, 2) is a rotation by an angle α, then
U12(α)φ 7→ φNW (t, θ − α);

III: Pφ 7→ φNW (t,−θ), and Tφ 7→ φ∗NW (−t, θ);

Let us discuss the intuitive content of the conditions
above.
The Newton-Wigner wavefunction φNW (t, θ) is inter-

preted, for each time t, as describing quantum amplitudes
for finding the particle at position θ. In other words, the
probability of finding the particle in a Lebesgue measur-
able set I is P (I) =

∫

I
|φNW (t, θ)|2dθ. Condition I corre-

sponds to the basic requirement that such a probability
distribution exists for each time t.
The second condition is that the Newton-Wigner rep-

resentation is well-behaved under rotations. A rotation
in de Sitter group, when seen from the Newton-Wigner
spatial representation, must rotate the probability am-
plitudes on the circle by the same angle. This condition
can be reformulated as WtU12(ϕ)W

∗
t = R(ϕ), where R

is the operator of rotation for square-integrable functions
on the circle.

Condition III is the requirement that the discrete sym-
metries of parity and time-reversal act as geometrical
transformations on the Newton-Wigner representations.
The complex conjugation in the time-reversal condition
is necessary because the image of an anti-unitary oper-
ator under a unitary equivalence must be anti-unitary
too. A quantum symmetry is in general defined up to a
phase, according to the celebrated Wigner’s theorem; we
are assuming here that the phases are equal to 1, avoiding
complications with the possibility of a projective repre-
sentation of the extended de Sitter group.
The consequences of the postulates can now be evalu-

ated. Let us start with condition II. For each t, a suitable
basis for L2(S) is that composed of eigenvectors of the
Hermitian generator of rotations. That is the same as de-
scribing the Newton-Wigner wavefunction in its Fourier
expanded form,

φNW (t, θ) =
∑

k

qk(t)
eikθ√
2π

,
∑

k

|qk(t)|2 = 1 ,

with qk ∈ C. Consider the vector uk ∈ H. The action
of a rotation U12(α) on it is to multiply the state by a
phase, U12(α)uk = exp(−ikα)uk. Since U12 is linear, the
same must be true for its image in L2(S):

Wt (U12(α)uk) = e−ikαWt(uk) ,

what implies

R(α)Wt(uk) = e−ikαWt(uk) . (12)

But then it must be

Wt(uk) = e−iϕk(t)
eikθ√
2π

, (13)

where ϕk(t) is some arbitrary phase. For, suppose the
space V of solutionsWt(uk) of Eq. (12) has more than one
dimension. Note that the action of the Hermitian genera-
tor J of rotations in V is multiplication by k. Then there
would be at least two orthogonal vectors with the same
eigenvalue k, what is impossible, since the eigenspaces of
J are not degenerate. Therefore V is one-dimensional,
the space of eigenvectors of J with eigenvalue k. Be-
cause the transformationWt is unitary, and uk has norm
1, there is just a phase freedom, what corresponds to
Eq. (13).
The action of parity in H is given by Eq. (10). The

first part of Postulate III, when applied to the general
form of the solution of Postulate II described in Eq. (13),
leads to

Wt(uk) =Wt(Pu−k) = e−iϕ−k(t)
eikθ√
2π

.

Comparing with Eq. (13), it follows that ϕk(t) = ϕ−k(t).
The action of time-reversal in H is given by Eq. (11).
The second part of Postulate III leads to

Wt(uk) =Wt(Tu−k) = eiϕ−k(−t) eikθ√
2π

,
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which, taken together with the previous conditions, cor-
responds to ϕk(t) = −ϕk(−t).
Let us see how the relations restrict the form of the

Newton-Wigner wavefunction. Put t = 0. Since ϕk(t) =
−ϕk(−t), it must be ϕk(0) = −ϕk(0) = 0. Thus the
transformation W0 is uniquely determined by conditions
I–III. The transformation is simply:

φ(t, θ) =
∑

k

φkuk(t, θ) 7→ φNW (0, θ) =
∑

k

φk
eikθ√
2π

.

(14)
The time-evolution described by Wt in Eq. (13) is re-
stricted, but not uniquely fixed by the axioms I—III. The
varying phases must satisfy: ϕk(t) = ϕ−k(t) (parity),
and ϕk(t) = −ϕk(−t) (time-reversal), but there remains
a lot of freedom after these conditions are imposed. Later
we will discuss possible choices for the dynamics, but first
we consider the transformation W0 in more detail.

