
ar
X

iv
:1

01
1.

12
06

v1
  [

he
p-

th
] 

 4
 N

ov
 2

01
0

Lorentz-preserving fields in Lorentz-violating theories

Oindrila Ganguly∗and Debashis Gangopadhyay†

S. N. Bose National Centre for Basic Sciences, Kolkata 700098, India

and
Parthasarathi Majumdar‡

Saha Institute of Nuclear Physics, Kolkata 700064, India

November 5, 2010

Abstract

We identify a fairly general class of field configurations (of spins 0, 12 and 1)
which preserve Lorentz invariance in effective field theories of Lorentz violation
characterized by a constant timelike vector. These fields concomitantly satisfy the
equations of motion yielding cubic dispersion relations similar to those found earlier.
They appear to have prospective applications in inflationary scenarios.

Invariance under Lorentz transformation is known till date to be a global symmetry
of the standard theory of elementary particles when gravitation is ignored. However,
questions have been raised regarding the validity of this symmetry at small length scales
owing to probable quantum gravity effects. The natural mass scale of quantum gravity
is the Planck mass MP l. Departures, suppressed by the Planck mass, from the standard
special relativistic dispersion relation of free particles of mass m at large energies have
been accepted as a signature of Lorentz invariance violation and has been the principal
objet de l’attention of experimental and theoretical probes of Lorentz violation. These hy-
pothesised corrections due to Lorentz non-invariance must have their origin in new terms
in the action of the system. Myers and Pospelov [1] have studied this issue within the
framework of effective field theory involving fields of spins 0, 1/2 and 1, by incorporating
into the action dimension five operators containing a constant timelike 4-vector n which
ostensibly breaks Lorentz invariance. Choosing a Lorentz frame where nµ = (1,~0), cor-
rections of O(p3) to the dispersion relation of each of the three fields have been obtained
in [1] in the limit of relatively high energies E (MP l >> E >> m).
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For a complex scalar field this is given by

ω2 ≃ |~p|2 +
κ

MP l

|~p|3. (1)

For the Maxwell field, the dispersion relation obtained takes the form (for circularly
polarized photons)

(ω2 − |~p|2 ±
2ξ

MP l

|~p|3)(ǫx ± iǫy) = 0. (2)

In the case of a Dirac spinor one gets,

ω2 − |~p|2 −
2|~p|3

MPL

(η1 + η2γ5) = 0. (3)

Many experiments aimed at constraining the parameters κ, ξ, η1, η2 quantifying
Lorentz violation have been proposed in the past few years. Lorentz violating effects
scale with energy making astrophysical observations a perfect arena for detecting them.
The simplest astrophysical observations that provide interesting constraints on lack of
Lorentz symmetry at Planck scale measure the differences in arrival times of photons
emitted simultaneously from distant sources of radiation like γ-ray bursts, active galactic
nuclei and pulsars [2], [3], [4]. The authors of [5] found the strongest limits on ξ of ξ < 47
by observing a strong flare in the TeV band of active galactic nuclei Markarian 501. The
lowest order corrections in the photon dispersion relation (2) also imply the birefringence
of vacuum (different group velocities for different helicities of photons). In 2008, Maccione
et al. [6] used polarimetric observations of hard x-ray from the Crab nebula to impose
a bound on Lorentz violation in quantum electrodynamics of |ξ| < 9 × 10−10 at 95%
confidence level.

Complementary constraints have also been obtained from the threshold reactions of
photon decay, fermion pair emission, synchrotron radiation, vacuum Cerenkov radiation
and helicity changing decays. In [7], the authors analyzed synchrotron radiation from the
Crab nebula to deduce η > −7× 10−8. Observational details and their phenomenological
consequences have been exhaustively discussed in [8], [9], [10].

