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Abstract

We give a supergravity treatment of the set of bosonic and fermionic T-dualities in the

AdS4×CP 3 background. We consider T-dualities along three flat AdS4 directions, three
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transformation of the dilaton, we give description of the singularity that arises in the

transformation.
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1 Introduction

Fermionic T-duality is a tree-level symmetry of type II string theory that can be viewed

as extending the idea of ordinary T-duality to the superspace setup [1, 2]. If one has a Green-

Schwarz-type sigma-model that describes the embedding of a string worldsheet in type II

superspace, then an analog of the classic Buscher procedure [3] can be carried out, resulting

in the sigma-model couplings redefinition. The necessary condition is that the background

preserves a supersymmetry, parameterized by some Killing spinors (ǫ, ǫ̂) (we are considering

an N = 2 theory, hence a couple of supersymmetry parameters).

The sigma-model couplings redefinition that results from the fermionic Buscher procedure

is quite different from the ordinary T-duality transformation. In fact the entire NS-NS sector

is not modified, except for the dilaton that gets an additive contribution

φ′ = φ+
1

2
logC, (1.1)

where C is determined by the Killing spinors (ǫ, ǫ̂) that parameterize the fermionic isometries,

see appendix A. This transformation law is very similar to the way dilaton changes under

ordinary T-duality, but the sign of the log term is opposite. This difference will turn out to
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be crucial. As for the bosonic fields of the RR sector, their transformation can be written

concisely in terms of the bispinor F αβ:

eφ
′

F ′αβ = eφF αβ + k
ǫαǫ̂β

C
, (1.2)

where the precise value of the numerical coefficient k may be different depending on the

supergravity conventions, and since we will not be using the RR background transformation in

this paper, we do not specify the value of k here. The bispinor F αβ is formed by contracting all

the RR forms of the theory with appropriate antisymmetrized products of gamma-matrices.

One can find a more detailed discussion in [1, 4, 5].

An important feature of the fermionic T-duality transformation is that it can only be done

with complexified Killing spinors, which means that the resulting target space background

will generically be a solution to complexified supergravity [4]. The paper [5] deals with the

extension of fermionic T-duality to a larger class of fermionic symmetries in supergravity, which

also include some real transformations.

A crucial ingredient in the proper theoretical understanding of fermionic T-duality would

be to formulate it as a group symmetry [6], in analogy with the O(d, d) group representation

of the ordinary T-duality. Finally, fermionic T-duality has been recently reformulated as a

canonical transformation in phase space [7].

In an attempt to further deepen our understanding of the way fermionic T-duality works,

in this paper we apply the transformation to an AdS4×CP 3 background of type IIA string the-

ory. This problem has a rich motivation that comes from the field theory side of the AdS/CFT

correspondence. The set of problems related to the Yangian invariance [8, 9] and dual super-

conformal symmetry [10] of scattering amplitudes in ABJM theory [11] has attracted much

attention recently. Following the N = 4 super-Yang-Mills case where the amplitude/Wilson

loop correspondence [12] and the dual superconformal symmetry [13, 14] have been proven

to exist there are hopes to find and explain similar structures in ABJM theory. In the SYM

case the amplitude/Wilson loop correspondence has been explained by a combination of 4+8

T-dualities on the string theory side of the AdS/CFT correspondence. In particular, four ordi-

nary T-dualities along the flat directions of AdS5 and eight fermionic T-dualities were required

for the self-duality of the AdS5 × S5 background [1]. Thus, studying the T-duality properties

of type IIA string theory in the AdS4×CP 3 background, which in a certain limit provides the

gravity dual to ABJM theory, would in principle do the same to ABJM theory.

However, it has been shown that this approach to dual superconformal symmetry cannot

be straightforwardly reproduced in the AdS4 × CP 3 case [15, 16, 17]. It is clearly impossible

to achieve self-duality in the 3+6 setup (which would be a straightforward mimicking of the
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AdS5 × S
5 case) because three ordinary T-dualities would take us from IIA to IIB theory.

