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1. Introduction and Summary

Type II string theories admit, in addition to the usual BPS branes, non-BPS branes [1] in

its spectrum which are unstable due to the presence of the open string tachon. By now it

has been well understood that the dynamics of this open string tachyon can be described

by a Dirac-Born-Infeld (DBI) type of action which captures all the essential properties of

the tachyon field [2], [3], [4], [5], [6], [7]. For a comprehensive review and complete list

of references refer to [8]. The prefactor that appears in front of the Lagrangian density

is the tachyon potential. Not so long back, it was noticed that the open string tachyon

dynamics on the non-BPS brane has a geometric meaning in terms of the rolling of a BPS

D-brane in the vicinity of a stack of NS5-branes, the so-called geometric tachyon [9], [10].

This is nothing but the radial distance between the probe D-brane and the NS5-brane,

and the time dependent dynamics of this D-brane has shown to be astonishingly similar

to that of the open string tachyon dynamics. As the D-brane moves in the vicinity of the

gravitational potential produced by the NS5-brane 1, it pulls it towards its core and finally

it gets absorbed into the NS5-brane [9]. For the energy of the incoming D-brane E > τp,

the D-brane escapes to infinity and for E < τp, the D-brane will fall into the NS5-brane. 2

However, more recently, in [16] it was argued that for a particular value of energy

and angular momentum of the probe D-brane, the brane will lie in a metastable orbit and

revolve around the NS5-brane by keeping a certain distance from NS5-brane at all times. In

this limit of energy and angular momentum, the induced tachyon field on D-brane becomes

a massless field due to the constant tachyon potential and the D-brane becomes a stable

object. In this paper [16], this mechanism was well explained by constructing an classical

equivalent radial action involving angular momentum. It was argued that the NS5-brane

has no effecft on orbiting D-brane but the observer on the D-brane sees the change in

tension due to NS5-brane.

1the Harmonic function for a stack of NS5-branes goes like 1

r2

2Further studies on rolling branes into NS5-brane have been considered, for example, in [11], [12], [13],

[14], [15].
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In an attempt to understand the origin of this geometric tachyon in [17] the time

dependent dynamics of probe D-brane in the background of NS5-brane was explained in

terms of proper acceleration. It was proposed that the tachyonic instability is due to the

geodesic deviation caused by proper acceleration (which is formed due to the background

dilaton field). This idea has been further extended to the system of F-string falling into

the Dp-brane [18], even though there was no dilaton prefactor in the Nambo-Goto action

for F-string in Dp-brane background. It was found that the tachyonic instability in (F-

D5) system is due to the over all conformal factor of the induced metric on the F-string.

Perhaps, this was in the expected line as (F-D5) system is S-dual to the (D1-NS5) and

the later has a tachyonic instability due to the geometric tachyon. The resemblance of the

(F-D5) system with that of open string dynamics on the non-BPS brane, it is interesting

to study the F-string orbiting around the stack of Dp-branes. We shall study this system

in the present paper.

Furthermore, in a related paper [19] the dynamics of the M2-brane was studied near the

M5-brane background. As it is well known that M2-brane and M5-brane in 11-dimensions

can be reduced to D-branes or other branes in string theory by compactifying some direc-

tions and applying T-dualities. Both M2-branes and M5-branes are stable and preserving

some supersymmetries, but M2-brane in the vicinity of M5-brane breaks all supersymme-

tries. It was shown in [19] that the dynamics of M2-brane in the background of M5-brane

behaves similarly as that of D-brane in the vicinity of NS5-brane after compactifying one

of the transverse direction (x11) at a periodic interval of 2πR11 with limit 1 << r
R
, where

r is the radius of M5-brane along the transverse directions.

Motivated by the recent study of D-brane orbiting in NS5-brane background, we study

further examples of such motion in various string and M-theory backgrounds. As specified

earlier, the (F-Dp) system behaves in the same way as the open string tachyon condensation

on non-BPS brane, we study the dynamics of F-string in the orbiting limit around a stack

of D5-branes background. We find that when the angular momentum of the incoming

F-string is related to the string coupling (gs) and the string length (ls), the F-string will lie

in its metastable orbit keeping certain distance from the D5-brane. We further propose an

action for the F-string written in terms of the radial coordinate only which gives the same

equations of motion and conserved quantities but with a different tachyon-like potential

compared to the one proposed in [18]. Then we study the dynamics of a Dp′-brane in

the background of a stack of Dp-branes in the orbiting limit. 3 It so happens that only

the (D3 − D5) system shows a similar behavior in orbiting limit with non-zero angular

momentum.