It is clear that the deformed dispersion relation has been the object of extensive
observational scrutiny of departure from Lorentz invariance. Does it unequivocally imply
Lorentz violation? We explore here the possibility that special field configurations exist for
which the apparently Lorentz symmetry violating theory [1] may still be Lorentz invariant
analogous to what happens in magnetic monopole theory, as shown by Zwanziger in
[11]. In Zwanziger’s work, a local, manifestly anisotropic Lagrangian density has been
shown to preserve Lorentz invariance when the fields obey certain constraints. In this
paper we consider the Nöther current corresponding to Lorentz transformation for the
higher derivative theory of [1]. Requiring that this Nöther current is conserved leads to
special field configurations which conserve Lorentz symmetry, despite the presence of the
constant vector n. Identical configurations also appear when we demand that the action
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changes at most by a constant when the fields transform under an infinitesimal Lorentz
transformation while the 4-vector n stays fixed.

Spin 0 fields: The Lagrangian density for a complex scalar field φ put forth in [1] is,

LMPφ
= |∂φ|2 −m2|φ|2 +

iκ

MP l

φ∗∂3nφ, (4)

with κ being a real, dimensionless parameter. The Nöther current corresponding to
Lorentz transformations has the spacetime divergence given by

∂µJ
µ
αβ = −

∂LMPφ

∂nλ
(δnλ)αβ = n[α

∂LMPφ

∂nβ]
. (5)

If Lorentz transformations are symmetries of the Lagrangian (4), we must have ∂µJ
µ
αβ =

0 = n[α
∂LMP

∂nβ] . Requiring this yields the condition

n[α∂β]∂
2
nΦ = 0.

A possible non-trivial solution is,

∂2nφ = f(x.n) = f(z) (6)

where z ≡ x.n. This condition involves the derivative only along the direction n in
spacetime. It is convenient in flat spacetime to resolve the coordinate 4-vector along
n : xµ = (z/n2)nµ + xµ⊥ where n · x⊥ = 0. It is straightforward to show that

∂nφ(x) = n2∂zφ(z, x⊥) . (7)

This implies in its turn

φ(x) = φ‖(z) + φ⊥(x⊥) (8)

where, φ‖ and φ⊥ are arbitrary functions of their arguments. If n is timelike, we can choose
coordinates such that x0 lies along n. Then our condition (8) implies that when the full
scalar field is a linear combination of a time-dependent, spatially homogeneous piece and
a static spatially inhomogeneous piece, the theory will possess Lorentz symmetry.

Maxwell (spin 1) field : In this case, the usual kinetic term of the free Maxwell field
and a dimension five, n dependent operator constitute the modified Lagrangian density
proposed in [1],

S =

∫

d4x

[

−
1

4
FµνF

µν +
ξ

MP l

nµFµνn
α∂αnρF̃

ρν

]

(9)

where ξ is a dimensionless parameter constraining Lorentz violation. For convenience, we
define nµFµν ≡ Fnν , nρF̃

ρν = F̃ nν . Directly studying the variation of the action or the
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divergence of the Nöther current of Lorentz transformation in parallel with the argument
given in case of the scalar field, the condition for the theory to be Lorentz invariant is,

n[αFβ]ν∂nF̃
nν + Fnνn[α∂β]F̃

nν + F nν∂nn[αF̃β]ν = 0 . (10)

The last term is always zero because F nν∂nn[αF̃β]ν = F nν∂nn[αǫβ]νλσF
λσ contains a fifth

rank completely antisymmetric tensor (F̃ µν = 1
2
ǫµνλσFλσ) in four spacetime dimensions.

