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Abstract

We construct new non-stationary cosmological solutions to five-dimensional mini-
mal supergravity that don’t have any tri-holomorphic U(1) isometries. Our new so-
lutions, in part, contain some of the previously constructed solutions to the minimal
supergravity. The c-function of solutions shows monotonic increasing/decreasing be-
haviour in time, in agreement with the expected behaviour of c-function in spacetimes
with positive cosmological constant.
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1 Introduction

In the strong coupling limit of brane systems, many horizonless three-charge brane configu-
rations undergo a geometric transition and become smooth horizonless geometries with black
hole or black ring charges. These charges come completely from fluxes wrapping on non-
trivial cycles. The three-charge black hole (ring) systems are dual to the states of correspond-
ing CFTs: in favour of the idea that non-fundamental-black hole (ring) systems effectively
arise as a result of many horizonless configurations [1]. In the heart of eleven-dimensional
three-charged supergravity solutions, there is a four-dimensional hyper-Kähler metric (which
is equivalent to a metric with self-dual curvature in four dimensions) that guarantees the
solutions preserve some supersymmetries [2]. The five-dimensional sub-space-time of the
eleven-dimensional three-charged metric together with Maxwell field make the bosonic sector
of five-dimensional minimal supergravity equivalent to the Einstein-Maxwell-Chern-Simons
Theory. The Einstein-Maxwell-(Dilaton-(Axion)) or -(Chern-Simons) theories in different
dimensionalities have been extensively explored from many different directions. The black
hole solutions have been considered in [3] as well as solitonic and gravitational instantons,
dyonic and pp-wave solutions in [4], supergravity solutions in [5], brane worlds and cosmol-
ogy in [6], NUT and Bolt solutions, Liouville potential, rotating solutions and string theory
extensions of Einstein-Maxwell fields in [7]. In five-dimensions, unlike the four dimensions
that the only horizon topology is 2-sphere, we can have different more interesting horizon
topologies such as black holes with horizon topology of 3-sphere [8], black rings with horizon
topology of 2-sphere × circle [9], black saturn: a spherical black hole surrounded by a black
ring [10], black lens which the horizon geometry is a Lens space L(p, q) [11]. All allowed
horizon topologies have been classified in [12]. In [13, 14], the authors consider hyper-Kähler
Atiyah-Hitchin and Einstein-hyper-Kähler triaxial Bianchi type IX base spaces to construct
five-dimensional supergravity solutions that only have rotational U(1) isometries. The com-
plete solutions are regular around the critical surface of base spaces. The solutions in [14]
are quite remarkable because Einstein-hyper-Kähler Bianchi type IX geometry (that includes
hyper-Kähler Atiyah-Hitchin as a special case) doesn’t have any tri-holomorphic U(1) isom-
etry. Hence the solutions could be used to study the interesting physical processes such
as, merger of two Breckenridge-Myers-Peet-Vafa black holes [15] or the geometric transi-
tion of a three-charge supertube of arbitrary shape; that don’t respect any tri-holomorphic
U(1) symmetry. We should emphasize that, in general, constructing solutions with non-tri-
holomorphic U(1) isometries is a rather complicated, tedious and challenging task. To our
knowledge, for classical black holes and black rings, only two solutions exist [16].

In this paper, we use Bianchi type IX space as the base space to construct five-dimensional
cosmological solutions to minimal supergravity with positive cosmological constant. The
solutions enjoy generic non-tri-holomorphic U(1) isometries. The idea behind this paper is
the first step to search for and construct black hole solutions in the presence of positive
cosmological constant on Bianchi type IX space.

In fact, in [17], the authors constructed multi-black hole solutions of Einstein-Maxwell
theory in spacetimes with positive cosmological constant. The solutions describe an arbitrary
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number of charged black holes that are in motion with respect to each other. Moreover, the
five and higher dimensional black hole solutions with positive cosmological constant were
found in [18] and [19]. Specially in [19], the Eguchi-Hanson based black hole solutions are in
a contracting phase derived by the cosmological constant, hence the solutions can describe
coalescence of black holes in asymptotically de Sitter (dS) spacetimes. The Eguchi-Hanson
space (as well as Atiyah-Hitchin space) is a special case of Bianchi type IX Einstein-Kähler
space (see appendix C); hence this supports our idea to search for black hole solutions based
on Bianchi type IX space, in spacetimes with positive cosmological constant.