Finally, we study the M2-brane dynamics in a stack of M5-branes background in orbit-

ing limit. We show that there exists a solution where the angular momentum is written in

terms of Planck length and the size of the eleven dimensional circle where the M2-brane will

lie in the metastable orbit and revolve around the M5-brane by keeping a certain distance

from it. Further we write the action of such a M2-brane, in terms of radial coordinate only,

3We have chosen the probe and the background in such a way that there is no Wess-Zumino term in the

action of the Dp-brane and the dynamics is governed by the dilaton and by the metric.
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which gives the same equations of motion and conserved quantities, but with an effective

tension.

The rest of the paper is organized as follows. In section 2, we study the F-string

orbiting around the D5-brane background. Section 3 is devoted to the study of orbiting

limit of Dp′-brane in Dp-brane background. Finally, in section 4, we study the M2-brane

in M5-brane background in orbiting limit.

2. F-string Orbiting a stack of D5-branes

(F-D5) is a non-supersymmetric system because they break different halves of supersym-

metries. Therefore, F-string in the vicinity of D5-branes form a non-BPS system. The

dynamics of F-string in D5-brane background has been discussed in [18]. We wish to find

the condition where F-string is orbiting around D5-brane. The supergravity solutions of

parallel coincident D5-branes are given by:

ds2 = H(r)−
1
2

(

− dt2 +

5
∑

i=1

(dxi)2
)

+H(r)
1
2

(

dr2 + dΩ3
2

)

,

e2(φ−φ0) = H(r)−1,

H(r) = 1 +
Ngsls

2

r2
,

F7 = dH(r)−1 ∧ dt ∧ dx1 ∧ ... ∧ dx5.

(2.1)

Here H(r) is the harmonic function and r =
∑9

a=6(dx
a)2, φ is the dilaton, dΩ3 is the

volume element of 3-sphere in transverse directions of D5-branes and F7 is the 7-form

Ramond-Ramond (R-R) field strength. The Nambo-Goto action of F-string is given by:

Sf = − 1

2πls
2

∫

d2ξ
√

−det Gµν (2.2)

where, µ, ν runs from 0 to 1. and d2ξ represents the area element of the world sheet of

F-string. Gµν is the induced metric on the string given by

Gµν =
∂XA

∂ξµ
∂XB

∂ξν
GAB , (2.3)

where A,B = 0, 1, ...9. We set, by reparametrization, ξµ = Xµ. The position of the F-

string in the transverse space of the D5-brane gives rise to scalars on the world volume of

the string. We further presume that the transverse directions are function of time (t) only.

Under this, the action (2.2) for the string lying in (t, x1) is given by:

Sf = − 1

2πls
2

∫

dtdx1
1√

H(Xm)

√

1−H(Xm)ẊmẊm. (2.4)
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The Lagrangian is given by

L = − 1

2πls
2

1√
H(Xm)

√

1−H(Xm)ẊmẊm, (2.5)

and the nonzero components of stress-energy tensor Tµν are given by:

T00 = τf
H(Xm)−

1
2

√

1−H(Xm)ẊmẊm

, (2.6)

Tij = −τfH(Xm)−
1
2

√

1−H(Xm)ẊmẊmδij , (2.7)

where τf = 1
2πls2

is the fundamental string tension. The energy density (E) and angular

momentum (L) are defined as

E = PnẊ
n − L

L = XmPn −XnPm,

(2.8)

where, Pn is the conjugate momentum defined by:

Pn =
δL
δẊn

= τf
H(Xm)

1
2 Ẋn

√

1−H(Xm)ẊmẊm

. (2.9)

Using Pn as given in (2.9) in equation (2.8), the angular momentum and energy density

becomes

L = τf
H(Xm)

1
2

√

1−H(Xm)ẊmẊm

[

XmẊn −XnẊm

]

, (2.10)

E = τf
H(Xm)−

1
2

√

1−H(Xm)ẊmẊm

. (2.11)

If F-string is always confined in the (X6,X7) plane, using polar coordinates as X6 = R cos θ

and X7 = R sin θ, the energy density and the angular momentum becomes

E = τf
H(R)−

1
2

√

1−H(R)(Ṙ2 +R2θ̇2)
, (2.12)

and

L = τf
H(R)

1
2R2θ̇

√

1−H(R)(Ṙ2 +R2θ̇2)
. (2.13)

The equations for θ̇ and Ṙ derived from the above two equations become

θ̇2 =
l2

ǫ2R4H(R)2
,
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Ṙ2 =
1

ǫ2H(R)2

[

ǫ2H(R)−
(

1 +
l2

R2

)

]

.