We transform to the Lorentz frame defined by n = (1,~0), to get a better physical
picture of the problem in terms of electric and magnetic field 3-vectors identified as Ei =
F0i =

1
2
ǫlmiF̃lm, Bi = F̃0i = −1

2
ǫijkFjk where we have used ǫ0ijk = ǫijk. The condition for

Lorentz invariance becomes,

ǫijm∂0BjBm −Ej∂iBj = 0 (11)

~̇B × ~B − ~∇ ~B · ~E = 0 (12)

It is easy to see that if the fields are harmonic functions of spacetime as

~E = Re(~E0exp(−iwt + i~k · ~x)) (13)

~B = Re( ~B0exp(−iwt + i~k · ~x)) (14)

they satisfy (12) when the relation ~E · ~B = 0 (deduced from Bianchi identity) is incorpo-
rated. This ensures that it is possible to have Lorentz symmetric electromagnetic fields
in the modified electrodynamics of [1].

Spin 1
2
field : In [1], the action describing a Dirac spinor has been modified to,

S =

∫

d4x ψ[(iγ.∂ −m)ψ +
γ.n

MP l

(η1 + η2γ5)∂
2
n
ψ]

≡ SD + SVD
, (15)

where SD is the standard Dirac action of a spinor field ψ and SVD
accounts for Lorentz

violation. The dimensionless parameters η1, η2 give the measure of Lorentz violation.
The only source of Lorentz violation is, by assumption, the appearance of the constant

4-vector n in SV . Thus, there are no constant vectors in the theory independent of n. It
is straightforward to show that, under an infinitesimal Lorentz transformation, the action
S changes by,

δαβSV =
1

MP l

∫

d4x ψ{n[αγβ](η1 + η2γ5)∂
2
n
ψ

+ γ.n(η1 + η2γ5)n[α∂β]∂nψ (16)

If we set

∂nψ = χ(z) (17)
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where z = x.n, then the second term in (16) vanishes. After a partial integration (drop-
ping the surface term), the first term reduces to,

δαβSVD
=

1

MP l

−

∫

d4x
[

η1n[αχγβ]χ+ η2n[αχγβ]γ5χ
]

=
1

MP l

−

∫

d4x
[

η1n[αJβ](z) + η2n[αJ
5
β](z)

]

, (18)

where Jα(z) ≡ χγαχ, J
5
α(z) ≡ χγβ]γ5χ etc.

Now, one can decompose the currents J and J
5 as J =

(

n.J
n2

)

n+J⊥ and J
5 =

(

n.J5

n2

)

n+

J
5
⊥ where n.J⊥ = 0, n.J5

⊥ = 0. Inserting this decomposition into (18), it is clear that

δαβSV = −

∫

d4x
[

η1n[αJ⊥,β](z) + η2n[αJ
5
⊥,β](z)

]

, (19)

so that Lorentz violation now depends on the current 4-vectors J⊥ and J
5
⊥.

It should be noted, however, that these current 4-vectors are orthogonal to n and
are constants in the direction they point! If, for example, n is timelike, the currents J⊥

and J
5
⊥ must be spacelike and yet must be spatially homogeneous, being functions of z.

This makes them constant 4-vectors independent of n. Since, by assumption there are no
constant 4-vectors in the problem apart from n, these currents must vanish. As illustrated
for the scalar field, our condition ((17)) implies that,

ψ(x) = ψ‖(z) + ψ⊥(x⊥). (20)

In the preferred frame n = (1,~0), ψ‖(z) is a spatially homogeneous spinor whereas the
spinor ψ⊥(x⊥) is time independent.

Now that we have found non-trivial and quite general field configurations that make
the modified [1] scalar, vector and spinor theories Lorentz invariant, the next step will
entail calculating the dispersion relations obeyed by these special fields.