The outline of this paper is as follows. In section 2, we give a brief review of self-dual
Bianchi type IX space and five-dimensional minimal supergravity with cosmological constant.
In section 3, we present the class of cosmological non-stationary supergravity solutions over
Bianchi type IX space and discuss the asymptotics of the solutions as well as the behaviour
of c-function for the solutions. We conclude in section 4 with a summary of our solutions
and possible future research directions as well as three appendices.

2 The Bianchi Type IX Space and Minimal Supergrav-

ity

The Bianchi type IX metric is locally given by the following metric with an SU(2) or SO(3)
isometry group [20]

ds2 = e2{A(ζ)+B(ζ)+C(ζ)}dζ2 + e2A(ζ)σ2
1 + e2B(ζ)σ2

2 + e2C(ζ)σ2
3, (2.1)

where σi ’s are Maurer-Cartan one-forms. Integrating the Einstein equations (appendix A)
as well as self-duality of the curvature imply

dA

dζ
=

1

2
{e2B + e2C − e2A} − α1e

B+C , (2.2)

dB

dζ
=

1

2
{e2C + e2A − e2B} − α2e

A+C , (2.3)

dC

dζ
=

1

2
{e2A + e2B − e2C} − α3e

A+B, (2.4)

where αi, i = 1, 2, 3 are integration constants obeying αiαj = εijkαk.
The first set of solutions corresponds to (α1, α2, α3) = (1, 1, 1) that yields Atiyah-Hitchin

metric (appendix B). The Atiyah-Hitchin metric (and its ambi-polar extension) was con-
sidered extensively in [13] for construction of supergravity/Einstein-Maxwell-Chern-Simons
solutions. The second set of solutions corresponds to (α1, α2, α3) = (0, 0, 0). Changing the
coordinate from ζ to r given by (4.21) (appendix C), we find the metric of triaxial Bianchi
type IX space as

ds2 =
dr2√
F (r)

+
r2

4

√
F (r)

(
σ2
1

1− a4
1

r4

+
σ2
2

1− a4
2

r4

+
σ2
3

1− a4
3

r4

)
, (2.5)
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where

F (r) =
3∏

i=1

(1− a4i
r4
), (2.6)

and a1, a2 and a3 are three parameters that without loss of generality, we choose them such
that 0 = a1 ≤ a2 = 2kc ≤ a3 = 2c. We note coordinate r must be greater or equal to a3.
Here 0 ≤ k ≤ 1 is the square root of modulus of different types of Jacobian elliptic functions
(appendix C) and c > 0. If k > 1, all we need is just to interchange the 2 and 3 directions.
To embed the Bianchi space into five-dimensional minimal supergravity with cosmological
constant, we take the metric ansatz as

ds2 = −H(t, ζ)−2dt2 +H(t, ζ)ds24, (2.7)

and the only non-vanishing component of gauge field as

At =
η
√
3

2

1

H(t, ζ)
, (2.8)

where η = ±1. The five-dimensional minimal supergravity with a positive cosmological
constant is described by the action

S =
1

16π

∫
d5x

√
−g(R− 4Λ− FµνF

µν − 2

3
√
3
ǫµνρηξFµνFρηAξ), (2.9)

where R and Fµν are five-dimensional Ricci scalar and Maxwell field. The Einstein and
Maxwell equations are

Rµν − (
1

2
R− 2Λ)gµν = 2(FµλF

λ
ν − 1

4
gµνF

2), (2.10)

F µν
;ν =

2

3
√
3
ǫµνρηξFνρFηξ, (2.11)

respectively.

3 Minimal Supergravity Solutions With Cosmological

Constant

We find the solutions to supergravity equations (2.10) and (2.11) assuming the five-dimensional
metric, the embedded four-dimensional space and gauge field are given by (2.7), (2.1) and
(2.8) respectively. All gravitational equations of motion are satisfied provided H(t, ζ) is a
solution to the differential equations,

3∂2H(t,ζ)
∂ζ2

e2(A(ζ)+B(ζ)+C(ζ))
− 3(

∂H(t, ζ)

∂t
)2H2(t, ζ) + 4ΛH2(t, ζ) = 0, (3.1)

3(
∂H(t, ζ)

∂t
)2 + 3

∂2H(t, ζ)

∂t2
H(t, ζ)− 4Λ = 0, (3.2)

∂2H(t, ζ)

∂ζ∂t
= 0. (3.3)
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Figure 3.1: The metric functions 50e2A(ζ) (dashed curve), 50e2B(ζ) (solid curve slightly above
the dashed one) and e2C(ζ) (almost symmetric solid curve) versus ζ where we set c = 1 and
k = 1/2.