There has been a proposal [8] based on the superalgebra arguments that the correct set of T-

dualities to perform in this case would be a ‘3+3+6’ set: three flat AdS4 T-dualities, three CP
3

T-dualities, and six fermionic T-dualities. Furthermore, the authors of [10] have established

the existence of dual superconformal symmetry of the tree-level ABJM scattering amplitudes

in case when the dual superspace includes three coordinates corresponding to complexified

isometries of CP 3. Nevertheless, Adam, Dekel, and Oz have shown [18] that this combination

of T-dualities is singular. The calculation in [18] has been done in the supercoset realization of

the sigma-model. In the present note we would like to share the complementary point of view

on how does this singularity arise. The derivation here is done in terms of the supergravity

component fields.

For the sake of simplicity, and also following the conjecture made in [8] that the dilaton

shifts coming from the bosonic and the fermionic T-dualities seem to cancel, we confine our

attention to the transformation of the dilaton. This turns out to be sufficient to expose the

nature of the singularity involved. The dilaton gets two additive contributions — a negative

one from the bosonic T-dualitites:

δBφ = −
1

2
log | det g| (1.3)

and a positive one from the fermionic dualities:

δFφ =
1

2
log | detC|. (1.4)

Here det g is determinant of the block in the metric tensor that incorporates the directions

that have been dualized (adapted coordinates have been chosen). An auxiliary function C of

(1.1) is promoted to a matrix because we are considering multiple T-dualities here.

In what follows we shall consider the transformation of the string coupling eφ, which ac-

cording to the above formulae changes as

e2φ
′

= e2φ
detC

det g
. (1.5)

The main result will be that not only is this transformation singular, but it is also indetermi-

nate, in the sense that both determinants in the above formula vanish. This is to be contrasted

with the AdS5 × S
5 case [1], where the two detereminants are nonzero and cancel precisely,

thus allowing for the self-duality.
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2 The background and coordinate systems of CP 3

The AdS4 × CP 3 background has nonzero metric, dilaton, and RR 2- and 4-forms [11]:

ds2 =
R3

k

(

1

4
ds2AdS4

+ ds2CP 3

)

, (2.1a)

e2φ =
R3

k3
, (2.1b)

F4 =
3R3

8
ǫ4, (2.1c)

F2 = kJ. (2.1d)

ds2AdS4
is a unit radius AdS4 metric, e.g. in the Poincaré patch:

ds2AdS4
= r2

[

−(dx0)2 + (dx1)2 + (dx2)2
]

+
dr2

r2
, (2.2)

and the corresponding 4-form flux F4 is proportional to the totally antisymmetric symbol ǫ4

in 4 dimensions.

As regards the CP 3 part of the background, let us introduce several coordinate systems

that will be useful in what follows.

• Fubini-Study coordinates (z, z̄), where z̄α are complex conjugates of zα, α = 1, 2, 3. Line

element has the well-known form

ds2
CP 3 =

dzαdz̄α
1 + |z|2

−
zαz̄βdz

βdz̄α
(1 + |z|2)2

, (2.3)

where |z|2 = zαz̄α. The metric is evidently real, which makes it possible to introduce six

real coordinates instead.

• Starting from the real components of the Fubini-Study coordinates zα = ραeiϕ
α

, we can

introduce six real coordinates (µ, α, θ, ψ, χ, φ) as follows [19]:

ρ1 = tanµ sinα sin
θ

2
, ϕ1 =

1

2
(ψ − φ+ χ),

ρ2 = tanµ cosα, ϕ2 =
1

2
χ,

ρ3 = tanµ sinα cos
θ

2
, ϕ3 =

1

2
(ψ + φ+ χ).

(2.4)

It is convenient to work with the Killing spinors in these coordinates because of the
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simple representation of the vielbein forms:

e1 = dµ,

e2 = sin µ dα,

e3 =
1

2
sinµ sinα (cosψ dθ + sin θ sinψ dφ) ,

e4 =
1

2
sinµ sinα (sinψ dθ − sin θ cosψ dφ) ,

e5 =
1

2
sinµ sinα cosα ( dψ + cos θ dφ) ,

e6 =
1

2
sinµ cosµ

(

dχ+ sin2 α dψ + sin2 α cos θ dφ
)

.

(2.5)

Line element is simply ds2
CP 3 = δabe

aeb. We shall use Latin letters for the tangent-space

components.

• Finally, we introduce the complexified CP 3 background by means of the following coor-

dinate transformation:
wα = zα,

w̄α =
z̄α

1 + |z|2
.