(2.14)

Where we have defined ǫ = E
τf

and l = L
τf
. This radial equation can be compared with a

particle of mass (m = 2) moving in a one dimensional effective potential (with zero energy)

as:

Veff = − 1

ǫ2H(R)2

[

ǫ2H(R)−
(

1 +
l2

R2

)

]

. (2.15)

Note that the effective potential vanishes for ǫ = 1 and l =
√
Ngsls. Similar type of calcu-

lation has been done for the D-brane orbiting around the NS5-branes in [16]. The orbiting

angular momentum depends both on string length (ls) and string coupling constant (gs).

In analogy with [16], we conclude that F-string maintains a particular desired orbit around

the D5-brane as long as the above energy and angular momentum limits are satisfied,

because for vanishing Veff , there is no force that pulls the string towards the 5-brane or

pushes it to infinity.

As in [16], we can write the action given in (2.4) in terms of polar coordinates as

Sf = −τf

∫

dtdx1H(R)−
1
2

√

1−H(R)(Ṙ2 +R2θ̇2). (2.16)

The equations of motion for R and θ derived from this action are

d

dt

(

ṘH(R)
1
2

√

1−H(R)(Ṙ2 +R2θ̇2)

)

=
RH(R)

1
2

√

1−H(R)(Ṙ2 +R2θ̇2)

[

θ̇2 − ω2(R)

]

, (2.17)

and
d

dt

(

R2θ̇H(R)
1
2

√

1−H(R)(Ṙ2 +R2θ̇2)

)

= 0. (2.18)

Where ω(R) =
√
Ngsls

R2H(R) . One can check that Ṙ = 0 with ǫ = 1 and l =
√
Ngsls becomes a

solution to (2.17). Further the equation (2.18) guaranty that L is a constant of motion.

Now, we consider an equivalent radial action involving angular momentum as

S′
f = −τf

∫

dt

√

1 +
l2

R2

√

1

H(R)
− Ṙ2. (2.19)

Though this action looks same as given in [16], the expressions for H and l are not same.

From the equivalent action, we get same radial equation of motion and energy density as

that of original action (2.16). By comparing the action (2.19) with the open string tachyon

effective action given in [2], we get the tachyon potential as V (T ) = τf

√

1+ l2

R2

H(R(T )) which is

different than that given in [18]. Note that for the orbiting condition, l =
√
Ngsls, the

tachyon potential Ṽ (T ) = τf . The geometric tachyon does not roll, because the tachyon

potential becomes flat. The geometric tachyon induced on the string becomes a massless

scalar as described in [18]. Hence the decay process is suppressed and the F-string becomes

stable.
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3. Dp′-brane Orbiting Dp-branes

The supergravity solution of a stack of N coincident Dp-branes is given by the following

form of metric, dilaton (φ), and R-R field C(p+1) as

ds2 = Hp
− 1

2

p
∑

a=0

(dxa)2 ++Hp

1
2

9
∑

i=p+1

(dxi)2,

e2φ = Hp

3−p

2 ,

Hp = 1 +
Ngsls

7−p

r7−p
,

C0···p = Hp
−1.

(3.1)

Where Hp is the harmonic function of N coincident Dp-branes in the transverse directions

of Dp-brane. In the subsequent analysis, we shall assume that (1) the dimensionality of

the probe is smaller than the background, (2) there is no magnetic flux on the probe, (3)

we shall take a single probe brane at a time. Then the dynamics will be given by the

induced metric and the dilaton prefactor only. The action of such a probe Dp′ in a Dp

brane background is given by DBI action as in [20]

Sp′ = −τp′V

∫

dtHp

p−p′−4

4

√

1− ẊmẊmHp. (3.2)

To get the action (3.2), we set the reparametrization invariance of the world volume coor-

dinates of Dp′-brane (leveled as ξa = xa), gives rise scalar fields (Xm) along the transverse

directions of D-brane. We restrict the radial fluctuations along the transverse directions

(R =
√

XmXm(ξa)) only and also the scalar fields are the function of time (t).

The nonzero components of stress-energy tensors Tµν are given by

T00 = τp′
Hp

p−p′−4
4

√

1− ẊmẊmHp

, (3.3)

Tij = −τp′Hp

p−p′−4

4

√

1− ẊmẊmHpδij , (3.4)

where we have taken
∫

dpx = V = 1. The conserved quantities are energy (E) and angular

momentum (L) and they are defined as

E = PnẊ
n − L,

L = XmPn −XnPm.