Taking H(t, ζ) = 2ǫ
√

Λ
3
t+mζ+γ where ǫ = ±1 andm, γ are two constants of integration,

all the equations of motion are satisfied, hence we obtain the supergravity metric as

ds2 = − dt2
(
2ǫ
√

Λ
3
t+mζ + γ

)2

+
(
2ǫ

√
Λ

3
t+mζ + γ

)(
e2{A(ζ)+B(ζ)+C(ζ)}dζ2 + e2A(ζ)σ2

1 + e2B(ζ)σ2
2 + e2C(ζ)σ2

3

)
.

(3.4)

The metric functions A(ζ), B(ζ) and C(ζ) are given by equations (4.14), (4.15) and (4.16)
respectively and their exponentials plotted in figure (3.1), where we set c = 1 and k = 1/2.

We would prefer to find the analytic solutions to supergravity equations of motion to
embed triaxial Bianchi type IX space (2.5) in (2.7). However, we find too unlikely to get the
analytic solutions despite the metric (2.5) looks simpler in structure than (2.1).

We note in figure (3.1), the coordinate ζ in (2.1) varies as ζ0/2 ≤ ζ ≤ ζ0 covers the range
of 0 ≤ r < ∞ where sn(ζ = ζ0, 1/4) = 0 and ζ0 = 3.192484 +O(10−7) (See figure (3.2)). In
general for any c and 0 < k < 1, the coordinate ζ should be chosen as ζm,c,k/2 ≤ ζ ≤ ζm,c,k

where ζm,c,k is the m-th positive root of sn(c2ζ, k2).
For both ǫ = ±1, we choose m, γ > 0 (The mass of solutions is proportional to parameter

m that appears in metric (3.4)). The choice makes the solution (3.4) with ǫ = +1 regular
everywhere for t ≥ 0. Where ǫ = −1, the solutions are still regular everywhere for t ≤ 0.
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Figure 3.2: The radial coordinate r ≥ 2c in (2.5) as a function of coordinate ζ in (2.1)where
we set c = 1 and k = 1/2.

The Ricci scalar of solution (3.4) is given by

R =
20G(t, ζ)− 27/2m2e−2(A(ζ)+B(ζ)+C(ζ))

H3(t, ζ)
, (3.5)

where

G(t, ζ) = 27Λγ2mζ + 9Λm3ζ3 + 36Λ2t2mζ + 27Λγm2ζ2 + 36Λ2t2γ + 9Λγ3

+ ǫ(8
√
3Λ5/2t3 + 18

√
3Λ3/2tm2ζ2 + 18

√
3Λ3/2tγ2 + 36

√
3Λ3/2tγmζ), (3.6)

and
H(t, ζ) = 2

√
3ǫΛ1/2t + 3γ + 3mζ. (3.7)

For the highest possible value of ζ where ζ → ζ0, the metric (3.4) reduces to

ds2 = −dT 2 + e2ǫ
√

Λ/3Tds2
R4, (3.8)

where ds2
R4 is given by (4.5) and T =

ln(2ǫ
√

Λ/3t+mζ0+γ)

2ǫ
√

Λ/3
. The equal time hypersurfaces in

(3.8) are flat R
4. These hypersurfaces have an infinitely large size at T → −∞ (where

ǫ = −1), which decreases to a minimum value of 1 as T → 0. Hence the five-dimensional
spacetime (3.8) with ǫ = −1 shows a collapsing patch of five-dimensional dS spacetime.
This contracting patch of solutions (3.4) at future infinity implies that black hole solutions
based on Bianchi type IX space can describe the coalescence of black holes in asymptotically
dS spacetimes. Indeed, the Ricci scalar (3.5) of (3.8) is equal to 20Λ

3
, that is exactly the

Ricci scalar of five-dimensional dS spacetime [21]. T The flat hypersurfaces R
4 have the

smallest size at T = 0 (where ǫ = +1), which increases to an infinitely large size as T → ∞.
Hence the spacetime (3.8) with ǫ = +1 shows an expanding patch of five-dimensional dS
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Figure 3.3: The c-function/103 versus time (for ǫ = +1) at three different ζ-fixed slices,
where we set c = 1 and k = 1/2. The up and down solid curves are c-functions at ζ = 3.19
and 1.60 slices, respectively. The dashed curve shows the c-function for slice at ζ = 2.50.

spacetime. So in the limit of ζ → ζ0, the spacteime (3.4) asymptotically reduces to the
expanding/collapsing patches of five-dimensional dS spacetime [21].