B. The case of t = 0

The Newton-Wigner wavefunction at time t = 0 of
a state φ ∈ H is given by Eq. (14). We want to dis-
cuss now the closely related concept of localized states,
for which there is a natural definition when the localiz-
ability axioms are satisfied. These are the analogues in
de Sitter space of the Dirac delta functions δ(x − a) in
the configuration space of nonrelativistic quantum me-
chanics. The work of Newton and Wigner was written
in terms of localized states, as well as an earlier discus-
sion of localizability in de Sitter space [31], and we want
to translate our results to this language for the sake of
comparison with these works, and also because of the in-
tuitive appeal of the concept. But first we have to discuss
the relation between our representation of Sitter algebra
in the space of Hadamard solutions of the Klein-Gordon
equation, discussed in Section II C, and the more tradi-
tional representations described in Bargmann’s work [24].
That will give us access to formulae available in papers
devoted to Bargmann’s representations, and is also a nec-
essary step for us to compare our results with those of
[31], which are described in terms of such representations.
The principal series Bargmann representation onH′ :=

L2(S) is briefly reviewed in Appendix C. Let {|k〉} be
the basis of H′ composed of normalized eigenstates of the
generator of rotations, |k〉 = exp(ikθ)/

√
2π. The action

of de Sitter algebra in this basis is given by:

N12|k〉 = −ik|k〉 ,

N1t|k〉 =
ν + k

2
|k − 1〉+ ν − k

2
|k + 1〉 , (15)

N2t|k〉 = i
ν + k

2
|k − 1〉 − i

ν − k

2
|k + 1〉 ,

with ν = −1/2 + λi. These expressions are direct trans-
lations of Eqs. (C1) and (C2), discussed in more detail in
[31]. On the other hand, the representation of de Sitter

algebra in the spaceH of Hadamard solutions is described
explicitly in Eq. (8). Comparing the expressions, it can

be verified that a unitary equivalence U †
B : H′ → H is

given by |k〉 7→ χkuk, where χk is a complex number
defined by the recurrence relations:

χ0 = 1 , χk+1 = i
ν + k + 1

|ν + k + 1|χk .

The last relation is equivalent to

χk−1 = i
ν − k + 1

|ν − k + 1|χk .

These coefficients are, for k > 0,

χk = χ−k = ik
(

1
2 + iλ

) (

3
2 + iλ

)

. . .
(

k − 1
2 + iλ

)

∣

∣

(

1
2 + iλ

) (

3
2 + iλ

)

. . .
(

k − 1
2 + iλ

)∣

∣

,

(16)

with χ0 = 1. Let H(0)
NW := L2(S) denote the space of

Newton-Wigner wavefunctions at time t = 0, and build

the composition U
(0)
B := UB ◦W †

0 . This transformation
maps a NW-wavefunction to the corresponding state in
Bargmann’s representation. Choosing the basis {|k〉 =

exp(ikθ)/
√
2π} for H(0)

NW , it follows that W0 = 1, so that

U
(0)
B = UB. That is, a NW-wavefunction φNW (0, θ) =

∑

φk|k〉 corresponds to a vector φB(θ) =
∑

χ∗
kφk|k〉 in

Bargmann’s representation.
A natural way to introduce the notion of an improper

state ψ
(t′, θ′)
NW (t, θ) localized at position θ′ in time t′ is to

define it as a Dirac delta distribution in the correspond-
ing Newton-Wigner representation. From such definition
and Eq. (13) it follows that the coefficients of ψ(t′, θ′)(t, θ)
in H are

ψ
(t′, θ′)
k =

1

2π
eiϕk(t

′)e−ikθ′

. (17)

Let us compare these states with those of Philips and
Wigner discussed in [31]. For t = 0, all ϕk are zero.
Then a state ψ(0,π/2) localized at θ = π/2 and t = 0 has

coefficients ψ
(0,π/2)
k = (−i)k. But a Philips-Wigner state

localized at θ = π/2 at t = 0 has Fourier coefficients
lk in H′ given by Eq. (C5). That corresponds in H to

a state φ(0,π/2) with coefficients φ
(0,π/2)
k = lkχk. From

Eq. (16) and Eq. (C5), it follows that lkχk = (−i)k. The
result is the same as we found. Besides, both classes
of states behave in the same way under rotations. So
our definition of localized states allows one, for t = 0,
to recover the results of [31]. The time-evolution of the
position distributions is not discussed in [3]. Therefore,
the localization schemes agree at the instant of time when
both are well-defined.
Although the localized states are the same, there are