(3.5)
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Where the conjugate momentum Pn is given by:

Pn =
δL
δẊn

= τp′
Hp

p−p′

4 Ẋn

√

1− ẊmẊmHp

. (3.6)

The angular momentum and the energy now becomes

L = τp′
Hp

p−p′

4

√

1− ẊmẊmHp

[

XmẊn −XnẊm

]

, (3.7)

and

E = τp′
Hp

p−p′−4

4

√

1− ẊmẊmHp

. (3.8)

Considering the motion of the Dp′ lies in the plane (X6,X7) at all times and using polar

coordinates X6 = R cos θ and X7 = R sin θ, the angular momentum and energy becomes

E = τp′
Hp

p−p′−4

4

√

1− (Ṙ2 +R2θ̇2)Hp

, (3.9)

and

L = τp′
Hp

p−p′

4 R2θ̇
√

1− (Ṙ2 +R2θ̇2)Hp

. (3.10)

Solving the above two equtions, for Ṙ and θ̇, we get

θ̇2 =
l2

ǫ2R4Hp
2 ,

Ṙ2 =
1

ǫ2Hp
2

[

ǫ2Hp −
(

Hp

p−p′−2
2 +

l2

R2

)

]

.

(3.11)

Where once again we have defined ǫ = E
τp′

and l = L
τp′

. The radial equation of motion

describes a particle of mass (m = 2) moving in a one dimensional effective potential (with

zero energy) as

Veff = − 1

ǫ2Hp
2

[

ǫ2Hp −
(

Hp

p−p′−2
2 +

l2

R2

)]

. (3.12)

Note that the effective potential vanishes for

ǫ = 1,

p = p′ + 2,
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and Hp = 1 +
l2

R2
.

(3.13)

The last two conditions together tell that Veff vanishes only when p = 5, p′ = 3 and

l =
√
Ngsls. Thus the only consistent orbiting condition is found in case of D3-brane

in D5-brane background. Rest of the analysis can be done by replacing l =
√
Ngsls and

H = 1+ Ngsl
2
s

R2 in [16] and in section 2 of this paper. It will be interesting to find out further

example of Dp-brane orbiting around stacks of D-brane bound states.

4. Membrane Orbiting M5-brane

In this section, we shall study the membranes orbit in a background generated by a periodic

configuration of N coincident M5-branes along the x11 direction at an intervals 2πR11. In

the limit of 1 << r/R11, the background of such array of M5-branes becomes [19], [21]

ds2 = H− 1
3 ηµνdx

µdxν +H
2
3 δijdx

idxj +H
2
3 (dx11)2,

H = 1 +
Nl3p
R11r2

,

F4 =
2Nℓ3p
R11

dvS3 ∧ dx11,

r2 =
∑

i

(xi)2, x11 = R11φ, (4.1)

where µ, ν = 0, 1, · · · , 5, i, j = 6, · · · , 9, and 0 ≤ φ ≤ 2π , dvS4 denotes the volume form

of a unit S4 and lp is the Planck length in the 11-dimensional theory. We would like to

study the dynamics of a M2-brane in the above background and study the homogeneous

solutions only. The action for a single M2-brane is given by

SM2 = −T2

∫

d3ξ
√

−detP [G]µν + T2

∫

P [A], (4.2)

where T2 =
1

4π2lp
3 is the tension of the M2-brane, P [G]µν and P [A] are the pull back of the

metric and the three form field onto the worldsheet given by

P [G]µν =
∂XM

∂ξµ
∂XN

∂ξν
GMN (X)

P [A] =
1

6
ǫµνρ

∂XM

∂ξµ
∂XN

∂ξν
∂Xp

∂ξρ
AMNP (X). (4.3)

The indices M,N,P runs over the 11-dimensional spacetime. We shall restrict our-

selves to the case when the transverse directions of the M5-brane depends only on time.

So the dynamics will be governed only by the Nambu-Goto part of the action. The action

of the M2-brane is given by

SM2 = −V T2

∫

dt

√

H−1 − ẊiẊi − ˙X11 ˙X11 ,

(4.4)
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where V is the volume of the M2-brane. The action (4.4) of M2-brane in the background

of stacks of M5-branes is given in terms of polar coordinates X6 = R cos θ,X7 = R sin θ as

SM2 = −T2V

∫

dt

√

H−1 − Ṙ2 −R2θ̇2 −R11
2φ̇2 (4.5)

The components of stress-energy tensor calculated from (4.5) are

T00 = E =
T2

H

1
√

H−1 − Ṙ2 −R2θ̇2 −R11
2φ̇2

, (4.6)