(2.6)

Since w̄α 6= (wα)∗, we can view them as six independent complex coordinates. The line

element takes the simple form:

ds2
CP 3 = dwαdw̄α + w̄αw̄βdw

αdwβ. (2.7)

The Kähler form J in (2.1d) has the simplest representation in the latter coordinates:

J = −2i dwα ∧ dw̄a. (2.8)

Transforming it to the real coordinates, we get

J =− dµ ∧ (dψ + dφ cos θ) sin 2µ sin2 α− dµ ∧ dχ sin 2µ

− dα ∧ (dψ + dφ cos θ) sin2 µ sin 2α+ dθ ∧ dφ sin2 µ sin2 α sin θ.
(2.9)
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This looks much simpler in tangent-space components:

Jab = eµae
ν
bJµν =























−2

−2

−2

2

2

2























. (2.10)

3 Killing vectors

The six isometries that should be T-dualized are the shifts of three flat AdS4 directions

and three internal (CP 3) isometries. The contribution of the AdS4 T-dualities can be trivially

read off from (2.2), and it is nonsingular:

δφ = −3 log r. (3.1)

Therefore from now on we shall only be concerned with internal isometries.

The isometry algebra of CP 3 is su(4), which is 15-dimensional. None of these isometries

commute with any of the supersymmetries, which is the reason for complexifying the Killing

vectors. We use the complexified Killing vectors of CP 3 as given in [20]:

Kα = T0
α + Tβ

αzβ − T0
0zα − Tβ

0zβzα,

Kα = −Tα
0 − Tα

β z̄β + T0
0z̄α + T0

β z̄β z̄α,
(3.2)

for a vector field

K = Kα ∂

∂zα
+Kα

∂

∂z̄α
. (3.3)

There are precisely 15 independent parameters TA
B, A,B = 0, . . . , 3 because they are subject

to the constraint TA
A = 0.

We shall consider the three complex Killing vectors that result from keeping T0
α in (3.2):

K(α) =
∂

∂zα
+ z̄αz̄β

∂

∂z̄β
, α = 1, 2, 3. (3.4)

These three vectors commute with each other and by transforming them to the real coordinates

(2.4) one can check that they are of the form a + ib, where a and b are ordinary real Killing
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vectors of CP 3:

K(1) =
1

2
e−

i

2
(ψ−φ+χ)

(

sinα sin
θ

2

∂

∂µ
+ cotµ cosα sin

θ

2

∂

∂α
+

cotµ cos θ
2

sinα

∂

∂θ

−i
cotµ

sinα sin θ
2

∂

∂ψ
+ i

cotµ

sinα sin θ
2

∂

∂φ
+ 2i tanµ sinα sin

θ

2

∂

∂χ

)

,

(3.5a)

K(2) =
1

2
e−

i

2
χ

[

cosα
∂

∂µ
− cotµ sinα

∂

∂α
+ 2i

cotµ

cosα

∂

∂ψ

−2i

(

cotµ

cosα
−

cosα

cotµ

)

∂

∂χ

]

,

(3.5b)

K(3) =
1

2
e−

i

2
(ψ+φ+χ)

(

sinα cos
θ

2

∂

∂µ
+ cotµ cosα cos

θ

2

∂

∂α
− 2

cotµ sin θ
2

sinα

∂

∂θ

−i
cotµ

sinα cos θ
2

∂

∂ψ
− i

cotµ

sinα cos θ
2

∂

∂φ
+ 2i tanµ sinα cos

θ

2

∂

∂χ

)

.

(3.5c)

Note that alternatively one could also use the three vector fields corresponding to Tα
0,

which are complex conjugates of the vectors (3.4), or those resulting from keeping Tα
α (no

sum). These two groups of complex Killing vectors also commute among themselves.