some technical simplifications and a conceptual clarifi-
cation that we would like to emphasize. Compare with
what happens in Minkowski space. The work of Newton
and Wigner was written in terms of distributions describ-
ing improper states localized at specific points. The re-
sults were latter reformulated by Wightman [2] in terms
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of projectors E(S) in a Hilbert space associated with ob-
servables describing the property of the particle being in
a region S of space. So the idea of localization at a point
was replaced by localization in a finite region. These ap-
proaches are essentially equivalent in Minkowski space:
the conditions used by Wightman were direct transla-
tions of the original conditions on distributions. In de
Sitter space, the work of Philips and Wigner follows the
original idea of looking for localized states, while we have
studied the analogue of Wightman’s localizability postu-
lates. It turns out that now these approaches require
distinct sets of basic axioms. In fact, one of the axioms
of [31] (Axiom (c) in Appendix C) is not necessary in our
approach, and can be discarded. Such simplification is
related to some peculiarities involving distribution theory
in compact spaces (see discussion in [31]), which would
lead to the existence of spurious solutions if not ruled out
by the extra axiom. These pathologies do not show up
when one works from the start with quantum amplitudes
in a space of square-integrable functions, describing prob-
abilities of detecting the particle in measurable regions,
as we have showed. We discuss this point further in Ap-
pendix C. We hope that our more compact set of axioms
may be of practical convenience in eventual applications.

A second remark concerns the connection between rep-
resentations of de Sitter group and wave equations in de
Sitter space. As widely known, the irreducible represen-
tations of de Sitter group were classified by Bargmann in
[24]. Yet, when one considers applications to quantum
field theory, it is natural to ask for an interpretation of
the representations in spaces of solutions of wave equa-
tions in de Sitter space. More than that, one wants to re-
strict to positive-energy solutions. Here we have used the
Hadamard condition in order to select a suitable space
of positive-energy solutions of the Klein-Gordon equa-
tion, and displayed such an interpretation for the prin-
cipal series representations. In so doing, we have iden-
tified the one-particle subspace of the quantized massive
scalar field theory with a particular (principal series) ir-
reducible representation of the de Sitter group. In an
intuitive sense, that identification provides a spacetime
representation for vectors in the more abstract (from a
physicist’s perspective) Bargmann’s representations: it
allows one to see these vectors as wavefunctions in de
Sitter space. In particular, it becomes possible to deter-
mine how the localized states are spread in spacetime,
i.e., Eq. (17) (remember that relativistic localized states
are not strictly localized, but “as localized as possible”
states.). This question could not be dealt with without a
prescription for the choice of the positive-energy states,
and was not investigated in [31].

In Minkowski space, if one wants to see how a localized
state defined in momentum space looks like in spacetime,
one just goes to configuration space, using the well-known
transformation φ(p) 7→ φ(x, t), the relativistic Fourier
transform. The result is a Hankel function, with an ex-
ponential decay for large spatial distances [1]. It might be
surprising, but so familiar a transformation has no natu-

ral analogue in curved spacetimes. A Bargmann’s repre-
sentation can be seen as a sort of ‘momentum represen-
tation’, but the transformation to configuration space —
that of wavefunctions in de Sitter space — is not unique:
it depends on the choice of a vacuum, or equivalently,
of the positive-energy states. That is, it is necessary to
combine purely group theoretical results with the mod-
ern specification of positive-energy states given by the
Hadamard condition in order to find the spacetime rep-
resentation of states of interest.

C. Time-evolution of the Newton-Wigner

wavefunction

The postulates I—III determine uniquely the form of
the Newton-Wigner wavefunction at time t = 0. They
also impose restrictions on the time-evolution of the
wavefunction, but do not fix it uniquely. In this sec-
tion we discuss a solution of these conditions, suggested
by an analogy with the definition of the position operator
in Minkowski space discussed in the beginning of Section
IIIA. It is natural that in generalizing structures defined
in Minkowski space to the context of curved spacetimes
some non-uniqueness might be met with. Nevertheless,
one would certainly like to restrict it as much as possible,
and in de Sitter space there is the advantage of dealing
with a maximally symmetric spacetime. We discuss later
in this section the possibility of using the group sym-
metry operations in de Sitter space in order to fix the
Newton-Wigner dynamics, but we will answer this ques-
tion in the negative, at least for a simple implementation
of these symmetries.
So let us describe a solution of the time-evolution Wt

of the Newton-Wigner wavefunction. Keep in mind the
discussion in Section IIIA. From Eq. (7) and the explicit
form of the normal modes given in Eq. (5), a generic state
in H can be written as

φ(t, θ) =
∑

k

φk

√

γk
2
T k
ν (i sinh(t/α))

eikθ√
2π

, (18)

with
∑

k |φk|2 = 1. The scalar product is given by
Eq. (3), which reduces to 〈φ|ψ〉 = ∑

φ∗kψk in this repre-
sentation. Now introduce

Nk(t) :=
1

γk |T k
ν (i sinh(t/α))|

2 ,

and

ϕk(t) := − arg
(

T k
ν (i sinh(t/α))

)