In the other extreme case where ζ = ζ0/2+ ζ̂ with ζ̂ → 0+, the solution (3.4) transforms
to

ds2 = −dT 2 + e2ǫ
√

Λ/3T {dζ̂2 + σ2
1 + σ2

2 +
1

λ2
σ2
3}, (3.9)

where T =
ln{λ(2ǫ

√
Λ/3t+mζ0/2+γ)}

2ǫ
√

Λ/3
and we denote e2A(ζ0/2) = e2B(ζ0/2) = e−2C(ζ0/2) by λ → 0+.

The metric (3.9) clearly shows a bolt structure at ζ̂ = 0 in which both Ricci scalar and
Kretschman invariant diverge as 1

λ
and 1

λ6 , respectively.
Finally, we consider the geometry of solutions (3.4) where ǫ = +1 at future infinity. The

metric in the limit of large values of t approaches

ds2 = −dT2 + µeµTds2B, (3.10)

where T = ln t
µ
, µ = 2

√
Λ
3
and ds2B is given by (2.1). The equal time hypersurfaces of (3.10)

are Bianchi spaces. The metric (3.10) shows the big bang patch which covers half the dS
spacetime from a big bang at past horizon to the Bianchi hypersurfaces at future infinity.
The other half of dS spacetime is covered by the big crunch patch that includes the Bianchi
hypersurfaces at past infinity to a big crunch at future horizon. This contracting patch of
solutions (3.4) at future infinity implies that black hole solutions based on Bianchi type IX
space can describe the coalescence of black holes in asymptotically dS spacetimes.

As it is well known, there is a natural correspondence between phenomena occurring near
the boundary (or in the deep interior) of asymptotically dS (or AdS) spacetime and UV (IR)
physics in the dual CFT. Hence, any solutions in asymptotically (locally) dS spacetims lead
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Figure 3.4: The c-function/105 versus time for ǫ = −1, at three different ζ-fixed slices,
where we set c = 1 and k = 1/2. The up and down solid curves are c-functions at ζ = 3.19
and 1.60 slices, respectively. The dashed curve shows the c-function for slice at ζ = 2.50.

to interpretation in terms of renormalization group flows and associated generalized dS c-
theorem. In any contracting patch of dS spacetimes, the renormalization group flows toward
the infrared and in any expanding patch, it flows toward the ultraviolet. The c-function for
representation of the dS metric with a wide variety of boundary geometries involving direct
products of flat space, the sphere and hyperbolic space was studied in [22]. For our five-

dimensional exact cosmological solution (3.4), the c-function is c = (Gµνn
µnν)−

3

2 where nµ is
the unit vector along time direction. The c-function should show an increasing (decreasing)
behaviour versus time for any expanding (contracting) patch of the spacetime. The explicit
expression for c-function is given by

c−2/3(t, ζ) =
3

2

(∂H(t,ζ)
∂t

)2

H2(t, ζ)

+
3e−2(A(ζ)+B(ζ)+C(ζ))

4H5(t, ζ)

(
(
∂H(t, ζ)

∂ζ
)2 − 2H(t, ζ)

∂2H(t, ζ)

∂ζ2
)

(3.11)

which shows the c-function depends on time as well as ζ . We consider three different values
for ζ and evaluate the corresponding c-function as function of time. First, we consider
ζ = ζ0/2 ≃ 1.60 that is the smallest value of ζ . Second, we set ζ = 2.50 and finally we
consider ζ = ζ0 ≃ 3.19. In figure (3.3), we plot the c-functions for these three different
fixed values of ζ where we set ǫ = +1. The plots show explicitly the expansion of ζ-fixed
slices, in perfect agreement with what we concluded after equation (3.8). Moreover, setting
ǫ = −1 yields the decreasing c-functions of figure (3.4), again in agreement with our previous
conclusions.
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4 Conclusions