Now we can reveal the reason for the introduction of the (w, w̄) coordinates in (2.6). Trans-

forming the vectors (3.4) to these coordinates one discovers that they are acting as shifts 1:

K(α) =
∂

∂wα
, (3.6)

which enables us to calculate det g in (1.5). For this purpose, we read off the metric tensor

from the expression for the interval in (w, w̄) coordinates (2.7):

gµν =























w̄1w̄1 w̄1w̄2 w̄1w̄3

w̄2w̄1 w̄2w̄2 w̄2w̄3

w̄3w̄1 w̄3w̄2 w̄3w̄3

1/2

1/2 0























. (3.7)

The upper-left block here corresponds to the dw dw term in the interval. Rescaling of the

string coupling under the three T-dualities with respect to K(1,2,3) is given by the determinant

1This has been pointed out to the author by Carlo Meneghelli.
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of this block, which is identically zero. Now we can rewrite (1.5) as

e2φ
′

= e2φ
detC

0
. (3.8)

This is clearly a singularity, and now we proceed to showing that the numerator in this formula

vanishes as well.

4 Killing spinors

In order to get an expression for the matrix C (A.5) we need to know the Killing spinors

ǫ, ǫ̂. These can be found as solutions to the equations

(

/F 2 −
1

3
/F 4Γ

11

)

E = 0, (4.1a)

∇ME =
eφ

8

(

/F 2ΓMΓ11 − /F 4ΓM
)

E, (4.1b)

which are conditions that supersymmetry variations of the type IIA fermions vanish. Super-

symmetry parameter E is a Majorana spinor, while ǫ and ǫ̂ are its Majorana-Weyl compo-

nents, which can be obtained by applying the projections 1
2
(1 ± Γ11). We use the notation

/F n = 1
n!
FM1...Mn

ΓM1...Mn. Note that the free index M in (4.1b) is a curved index.

Original derivation of the Killing spinors of CP 3 can be found in [21], [19], and [22]. Here

we shall briefly overview the derivation for the sake of consistency with our notation and

conventions. We decompose the spinor parameter E = κ⊗ η into the product of the SO(1, 3)

and SO(6) spinors κ and η. With the corresponding decomposition of the gamma-matrices

(for details see appendix B), the first Killing spinor equation (4.1a) becomes

(

1⊗
1

2
Fijβ

ij

)

(κ⊗ η) =
(

1⊗ 2β7
)

(κ⊗ η) . (4.2)

We see that κ is unconstrained, while the equation for η can be rewritten as follows:

Qβ7η = −2 β7η, (4.3)

where Q = 1
2
Fijβ

ijβ7. Evaluating this matrix operator using the tangent-space components

of the 2-form (2.10) shows that indeed there is a −2 eigenvalue, whose degeneracy is 6. The

corresponding 6-parameter eigenspinor has the form

η =
(

−f1 f2 f3 −f1 f4 −f5 −f6 f4

)T

. (4.4)
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The exact functional dependence of the parameters fi on spacetime coordinates is fixed by the

second Killing spinor equation (4.1b).

Performing the same decomposition as above we arrive at the following equations for κ and

η:
(

∂µ +
1

4
ωµ,ρλ α

ρλ

)

κ = αµ α
5κ, (4.5)

(

∂i +
1

4
ωi,kl β

kl

)

η =
i

2
βi η −

i

4
Fi j β

jβ7 η, (4.6)

where we underline the world indices and our convention for the spin connection is

ωA,BC =
1

2
eDB e

E
C (ΩADE − ΩDEA + ΩEAD) , (4.7)

ΩABC = ∂[A e
D
B] e

E
C ηDE . (4.8)

The AdS4 Killing spinor equation is easy to solve and the solution κ is 4-parametric:

κ =













κ1r
−1/2

κ2r
−1/2

r1/2 [−κ2(x0 − x1) + κ1x
2 + κ3]

r1/2 [κ1(x
0 + x1)− κ2x

2 + κ4]













. (4.9)

Solving the equations for η is more tedious, but it can be done analytically. The solution is

very bulky and is therefore given in the appendix C. The overall result is that the AdS4 part

of the Killing spinor κ is 4-parametric, while the CP 3 part is 6-parametric. Thus there are 24

independent Killing spinors in the AdS4 × CP 3 background.

5 Symmetry superalgebra

We now need to establish which Killing spinors to use for the T-duality transformation.

As long as we have chosen the three isometries generated by (3.4), the choice of the fermionic

symmetries is dictated by the requirement that together they form a commuting subalgebra of

the symmetry superalgebra. Bosonic generators (3.4) of this subalgebra are commuting; our

next step will be to select the fermionic generators (Killing spinors) that commute with these

three vectors and finally we shall check the anticommutation of the selected supersymmetries

among themselves.