. (19)

Then define a time-dependent unitary transformationWt

given for each t by

φ(t, θ) 7→ φNW (t, θ) =
∑

k

φke
−iϕk(t)

eikθ√
2π

. (20)
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i.e., a factor [2Nk(t)]
−1/2 is absorbed in each coefficient

φk, and a time-evolution exp[−iϕk(t)] is associated with
each mode. The analogy with the definition of the posi-
tion operator in Minkowski space should be clear. The
absorption of the factor [Nk(t)]

−1/2 is a consequence
of Postulates I—III; what is added is the choice of the
phases ϕk(t) prescribed by Eq. (19). Note that for t = 0,
it follows from the identity [T k

ν (iy)]
∗ = T k

ν (−iy) proved
in Appendix A and Eq. (19) that ϕk(0) = 0. Substitut-
ing that in Eq. (20), we get the operator W0 displayed in
Eq. (14). So we have the right transformation at t = 0.
Moreover, it is easy to check that the Postulates I — III
are satisfied. It must be verified that ϕk(t) = ϕ−k(t)
(parity), and ϕk(t) = −ϕk(−t) (time-reversal). But the
identity [T k

ν (i sinh(t/α))]
∗ = T k

ν (−i sinh(t/α)) together
with Eq. (19) imply that ϕk(t) = −ϕk(−t). And the
identity in Eq. (A2) shows that T−k

ν (z) and T k
ν (z) are

proportional, with a real proportionality factor, leading
to ϕk(t) = ϕ−k(t).
There is a simple physical interpretation for of the

prescribed choice of the phases ϕk(t). The Newton-
Wigner wavefunction at time t is described in Eq. (20)
as a square-integrable function on a circle of radius 1.
Its squared value gives the probability of finding the
particle in an infinitesimal interval of angles. But the
actual spatial radius of the corresponding time slice is
R = α cosh(t/α), so if one wants to get the probability

density in the spatial slice itself, a factor of
√
R must be

included, leading to

φ̃NW (t, θ) =
1

√

α cosh(t/α)

∑

k

φke
−iϕk(t)

eikθ√
2π

.

In this case, the transformation which defines φ̃NW (t, θ)
involves the absorption of a factor [2ωdS

k (t)]−1/2, with

ωdS
k (t) :=

1

γk |T k
ν (i sinh(t/α))|

2
α cosh(t/α)

, (21)

There is an interesting relation between the derivative of
the phases ϕk(t) and the factors ωdS

k (t). Pick Eq. (4) and
consider it on the imaginary axis, with z = iy. Divide it

by
∣

∣T k
ν (−iy)

∣

∣

2
= T k

ν (iy)T
k
ν (−iy):

−2

γk(1 + y2) |T k
ν (−iy)|

2 =

[

T k ′
ν (−iy)
T k
ν (−iy)

+
T k ′
ν (iy)

T k
ν (iy)

]

= 2Re

[

T k ′
ν (iy)

T k
ν (iy)

]

. (22)

The last identity follows from the fact that the derivative
of a Legendre function can be written as a (real) linear
combination of Legendre functions, which are complex
conjugated by the inversion iy → −iy. Taken together
with Eq. (19), that implies

ϕ′
k(t) = − 1

α
cosh(t/α)Re

[

T k ′
ν (i sinh(t/α))

T k
ν (i sinh(t/α)

]

,

what in turn, using Eq. (21) and Eq. (22), leads to

ϕ′
k(t) = ωdS

k (t) .

Therefore, the dynamics described by Eq. (20) corre-
sponds to that generated by normal modes k with a time-
dependent energy ωdS

k (t), with the time t = 0 represen-
tation fixed by Postulates I—III. In other words, we are
looking at Eq. (21) as a time-dependent dispersion rela-
tion giving the energy of a mode k as a function of time.
Now let us discuss the possibility of deriving the dy-

namics of the NW-wavefunction from the action of the
de Sitter group on the NW-wavefunctions at time t = 0.
We are going to show that this idea does not work, at
least for what seems to us the most natural way of im-
plementing it. It is well-known that there is no time-
translation isometry in dS2. Thus there is no unitary op-
erator of time-translation associated with the symmetry
group, and the best one can do is to find a local notion
of time-evolution in terms of isometries. That can be
done in the following way. Let Unt(β) be a boost along
the direction n̂ at an angle θ′ with the axis X1. These
boosts move points (t, θ′) along their geodesics (with a
vanishing angular velocity), thus acting as time-evolution
operators, at least for points in the direction n̂. So there
is a distinct time-evolution operator associated with each
direction n̂. The quantum representation of this action
can be written in the form:

IV: If Unt(β) is a boost along the direction n̂ at an
angle θ′ with the axis X1, which sends the point
(t, θ′) to (t′, θ′) in dS2, then (Unt(β)φ)NW (t, θ′) =
f(t, t′)φNW (t′, θ′), where f(t, t′) is some real func-
tion.