In this paper, we construct an exact cosmological class of non-stationary solutions to five di-
mensional minimal supergravity, based on Bianchi type IX Einstein-hyperkähler space. The
Bianchi type IX Einstein-hyperkähler space doesn’t have any tri-holomorphic U(1) isome-
tries, hence the solutions could be used to study the physical processes that don’t respect
any tri-holomorphic abelian symmetries. The solutions are regular everywhere except on the
location of bolt in four-dimensional Bianchi type IX base space. We note the c-function for
our solutions depends on cosmological time as well as radial coordinate of Bianchi type IX
base space. For any fixed value of coordinate ζ , the c-function has monotonically increasing
(or decreasing) behaviour with time depending on ǫ = +1 (or ǫ = −1). The behaviour of
c-function is in perfect agreement with asymptotic reduction of solutions to expanding (or
collapsing) patches of five-dimensional dS spacetimes. We also notice the geometry of solu-
tions at future infinity contains a contracting patch. This implies that black hole solutions
based on Bianchi type IX space can describe the coalescence of black holes in asymptotically
dS spacetimes. We leave the black hole solutions based on Bianchi type IX space as well as
the thermodynamics of solutions and application of dS/CFT correspondence to the solutions
presented in this paper for a future article.
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This work was supported by the Natural Sciences and Engineering Research Council of
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Appendix A

The Maurer-Cartan one-forms in (2.1) are given respectively by

σ1 = dψ + cos θdφ, (4.1)

σ2 = − sinψdθ + cosψ sin θdφ, (4.2)

σ3 = cosψdθ + sinψ sin θdφ, (4.3)

and satisfy

dσi =
1

2
εijkσj ∧ σk. (4.4)

We note that the metric on the R4 (with a radial coordinate R and Euler angles (θ, φ, ψ) on
an S3) could be written in terms of Maurer-Cartan one-forms via

ds2 = dR2 +
R2

4
(σ2

1 + σ2
2 + σ2

3), (4.5)

with σ2
2 + σ2

3 is the standard metric of S2 with unit radius; 4(σ2
1 + σ2

2 + σ2
3) gives the same
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for S3. The Bianchi type IX metric (2.1) satisfies Einstein equations provided

d2A

dζ2
=

1

2
{e4A − (e2B − e2C)2}, (4.6)

d2B

dζ2
=

1

2
{e4B − (e2C − e2A)2}, (4.7)

d2C

dζ2
=

1

2
{e4C − (e2A − e2B)2}, (4.8)

as well as

dA

dζ

dB

dζ
+
dB

dζ

dC

dζ
+
dC

dζ

dA

dζ
=

1

2
{e2(A+B) + e2(B+C) + e2(C+A)} − 1

4
{e4A + e4B + e4C}. (4.9)

Integrating equations (4.6), (4.7), (4.8) and (4.9), we get equations (2.2),(2.3) and (2.4)
where αi’s are three integration constants.

Appendix B

The first set of solutions to equations (2.2), (2.3) and (2.4) corresponds to (α1, α2, α3) =
(1, 1, 1). The solutions describe the Atiyah-Hitchin metric [23] in the general form of (2.1).
The metric functions are

e2A(ζ) =
2

π

ϑ2ϑ
′

3ϑ
′

4

ϑ
′

2ϑ3ϑ4
, (4.10)

e2B(ζ) =
2

π

ϑ
′

2ϑ3ϑ
′

4

ϑ2ϑ
′

3ϑ4
, (4.11)

e2C(ζ) =
2

π

ϑ
′

2ϑ
′

3ϑ4
ϑ2ϑ3ϑ

′

4

, (4.12)

where the ϑ’s are Jacobi Theta functions with complex modulus iζ . The Jacobi Theta func-
tions ϑ are given by ϑi(τ) = ϑi(0 |τ ), where we have used Jacobi-Erderlyi notation ϑ1(ν |τ ) =
ϑ [11] (ν |τ ), ϑ2(ν |τ ) = ϑ [10] (ν |τ ), ϑ3(ν |τ ) = ϑ [00] (ν |τ ) and ϑ4(ν |τ ) = ϑ [01] (ν |τ ).