First of all recall that apart from (3.4) our T-duality setup includes three bosonic dualities

along the flat directions of AdS4. Looking at the AdS4 part of the Killing spinor (4.9) we see
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that we must set κ1,2 = 0 for the product κ ⊗ η to be invariant under the shifts of x0,1,2. So

what happens to the CP 3 part of the Killing spinor?

From the explicit expressions of the CP 3 spinors (appendix C) it is not easy to tell what are

their commutation properties with the vectors (3.4). Therefore we calculate the Lie derivatives

of our Killing spinor fields with respect to the Killing vectors [23]. Lie derivative of a spinor η

with respect to a vector K is given by

LKη = Ki∇iη +
1

2
∇[iK j]

1

2
βijη, (5.1)

where of course the covariant derivatives of a vector and of a spinor are taken correspondingly

with respect to the Christoffel and spin connections.

Using the expressions for K(1,2,3) (3.5) and for η1,...,6 ((4.4) and appendix C, where the

spinor ηi results from keeping only the parameter hi = 1 and setting all the rest to zero), one

finds the following algebra:

LK(1)
η1 = −

1

2
(η3 − iη4 + iη5 − η6),

LK(1)
η2 = −

i

2
(η3 − iη4 + iη5 − η6),

LK(1)
η3 =

1

4
(η1 + iη2),

LK(1)
η4 = −

i

4
(η1 + iη2),

LK(1)
η5 =

i

4
(η1 + iη2),

LK(1)
η6 = −

1

4
(η1 + iη2),

(5.2a)

LK(2)
η1 = 0,

LK(2)
η2 = 0,

LK(2)
η3 = −

i

2
(η4 − iη6),

LK(2)
η4 =

i

2
(η3 + iη5),

LK(2)
η5 =

1

2
(η4 − iη6),

LK(2)
η6 =

1

2
(η3 + iη5),

(5.2b)
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LK(3)
η1 = −

i

2
(η3 + iη4 + iη5 + η6),

LK(3)
η2 =

1

2
(η3 + iη4 + iη5 + η6),

LK(3)
η3 =

i

4
(η1 + iη2),

LK(3)
η4 = −

1

4
(η1 + iη2),

LK(3)
η5 = −

1

4
(η1 + iη2),

LK(3)
η6 =

i

4
(η1 + iη2).

(5.2c)

It is easy to see that there are three linear combinations of the Killing spinors that are invariant

under the action of all three vectors:

η1 + iη2, η3 + iη5, η4 − iη6. (5.3)

Tensor multiplying these with the two AdS4 spinors (κ3, κ4 6= 0 in (4.9)) we get the six

Killing spinors, which is precisely the number needed for the T-duality. Thus the symmetry

superalgebra constraints unambiguously fix the fermionic directions to be T-dualized.

It remains to make sure that the corresponding supersymmetries anticommute. The con-

straint on the spinor E = κ⊗ η is given in the appendix (A.3) and can be checked straightfor-

wardly. For multiple supersymmetries one has to generalize this to the matrix constraint

Ēi Γ
µEj = 0, i, j = 1, . . . , 6. (5.4)

6 Fermionic T-duality

Finally we are in a position to calculate the matrix Cij, i, j = 1, . . . , 6:

∂µCij = Ēi ΓµΓ
11Ej, (6.1)
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which is a generalisation of (A.5) for the case of multiple T-dualities. These equations turn

out to be consistent, and the solution is (up to integration constants)

CAdS4×CP 3 =























0

0 a b

−a 0 c

−b −c 0

0 −a −b

a 0 −c

b c 0

0























, (6.2)

where

a = −2 r e−
i

2
(ψ+χ) sin 2µ sinα

[

cos
1

2
(θ + φ) + i sin

1

2
(θ − φ)

]

, (6.3a)

b = 2 r e−
i

2
(ψ+χ) sin 2µ sinα

[

i cos
1

2
(θ − φ) + sin

1

2
(θ + φ)

]

, (6.3b)

c = −2 r e−
i

2
χ sin 2µ cosα. (6.3c)

The important point to notice here is that the determinant of the matrix (6.2) is identically

zero, irrespective of the values (6.3). This is the second singularity, which manifests itself in

the numerator of the formula (1.5).