What the condition above states is that the boosts which
generate the local time-evolution just carry probability
amplitudes along the related geodesics. The factor f(t, t′)
is introduced so that there is the possibility of normal-
izing the states related by the transformation. The in-
tended role of Condition IV is clear: it should fix the
form of the Newton-Wigner wavefunction for all times t
from the knowledge of the wavefunction at time t = 0,
according to:

φNW (t, θ′) = (Unt(β)φ)NW (0, θ′) ,

where Unt(β) is the boost which maps the point (0, θ′)
into (t, θ′).
There is a technical matter here: since we are working

with square-integrable functions, the value of a function
φNW (t, θ′) at a single point θ′ is not a well-defined quan-
tity — the so-called function is in fact an equivalence
class of functions which differ at some set of measure
zero. In order to avoid this problem, we require con-
dition IV to be valid only for smooth Newton-Wigner
functions, in which case the probability amplitude is well-
defined at each point. More precisely: we are trying to
find the unitary operator Wt from the knowledge of W0

and Postulate IV. Recall that Wt is a unitary operator,
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Wt : H → L2(S). Thus it is a bounded transformation,
and as a consequence of that, continuous. But then it
is sufficient to determine its action in a dense subset of
H: the continuity of Wt fixes its action on the whole
space. We are taking as a suitable dense subset the set
of vectors in H whose images under W0 are smooth NW-
wavefunctions in L2(S).
The physical content of Postulate IV is perhaps clearer

when one looks at it from another point of view, that of
localized states. In this language, what is required is that
a state localized at (t, θ′) is sent by the boost Unt(β) to a
new localized state (up to a normalizing factor) situated
at the point (t′, θ′). This covariance postulate is meant
to emulate the corresponding fact in Minkowski space,
where the time-evolution operator maps localized states
in localized states.
Now let us prove that Postulate IV is incompatible

with Postulates I—III. Let φ ∈ H be such that its NW-
wavefunction φNW (0, θ) at t = 0 is a smooth function,
and let φNW (t, θ) = Wtφ be its NW-wavefunction for
some t. Write the dynamics in Fourier expanded form,

φNW (t, θ) =
∑

k

qk(t)
eikθ√
2π

. (23)

The general solution of Postulates I — III is given in
Eq. (13),

qk(t) = e−iϕk(t)qk(0) , (24)

where ϕk(t) is some by now undetermined phase (we are
not assuming here the prescription in Eq. (19)), restricted
only by ϕk(t) = ϕ−k(t), and ϕk(t) = −ϕk(−t). Let
β ∈ R be a parameter such that the boost U1t(β) along
the axis X1 sends the point (0, 0) to (t, 0) in de Sitter
space. Then, from postulate IV,

(U1t(β)φ)NW (0, 0) = f(t)φNW (t, 0) , (25)

where we have written f(t) instead of f(0, t), for short.
This identity must be valid for all t, in which case
β := β(t) is a function of t. Consider the case of
the normal modes, i.e., take φ = ul. In this case,
qk(t) = δkl exp[−iϕk(t)], where δ is the Kronecker delta.
The matrix elements of the operator U1t(β) can be writ-
ten as:

Dml(β) := [U1t(β)]ml =
∞
∑

j=0

βj

j!
〈m|(N1t)

j |l〉 . (26)

Then Eq. (25), taken together with Eq. (23), leads to

∑

m

Dml(β) = e−iϕk(t)f(t) . (27)

This relation must hold for all l, with the same f(t).
But then the modulus of the sum on the left side in the
above equation must be independent of l. Or, equiv-
alently, Mk(β) = Ml(β), with Ml(β) = |∑mDml(β)|2

(it will be easier to work with the squared modulus). A
power expansion forMk(β) can be written from Eq. (26).
If the identity Mk(β) = Ml(β) holds for all β, then all
terms in the expansion are independent of k. But that is
not true. Keeping terms up to second order in β, what
one gets is:

Mk(β) ≃ 1 +
β2

4
[2|(ν + k)(ν − k)|

−|(ν + k)(ν + k − 1)| − |(ν − k)(ν − k − 1)|] .

The value of this expression depends on k. Thus it is
impossible to satisfy the Postulate IV together with Pos-
tulates I—III.