The Jacobi functions with characteristics ϑ [ab ] (ν |τ ) are defined by the following series

ϑ [ab ] (ν |τ ) =
∑

n∈Z

eiπ(n−
a

2
){τ(n− a

2
)+2(ν− b

2
)}, (4.13)

where a and b are two real numbers.
The other possible values for the integration constants α1, α2 and α3 are (1,−1,−1),

(−1, 1,−1) and (−1,−1, 1). However, in all these three cases, a redefinition of metric func-
tions change the solutions into Atiyah-Hitchin metric with metric functions (4.10), (4.11)
and (4.12).
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Appendix C

The second set of solutions to equations (2.2), (2.3) and (2.4) corresponds to (α1, α2, α3) =
(0, 0, 0). We find the differential equations (2.2), (2.3) and (2.4) can be solved exactly and
the solutions are given by [14]

A(ζ) =
1

2
ln
(
c2
cn(c2ζ, k2)dn(c2ζ, k2)

sn(−c2ζ, k2)
)
, (4.14)

B(ζ) =
1

2
ln
(
c2

cn(c2ζ, k2)

dn(c2ζ, k2)sn(−c2ζ, k2)
)
, (4.15)

C(ζ) =
1

2
ln
(
c2

dn(c2ζ, k2)

cn(c2ζ, k2)sn(−c2ζ, k2)
)
, (4.16)

where sn(z, k), cn(z, k) and dn(z, k); the standard Jacobian elliptic SN , CN and DN func-
tions, are related to am(z, k); the Jacobian elliptic AM function, by

sn(z, k) = sin(am(z, k)), (4.17)

cn(z, k) = cos(am(z, k)), (4.18)

dn(z, k) =
√
1− k2sn2(z, k). (4.19)

The Jacobian elliptic AM function is the inverse of the trigonometric form of the elliptic
integral of the first kind; which meansam(f(sinφ, k), k) = φ, where f(ϕ, k); the elliptic integral
of the first kind, is defined by

f(ϕ, k) =

∫ sin−1(ϕ)

0

dθ√
1− k2 sin2 θ

. (4.20)

We change the coordinate ζ in the metric (2.1) to the coordinate r by [14]

r =
2c√

sn(c2ζ, k2)
. (4.21)

The metric then changes from (2.1) into (2.5) with one metric function (2.6) only. The latter
form of metric is more convenient to be considered in special cases, as we consider here. In
special case of k = 0, where a1 and a2 coincide, we get the metric

ds2 =
dr2

h(r)
+
r2

4
h(r){dθ2 + sin2 θdφ2}+ r2

4h(r)
(dψ + cos θdφ)2, (4.22)

which is the Eguchi-Hanson type I metric with h(r) = (1 − (2c)4

r4
)1/2. The Eguchi-Hanson

type I metric can also be written as [24]

ds2 = f̃ 2(r)dr2 +
r2

4
g̃2(r){dθ2 + sin2 θdφ2}+ r2

4
(dψ + cos θdφ)2, (4.23)
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where
f̃(r) = 1

2
(1 + 1

√

1− a4

r4

),

g̃(r) =

√
1
2
(1 +

√
1− a4

r4
).

(4.24)

In the other extreme case where k = 1, a2 is equal to a3 and we obtain the Eguchi-Hanson
type II metric

ds2 =
dr2

h2(r)
+
r2

4
h2(r)σ2

1 +
r2

4
(σ2

2 + σ2
3), (4.25)

which is of the same form of well-known Eguchi-Hanson metric

ds2 =
r2

4g(r)
[dψ + cos(θ)dφ]2 + g(r)dr2 +

r2

4

(
dθ2 + sin2(θ)dφ2

)
, (4.26)

by making the substitution 2c = a and h(r) = 1√
g(r)

in (4.25). We note that only for special

values of k = 0 and k = 1, the metric (2.5) admits a tri-holomorphic U(1) isometry; hence
could be put into Gibbons-Hawking form. In both special cases of k = 0 and k = 1, the five-
dimensional supergravity solutions can be constructed simply by four harmonic functions on
the base space. The case with k = 1 was considered explicitly in [25] and [26], where the
authors constructed five-dimensional supersymmetric black ring solutions as well as eleven
dimensional solutions on the four and six-dimensional hyper-Kähler Eguchi-Hanson type II
base spaces, respectively. Their solutions have the same two angular momentum components
and the asymptotic structure on time slices is locally Euclidean. The circle-direction of the
black ring is along the equator on a two-sphere bolt on the base space. The case with k = 0
gives a separable five-dimensional metric for Eguchi-Hanson type I manifold with a time
direction. The most general five-dimensional supergravity solutions with parameter k varies
as 0 < k ≤ 1, were studied in [14].
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