The vanishing of detC in the present case is to be contrasted with the AdS5 × S
5 case

[1], where the C-matrix has the same algebraic structure (symmetric matrix with off-diagonal

antisymmetric blocks). However since in this setup one does 4 bosonic (AdS) dualities and 8

fermionic ones, CAdS5×S5 is now an 8× 8 matrix:

CAdS5×S5 =

































0

0 a b c

−a 0 d e

−b −d 0 f

−c −e −f 0

0 −a −b −c

a 0 −d −e

b d 0 −f

c e f 0

0

































, (6.4)

12



where the entries are given by

a = 2Rr sin y1
(

cos y2 − i sin y2 cos y3
)

, (6.5a)

b = 2Rr
(

i cos y1 + sin y1 . . . sin y5
)

, (6.5b)

c = −2Rr sin y1 sin y2 sin y3
(

cos y4 − i sin y4 cos y5
)

, (6.5c)

d = 2Rr sin y1 sin y2 sin y3
(

cos y4 + i sin y4 cos y5
)

, (6.5d)

e = 2Rr
(

−i cos y1 + sin y1 . . . sin y5
)

, (6.5e)

f = −2Rr sin y1
(

cos y2 + i sin y2 cos y3
)

. (6.5f)

Here r, as before, is the AdS radial coordinate, R is the AdS radius and the variables

{y1, . . . , y5} are the standard coordinates on S
5:

ds2 = (dy1)2 + sin2 y1
{

(dy2)2 + sin2 y2
[

(dy3)2 + . . .
]}

. (6.6)

In the AdS5 × S
5 case, not only is detCAdS5×S5 nonvanishing, but for these particular values

of the entries it can be simplified to

detCAdS5×S5 = (2Rr)8. (6.7)

This is precisely cancelled by the 4 AdS dualities.

7 Summary

We have shown that under the combination of bosonic and fermionic T-dualities in the

directions given by the three complexified CP 3 isometries and six complexified supersymmetries

the transformation of the dilaton is indeterminate:

e2φ
′

= e2φ
0

0
. (7.1)

This provides an alternative point of view on T-dualizing AdS4 × CP 3 background that has

been done recently by Adam, Dekel, and Oz [18] in the supercoset formulation of the sigma-

model. Perhaps a way to eliminate this ambiguity would be to consider a deformed AdS4×CP 3

background, the deformation being parameterized by some λ, such that the dependence on the

deformation parameter e2φ
′

= f(λ) e2φ would have a well-defined limit when the deformation

is removed limλ→0 f(λ).

Most likely this deformation would require giving the dilaton some nontrivial coordinate

13



dependence. The dilaton equation of motion in our conventions is

R = 4(∂φ)2 − 4∇2φ (7.2)

(for a vanishing B-field). If we keep the dilaton constant, then the requirement that the AdS

part of the geometry be preserved will only allow for the deformations of the CP 3 part that

preserve R = 0, which is problematic. One can also consider the Killing spinor equation

(4.1a), which in the ABJM background reduces to the eigenspinor condition (4.3). If one

were to deform the RR 2-form, the eigenspinor condition would be broken, and for some

supersymmetry to be preserved one would have to introduce the dilaton into the game. With

nontrivial dilaton the equation (4.3) gets modified to

[

kβi∂iφ− eφ (Q+ 2)
]

β7η = 0, (7.3)

where, as before, Q = 1
2
Fijβ

ijβ7, and we have absorbed the numerical factors that depend on

the supergravity conventions into the constant k. An appropriate relative normalization of F2

and F4 is also assumed. It is possible that the dilaton field with nontrivial dependence on the

internal manifold could allow for some supersymmetry to be preserved under the deformation.

A candidate recipe for the deformation is the TsT transformation [24, 25], which gives the

beta-deformed AdS4 × CP 3 theory described in [26]. In order for the Killing vectors to be

preserved under the beta-deformation, one may carry out the beta-deformation with respect

to these Killing vectors. Therefore if we beta-deform the AdS4 × CP 3 background using the

directions (3.4), we can then use the same Killing vectors for the T-duality. However the dw dw

block in (3.7) is not affected by such a beta-deformation, which means that the corresponding

determinant is still zero. Thus the use of the TsT transformation for the deformation purposes

in our setup is problematic.