IV. PERSPECTIVES

We have showed that a notion of localization exists for
massive neutral scalar fields in de Sitter space compatible
with the prescription for the choice of positive energy
modes encoded in the Hadamard condition. In de Sitter
space, this condition is equivalent to the choice of the
Bunch-Davies vacuum as the “physical vacuum” among
the family of α-vacua. Therefore, we have proved that
localizability is compatible with this choice of vacuum. A
natural question arises whether other choices of vacuum
are compatible or not with localizability. If they are not,
that would be another argument in favor of the Bunch-
Davies vacuum. We expect to investigate this problem
in a future work.

Another direction of research is related to the prob-
lem of understanding the classical limit of quantum field
theories in curved spacetimes. Following the general pro-
cedure for studying classical limits introduced by Hepp
in [9], we have proved in a previous work [10] that the
quantum theory of the free neutral massive scalar field in
Minkowski space has two distinct kinds of classical limits:
one of them describing a classical field theory, the other
one a classical particle dynamics. The Newton-Wigner
position operator is used in order to prove the existence
of the latter. We expect that the same problem can be in-
vestigated in de Sitter space along similar lines, with the
position probability distributions discussed herein play-
ing the role of the Newton-Wigner operator.
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Appendix A: Proof of [T k

ν (iy)]
∗ = T k

ν (−iy)

The functions T k
ν (z) are defined for |z−1| < 2 in terms

of hypergeometric functions by

T k
ν (z) :=

(1− z2)k/2Γ(ν + k + 1)

2kΓ(k + 1)Γ(ν − k + 1)
f(z) , (A1)

with

f(z) := F

(

−ν + k, ν + k + 1, k + 1;
1− z

2

)

.

Let us see what happens to the function under complex
conjugation. For k ≥ 0, the hypergeometric function can
be represented as a convergent power series in the radius
|z| < 1. The (j + 1)-th term in the expansion of f in
powers of (1− z)/2 has a coefficient of the form

∏j
l=0(−ν + k + l)(ν + k + 1 + l)

∏j
l=0(k + 1 + l)

.

The denominator is real, so ignore it. Recall that ν
is a root of the quadratic equation ν(ν + 1) = −α2µ2,
so whenever ν(ν + 1) makes an appearance, it is a real
number. It follows that every factor in the product is
real. Thus the power function has real coefficients, and
[f(z)]∗ = f(z∗).
Now, the gamma functions. The factor Γ(k+1) is real.

The part that matters is

Γ(ν + k + 1)

Γ(ν − k + 1)
= (ν+k)(ν+k−1) · · · (ν−k+2)(ν−k+1) .

This can be rewritten as

k−1
∏

l=0

(ν+k−l)(ν+1−k+l) =
k−1
∏

l=0

[ν(ν+1)−(k−l)2+(k−l)] ,

which is also real. Besides that, each factor in the
product is a negative number: ν(ν + 1) = −α2µ2, and
(k − l)2 ≥ (k − l), since k − l is an integer. Thus the
product is negative for odd k, and positive for even k.
This result will be needed somewhere else.
Finally, take z = iy, y ∈ R, and consider the factor

(1 − z2)k/2. Here one must be careful. The functions
T k
µ are defined with square roots cut along distinct lines:

the factor
√
1− z is cut along x > 1 on the real axis,

while the factor
√
1 + z has a cut along x < −1. With

these choices,
√

1− (ix)2 = |1+ iy|. Then it follows that

{[1 − (ix)2]k/2}∗ = [1 − (−ix)2]k/2, so that [T k
ν (iy)]

∗ =
T k
ν ((iy)

∗) = T k
ν (−iy), at least in the radius |z| < 1 and

for k ≥ 0.
In order to extend the result to the domain of T k

ν , in-
troduce an auxiliary analytic function [T k

ν (−x, y)]∗. This
function coincides with T k

ν (−z) along the imaginary axis
inside the radius |z| < 1. Moreover, both functions
are defined on the same domain: T k

ν (z) is single-valued
on a domain invariant both under inversion z → −z,

and inversion of the real part (x, y) → (−x, y). Thus
[T k

ν (−x, y)]∗ = T k
ν (−z). Restricting to the imaginary

axis, [T k
ν (iy)]

∗ = T k
ν (−iy). The result is extended to

negative k using the relation

T−k
ν (z) = (−1)k

Γ(ν − k + 1)

Γ(ν + k + 1)
T k
ν (z) . (A2)

It was already proved that the factor with the Γ’s is real.