Tij = −T2R
2
√

H−1 − Ṙ2 −R2θ̇2 −R11
2φ̇2, (4.7)

Tφφ = −T2R11
2
√

H−1 − Ṙ2 −R2θ̇2 −R11
2φ̇2. (4.8)

The angular momenta are given by

Lθ =
T2R

2θ̇
√

H−1 − Ṙ2 −R2θ̇2 −R11
2φ̇2

, (4.9)

and

Lφ =
T2R11

2φ̇
√

H−1 − Ṙ2 −R2θ̇2 −R11
2φ̇2

. (4.10)

From (4.6) and (4.9) we can solve for θ̇ as

θ̇ =
Lθ

EHR2
. (4.11)

From (4.6) and (4.10) and also from (4.9) and (4.10), we get φ̇ as

φ̇ =
Lφ

EHR11
2 =

LφR
2

LθR11
2 θ̇. (4.12)

Using (4.11) and (4.12) in (4.6), the equation for Ṙ reduces to

Ṙ2 =
1

H
− 1

E2H2

(

T2
2 +

Lθ
2

R2
+

Lφ
2

R11
2

)

. (4.13)

Defining Te
2 = T2

2 +
Lφ

2

R11
2 as the effective tension, explained in [19], we can rewrite (4.13)

as

Ṙ2 =
1

H
− 1

E2H2

(

Te
2 +

Lθ
2

R2

)

. (4.14)

The above equation can be thought of as a particle of mass (m = 2) (with zero energy)

moving in an effective potential of the form:

Veff =
1

E2H2

(

Te
2 +

Lθ
2

R2

)

− 1

H
. (4.15)
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Once again defining ǫ = E
Te

and l = Lθ

Te
, the equation (4.15) becomes

Veff =
1

ǫ2H2

(

1 +
l2

R2

)

− 1

H
. (4.16)

In [19], it was discussed that for E > Te, M2-brane escapes to infinity and for E < Te,

it falls into M5-branes. From eqn (4.16), it is clear that effective potential vanishes for

particular values of energy density and angular momentum. Thus for l =

√

Nlp
3

R11
and

ǫ = 1, Veff = 0. Hence, for this energy and angular momentum limits, the decay process of

the M2-brane supressed and it becomes a stable object and revolves around the M5-branes.

The radial equation of motion derived from the action (4.5) is given by:

d

dt

(

Ṙ

F (θ̇, φ̇)

)

=
R

F (θ̇, φ̇)

(

θ̇2 − l2

H2R4

)

, (4.17)

where

F (θ̇, φ̇) =

√

H−1 − Ṙ2 −R2θ̇2 −R11
2φ̇2. (4.18)

In order to write the equation of motion only of radial component, we have to eliminate θ̇

and φ̇ in terms of Ṙ and R. Using (4.11) and (4.12) in (4.9) and simplifing we get

θ̇2 =
Lθ

2

Te
2R4

(

H−1 − Ṙ2

1 + l2

R2

)

=
l2

R4H2
− Ṙ2l2

R4H
.

(4.19)

Again using (4.19) in (4.12) and simplifying we get

φ̇2 =
Lφ

2

Te
2R11

4

(

H−1 − Ṙ2

1 + l2

R2

)

. (4.20)

Now using (4.19) and (4.20) in (4.18), we get

F (θ̇, φ̇) =
T1

Te

√

√

√

√

H−1 − Ṙ2

1 + l2

R2

=
F (0)

√

1 + l2

R2

,

(4.21)

where

F (0) =
T1

Te

√

H−1 − Ṙ2. (4.22)

Finally using (4.19) and (4.21) in (4.17), we can rewrite the equation of motion in terms

of radial coordinate as

d

dt

(

Ṙ
√

1 + l2

R2

F (0)

)

= − Ṙ2l2

R3H

(

√

1 + l2

R2

F (0)

)

. (4.23)
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Similarly to the analysis given for F-string in D5-brane background, we can write a clas-

sically equvalent radial action of (4.5) which gives the same equation of motion as (4.23)

and same energy density as (4.6). The classically equivalent radial action is given by

S̃M2 = −TeV

∫

dt

√

1 +
l2

R2

√

H−1 − Ṙ2. (4.24)

Note that this action is written in terms of effective tension and orbital angular momentum.

The effect of other non-zero angular momentum is absorbed in the definition of Te.

However the exact analogy with [16] is unknown because here we don’t have a tachyon

potential. So it remains to be seen whether this action gives more information about the

radial dynamics of the membrane.
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