A general property of fermionic T-duality that has been revealed in the present work is that

the transformation may be singular. In the case at hand the degeneracy of the matrix (6.2) as

opposed to (6.4) is due to their block structure with antisymmetric blocks (an odd-dimensional

antisymmetric matrix has zero determinant). In a different setup the structure of the C-matrix

may be different [4] (as one can observe from the definition (A.5), C is only required to be

symmetric). It is yet to be understood what makes singular transformations possible, and in

particular what is the role of complexification of the fermionic symmetries that is obligatory

for doing fermionic T-duality.
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A Fermionic T-duality in type IIA

Start with any Majorana-Weyl representation of the gamma-matrices, such that

Γµ =

(

0 (γµ)αβ

γµαβ 0

)

, C =

(

0 cα
β

c̄αβ 0

)

, Γ11 =

(

1 0

0 −1

)

. (A.1)

The indices α, β here take values 1 . . . 16. Different properties of this class of representations

are considered in [27]. We use Majorana conjugation for covariant spinors ψ̄ = ψTC.

In type IIA it is possible to write the main formulae of fermionic T-duality [1] concisely

by introducing a single Majorana spinor parameter instead of a pair (ǫ, ǫ̂) of Majorana-Weyl

spinors. In particular, the abelian constraint for a supersymmetry generated by (ǫ, ǫ̂) is

0 =
(

ǭ Q+ ¯̂ǫ Q̂
)2

= −
(

ǭΓµǫ+ ¯̂ǫΓµǫ̂
)

Pµ

=

{

IIB :
[

(ǫc)αγµαβǫ
β + (ǫ̂c)αγµαβ ǫ̂

β
]

Pµ,

IIA :
[

(ǫc)αγµαβǫ
β + (ǫ̂c̄)α(γ

µ)αβ ǫ̂β
]

Pµ.

(A.2)

The IIA expression can be rewritten in terms of the Majorana spinor E = ǫ+ ǫ̂:

Ē ΓµE = 0. (A.3)

Another relation of interest is the definition of an auxiliary function C (not to be confused

with the charge conjugation matrix):

∂µC = i
(

ǭΓµǫ− ¯̂ǫΓµǫ̂
)

=

{

IIB : i
[

(ǫc)αγµαβǫ
β − (ǫ̂c)αγµαβ ǫ̂

β
]

,

IIA : i
[

(ǫc)αγµαβǫ
β − (ǫ̂c̄)α(γ

µ)αβ ǫ̂β
]

.
(A.4)

Again we can rewrite the IIA expression succinctly as

∂µC = ĒΓµΓ11E. (A.5)

Since the expressions in (A.3) and (A.5) are vectors, these formulae are independent of the
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gamma-matrix representation.

B Gamma-matrices

For the purposes of working with type IIA supergravity, whose spinorial quantities are

Majorana spinors of 1 + 9-dimensional spacetime, we need a Majorana representation of the

gamma-matrices. This will be built as a product of Majorana representations in 1 + 3 and in

6 dimensions.

Our spacetime signature convention is (−+ . . .+), hence the following four real anticom-

muting matrices αµ furnish a Majorana representation in D = 1 + 3:

α0 = σ3 ⊗ iσ2,

α1 = σ3 ⊗ σ1,

α2 = σ3 ⊗ σ3,

α3 = σ1 ⊗ 1.

(B.1)

Volume element α5 = α0 . . . α3 = iσ2 ⊗ 1 is also real and squares to −1.

We choose the six gamma-matrices of 6D Euclidean space to be

β1 = 1 ⊗ σ2 ⊗ σ1,

β2 = 1 ⊗ σ2 ⊗ σ3,

β3 = σ1 ⊗ 1 ⊗ σ2,

β4 = σ3 ⊗ 1 ⊗ σ2,

β5 = σ2 ⊗ σ1 ⊗ 1,

β6 = σ2 ⊗ σ3 ⊗ 1.

(B.2)

These are imaginary and we define the corresponding volume element to be real: β7 =

−β1 . . . β6 = iσ2 ⊗ iσ2 ⊗ iσ2.