Scalar field : The scalar field φ(x) assumed to be given by (8) leads to the equation
of motion (2+m2)φ = iκ

MPl
∂3nφ to be written as

(∇2
⊥ +m2)φ⊥ = −[φ̈‖ +m2φ‖] +

iκ

M

...
φ‖ (21)

It is obvious that to make sense of (21) we must set both sides to a constant which we
choose to vanish for convenience. In the inertial frame defined earlier, by taking the simple
ansätz φ⊥ ∼ exp−ik⊥ ·x⊥ and φ‖ ∼ exp iEz, it is easy to see that the following equations
emerge

E2 = m2 +
κ

M
E3

k2⊥ = m2 (22)
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One can now eliminate m2 from these equations and use k⊥ = (0, ~k) to get the dispersion
relation,

E2 ≃ |~k|2 +
κ

MP l

|~k|3 (23)

which is same as the dispersion relation (1) computed in [1].
Vector field : The equations of motion obtained by the variation of the action (9) is

(derived in [12]),

∂µF
µν +

ξ

MP l

(

nρǫ
ρσµν∂µ∂nFnσ − ∂2nF̃

nν
)

= 0 (24)

The above equation and the Bianchi identity ∂[µFνρ] = 0 in the chosen reference frame
are equivalent to the following equations:

~∇ · ~E = 0 = ~∇ · ~B (25)

~∇× ~E = −∂t ~B (26)

− ~̇E + ~∇× ~B +
ξ

MP l

( ~̈B − ~∇× ~̇E) = 0 (27)

These are the modified free Maxwell equations. If we take the curl of both sides of (27),
simplify using the Bianchi identity (25), substitute the LI solution for the magnetic field

and assume k = (ω, 0, 0, k3), the dispersion relations at high energy ω ≃ |~k| are:

ω2 − |~k|2 ≃ ±
2ξ

MP l

| ~k⊥|
3. (28)

The plus and minus signs appear for right and left circularly polarised electromagnetic
waves respectively (BR,L = B1 ± iB2).

Spinor field : Likewise, the equation of motion of a spinor described by (15) is (2 +
m2)ψ = 2i

MPl
(η1 + η2γ5)∂

3
n
ψ. In the chosen Lorentz frame, if we take the spacetime

dependance of the fields in (20) to be ψ‖ ∼ exp(−iwt), ψ⊥ ∼ exp(−ik⊥ ·x⊥) = exp(i~k ·~x)
then the dispersion relation turns out to be,

ω2 ≃ |~k|2 +
2

MP l

(η1 + η2γ5)|~k|
3 (29)

when E ≃ |~k| >> m. In this limit of negligible mass, the spinor ψ(n) can be chirality
operator eigenstates and the dispersion relation can be rewritten in terms of ηR,L ≡ η1±η2
as ω2 ≃ |~k|2 + 2

MPl
ηR,L|~k|

3.
The similarity of the dispersion relations obtained here for the Lorentz invariant scalar,

vector and spinor fields to the modified dispersion relations (1), (2), (3) obtained in [1]
indicates that observation of a modified dispersion relation is not sufficient to guaran-
tee violation of Lorentz symmetry for all field configurations in the proposed effective
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field theories. These special Lorentz-preserving configurations enable the use of the en-
tire gamut of standard techniques when applied to analyse the effective field theories
in question. Furthermore, the configurations themselves have aspects of intrinsic inter-
est when one considers prospective application to cosmology as in inflationary scenarios.
The fact that there is a natural decomposition in Lorentz-preserving (scalar) fields be-
tween spatially homogeneous and inhomogeneous parts implies that while the former, in
a Friedmann-Robertson-Walker background spacetime, can play the role of the inflaton
field, the latter, acting as a perturbation on the former, may provide natural seeds for the
growth of inhomogeneities in a Lorentz symmetric manner.

The energy momentum tensor has the form Tµν = ∂µφ∂νφ − 1
2
ηµνLMPφ

. For fields of
the form (8), the energy density is given by

T00 =
1

2
φ̇‖

2
+

iκ

MP l

φ‖

...
φ‖ +

iκ

MP l

φ⊥

...
φ‖ +

1

2
(∇φ⊥)

2 (30)

The last two terms in the equation above can be interpreted as perturbations over the
homogeneous energy density of the field φ‖. The Lorentz-preserving perturbations due to
the field φ⊥(x⊥) ought to lead to growth of Lorentz invariant inhomogeneities in spacetime.
We hope to report on this in future.
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