Appendix B: Two-point function

The two-point function, G := 〈0|φ(t, θ), φ(t′, 0)|0〉, is
given by:

G =
∑

k

uk(t, θ)u
∗
k(t

′, 0)

=
∑

k

Γ(−ν − k)Γ(ν − k + 1)

4π
eikθT k

ν (iy)T
k
ν (−iy′)

=
1

4| sin νπ|
∑

k

(−)k
Γ(ν − k + 1)

Γ(ν + k + 1)
eikθT k

ν (iy)T
k
ν (−iy′),

with y = sinh(t/α). Call the sum in the last line S. Using
(A2), it can be written as

S =

0
∑

k=−∞

[

eikθT−k
ν (iy)T k

ν (−iy′)
]

− Tν(iy)Tν(−iy′)

+

∞
∑

k=0

[

eikθT k
ν (iy)T

−k
ν (−iy′)

]

= 2

∞
∑

k=0

cos(kθ)T k
ν (iy)T

−k
ν (−iy′)− Tν(iy)Tν(−iy′)

= 2

∞
∑

k=0

ǫk
Γ(ν − k + 1)

Γ(ν + k + 1)
cos(k(π − θ))T k

ν (iy)T
k
ν (−iy′) ,

where ǫk = 1−δk0/2, i.e., ǫk is 1 except for k = 0, when it
is 1/2. There is a nice summation theorem for Legendre
functions [23],

Pν

(

z1z2 +
√

1− z21

√

1− z22 cos θ

)

=

2
∞
∑

k=0

ǫk
Γ(ν − k + 1)

Γ(ν + k + 1)
cos(kθ)T k

ν (z1)T
k
ν (z2) ,

which leads to

S = Pν

(

yy′ −
√

1− (iy)2
√

1− (−iy′)2 cos θ
)

= Pν(Z) .

The argument in the function Pν(Z) can be written in
invariant form:

Z = sinh(t/α) sinh(t′/α)− cosh(t/α) cosh(t′/α) cos θ

= α−2X ·X ′ ,
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where X is the vector in the Minkowski space M3 corre-
sponding to the point (t, θ) in de Sitter space, while X ′

corresponds to the point (t′, 0). Collecting the calcula-
tions,

G = G(Z) =
1

4| sin(νπ)|Pν(Z) .

The Legendre function is singular at Z = −1, where a
cut begins which extends along the real axis to −∞. This
value has a simple geometric interpretation. Recall that
the causality relations on de Sitter hyperboloid are inher-
ited form the Minkowski ambient space: two points x, x′

are space (light,time) related if their corresponding vec-
tors are space (light,time)-like. In particular, light-like
related vectors satisfy (X −X ′)2 = 0 ⇒ X · X ′ = −α2,
so that Z = −1 in this case. In other words, the two-
point function is singular on the light cone. This property
is characteristic of the Bunch-Davies vacuum: any other
choice of modes would lead to an additional singularity
at the antipodal points of the light-cone. Besides that,
one can write the Legendre function in terms of a hyper-
geometric function to get

G(Z) =
1

4| sin(νπ)| F
(

ν + 1,−ν, 1; 1− Z

2

)

.

Compare with the original Bunch and Davies work [27].
In their notation, a coefficient µ is introduced:

µ =

√

1

4
− 2ξ −m2α2 ,

in terms of which our ν becomes ν = −1/2 + µ. It is
easy to check this relation. Our definition (2) of ν can
be rewritten using R = −2/α2 as

ν = −1

2
±
√

1

4
− 2ξ −m2α2 .

Moreover, sin(νπ) = sin((−1/2 + µ)π) = (−1) cos(µπ),
where µ ∈ (−1/2, 1/2) or is purely imaginary, so that
cos(µπ) is positive either way. Thus

G(Z) =
1

4
sec(µπ)F

(

ν + 1,−ν, 1; 1− Z

2

)

.

That is just the expression in Eq. (2.13) for the two-point
function in [27].

Appendix C: Philips and Wigner localized states

Our work has a close relation with that of Philips and
Wigner [31], so here we present a brief review of their
little known article. Their purpose was to investigate
how the existence of localized states is related to the
condition of positivity of the energy. But it was not
known at that time how to define positive energy states
in curved spaces, so in order to check the sign of the

energy of a given state it was necessary to study the
limit where the geometry of de Sitter approached that of
Minkowski space, what was done invoking a contraction
of the group representation. Although the problem re-
mains unsolved in general, it is now known that, at least
in the case of spacetimes with a compact Cauchy surface,
the Hadamard condition is sufficient to fix the ambiguity
in the choice of the positive energy solutions [21].
Let us describe the unitary representation of the de

Sitter group used in [31]. We restrict to the case of
O(2, 1) which is relevant here. Let H′ be the set of
square-integrable functions ψ(θ) on the unitary circle S
on the Euclidean plane R2. Extend these functions to
the whole plane: ψ(θ) 7→ f(ρ)ψ(θ), where ρ is the ra-

dius ρ =
√

(X1)2 + (X2)2, and f(ρ) is a fixed function,
smooth and square-integrable on the plane. Rotations
are realized as rotations on the circle, i.e.,