Finally, the ten-dimensional real gamma-matrices Γ are the following products (for α =

0, . . . , 3 and i = 1, . . . , 6):

Γµ = αµ ⊗ 1,

Γi+3 = iα5 ⊗ βi
(B.3)

Ten-dimensional chirality operator is Γ11 = Γ0 . . .Γ9 = −α5⊗β7. This representation is clearly

not Weyl.
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C CP 3 Killing spinors

The components of the CP 3 factor (4.4) of the Killing spinor are given by the following:

f1 =
1

2

{

2h1 cosα sin
χ

4
+ 2h2 cosα cos

χ

4
+

sinα

[(

h3 sin
φ

2
+ h4 cos

φ

2

)

sin
1

4
(2θ + χ− 2ψ) +

(

h3 cos
φ

2
− h4 sin

φ

2

)

cos
1

4
(2θ − χ+ 2ψ)−

(

h6 cos
φ

2
− h5 sin

φ

2

)

cos
1

4
(2θ + χ− 2ψ)

+

(

h6 sin
φ

2
+ h5 cos

φ

2

)

sin
1

4
(2θ − χ+ 2ψ)

]}

,

(C.1)

f4 =
1

2

{

2h1 cosα cos
χ

4
− 2h2 cosα sin

χ

4
+

sinα

[(

h3 sin
φ

2
+ h4 cos

φ

2

)

cos
1

4
(2θ + χ− 2ψ) +

(

h3 cos
φ

2
− h4 sin

φ

2

)

sin
1

4
(2θ − χ + 2ψ) +

(

h6 cos
φ

2
− h5 sin

φ

2

)

sin
1

4
(2θ + χ− 2ψ)

−

(

h6 sin
φ

2
+ h5 cos

φ

2

)

cos
1

4
(2θ − χ+ 2ψ)

]}

,

(C.2)

f2 =
1

2

{

A1

[

(cosα + 1) sinµ− (cosα− 1) cosµ
]

+ B1

[

(cosα + 1) cosµ− (cosα− 1) sinµ
]

− 2 sinα(cosµ− sin µ)
(

h1 cos
χ

4
− h2 sin

χ

4

)}

,

(C.3)

f3 =
1

2

{

A1

[

(cosα− 1) sinµ+ (cosα + 1) cosµ
]

+ B1

[

(cosα− 1) cosµ+ (cosα + 1) sinµ
]

+ 2 sinα(cosµ+ sinµ)
(

h1 cos
χ

4
− h2 sin

χ

4

)}

,

(C.4)

f5 =
1

2

{

A2

[

(cosα + 1) sinµ− (cosα− 1) cosµ
]

+ B2

[

(cosα + 1) cosµ− (cosα− 1) sinµ
]

− 2 sinα(cosµ− sin µ)
(

h1 cos
χ

4
− h2 sin

χ

4

)}

,

(C.5)

f6 =
1

2

{

A2

[

(cosα− 1) sinµ+ (cosα + 1) cosµ
]

+ B2

[

(cosα− 1) cosµ+ (cosα + 1) sinµ
]

+ 2 sinα(cosµ+ sinµ)
(

h1 cos
χ

4
− h2 sin

χ

4

)}

,

(C.6)
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where

A1 =

[

sin
ψ

2
sin

1

4
(2θ − χ)

(

h3 cos
φ

2
− h4 sin

φ

2

)

− sin
ψ

2
cos

1

4
(2θ − χ)

(

h6 sin
φ

2
+ h5 cos

φ

2

)

+ cos
ψ

2

(

cos
1

4
(2θ + χ)

(

h6 cos
φ

2
− h5 sin

φ

2

)

− sin
1

4
(2θ + χ)

(

h3 sin
φ

2
+ h4 cos

φ

2

))]

,

B1 =

(

cos
ψ

2
cos

1

4
(2θ − χ)

(

h3 cos
φ

2
− h4 sin

φ

2

)

+ cos
ψ

2
sin

1

4
(2θ − χ)

(

h6 sin
φ

2
+ h5 cos

φ

2

)

− sin
ψ

2

(

cos
1

4
(2θ + χ)

(

h3 sin
φ

2
+ h4 cos

φ

2

)

+ sin
1

4
(2θ + χ)

(

h6 cos
φ

2
− h5 sin

φ

2

)))

,

(C.7)

and A2,B2 are the same with the following substitution:

sin
ψ

2
→ − cos

ψ

2
,

cos
ψ

2
→ sin

ψ

2
.

(C.8)
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