N12 = −∂/∂θ , (C1)

and infinitesimal boosts are represented by

N1t = − sin θ
∂

∂θ
+ ν cos θ ,

N2t = cos θ
∂

∂θ
+ ν sin θ , (C2)

where ν = −1/2 + iλ. The generators can be integrated
to give finite boosts and rotations, so that there are uni-
tary operators U(S) corresponding to each element S of
the restricted de Sitter group. The parity operator P,
understood as the representation of the geometric opera-
tion p of reversing the axis X1 in the ambient Minkowski
space, must satisfy the group relations up to some pro-
jective factor,

PU(S) = ω(S)U(pSp)P ,

where S is any Lorentz transformation in the restricted
de Sitter group. But it can be proved that ω(S) = 1, and
that

Pψ(X1, X2) = ±ψ(−X1, X2) ,

where the choice of the sign must be the same for all ψ.
This choice is physically irrelevant, so just pick the sign
+1. For the time-reversal operatorT, the group relations
lead to essentially two possibilities, corresponding to a
unitary Tu or an anti-unitary Ta, given by

Tuψ(X
1, X2) = ±ψ(−X1,−X2) ,

and

Taψ(θ) =

∫

K(θ − θ′)ψ∗(θ′)dθ′ , (C3)

where the kernel K is given in Fourier expanded form by

K(θ − θ′) =
∑

ake
ik(θ−θ′) ,

ak+1

ak
= −

1
2 + k − iλ
1
2 + k + iλ

,

(C4)
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with a0 = 1/(2π). The coefficients automatically satisfy
ak = a−k. In order that Ta is uniquely defined, it is
assumed that T2 = 1 (it could be −1), and that TP =
PT (there could be a phase difference).

The definition of the localized states is based on a set
of three postulates, which represent the de Sitter version
of the postulates of Newton and Wigner adopted in the
case of Minkowski space [1]. The postulates are:

(a): A localized state is invariant under reflections that
leave the point of localization invariant.

(b): A rotation applied to a localized state gives a new
localized state — the point of localization is just
rotated accordingly.

(c): A boost which keeps the point of localization invari-
ant changes the state as little as possible.

The first result is that the postulates cannot be satis-
fied with a unitary time-reversal operator. Thus the ex-
istence of localized states implies that T is anti-unitary
— it must be the Ta defined in Eqs. (C3), (C4). In this
case, the postulates are satisfied by two distinct sets of
localized states.

Consider a state ψ1(θ) localized at θ = π/2 at t =
0. It must be invariant under parity and time-reversal.
Writing a Fourier expansion

ψ1(θ) =
∑

lke
ikθ ,

invariance under parity implies

l−k = (−1)klk ,

while invariance under time-reversal leads to

2πakl
∗
−k = lk .

Combining these results, and using (C4), it follows that

lk+1

lk
= ζk+1/2

1
2 + k − iλ

[

(12 + k)2 + λ2
]1/2

,

where the ζ’s are real numbers satisfying

ζk+1/2ζ−k−1/2 = 1 .

Then condition (b), together with (c), which reduces here
to minimal deformation under boosts along X1, fixes ζ =
1 or ζ = −1. The first possibility is ruled out by looking
what happens in the contraction of the de Sitter group
representation to a representation of the inhomogeneous
Lorentz group. The choice ζ = 1 corresponds to a state
of negative-energy in Minkowski space in this limit. So it
must be ζ = −1. The Fourier coefficients of ψ1 are then
completely determined, being given by (k > 0),

lk = (−1)k
(

1
2 − iλ

) (

3
2 − iλ

)

. . .
(

k − 1
2 − iλ

)

∣

∣

(

1
2 − iλ

) (

3
2 − iλ

)

. . .
(

k − 1
2 − iλ

)
∣

∣

,

l0 = 1 (C5)

l−k = (−1)k
(

− 1
2 + iλ

) (

− 3
2 + iλ

)

. . .
(

−k + 1
2 + iλ

)

∣

∣

(

− 1
2 + iλ

) (

− 3
2 + iλ

)

. . .
(

−k + 1
2 + iλ

)∣

∣

.

States localized at other angles are obtained with the
application of rotations.
It is curious that in this approach the condition (b)

that localized states are well-behaved under rotations is
not as important as its counterpart in Minkowski space.
It is necessary to supplement it here with the auxiliary
condition (c), which has a more obscure interpretation
— it is not an invariance condition, nor a mapping of
one localized state into another, corresponding to the ge-
ometrical action. What one would really like to require
was that the boost kept the state invariant; since that is
impossible, the condition is relaxed to that of minimal de-
formation. In our approach, this axiom is not necessary,
and the axiom of covariance under rotations is restored
to its central position.
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