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Abstract

We compute the sub-leading terms in the Tian-Yau-Zelditch asymptotic expansion
of the partition function for dual giant gravitons on AdS5 × L5 and provide a bulk
interpretation in terms of curvature invariants. We accomplish this by relating the
partition function of dual giant gravitons to the Hilbert series for mesonic operators
in the CFT. The coefficients of the subleading terms encode integrated curvature in-
variants of L5. In the same spirit of Martelli, Sparks and Yau, we are able to compute
these integrated curvature invariants without explicit knowledge of the Sasaki-Einstein
metric on L5. These curvature invariants contribute to the 1/N2 corrections of the
difference of the 4D anomaly coefficients a and c recently found by Liu and Minasian,
which we now have a purely field theoretic method of calculating.

http://arxiv.org/abs/1011.5231v1


1 Introduction

Following the discovery of the AdS/CFT correspondence on AdS5 × S5 [1], the duality was
generalized to compactifications of the form AdS5 × L5, where L5 is an arbitrary Sasaki-
Einstein manifold [2, 3]. The Sasaki-Einstein condition ensures that the low energy su-
pergravity theory on L5 preserves 8 supercharges. This supersymmetry condition has a
geometric interpretation, that the cone X6 over L5 is a Calabi-Yau singularity. The dual
field theory is obtained from the low-energy field theory on the world-volume of N D3-branes
placed at the Calabi-Yau singularity. By studying fluctuations on the string theory side one
finds that information about the L5 factor must be encoded in the particle content and spec-
trum for the dual CFT. This motivates one to ask, paralleling the iconic question in spectral
theory [4], “is it possible to hear the shape of a dual geometry?”

In fact, the analogy to the classic question of Kac in spectral theory is remarkably close,
as we make use of the Hilbert series, a holomorphic analog of the heat kernel. Generalizing
the works of Martelli, Sparks and Yau [5, 6, 7], we relate curvature invariants of L5 to the
number of mesonic operators in the CFT by counting the asymptotic number of holomorphic
functions on the Calabi-Yau cone over L5. By computing sub-leading 1/N2 corrections to
the asymptotic number of long mesonic operators, we are able to compute

∫

L5 Riem
2 from

purely CFT data without reference to an explicit metric on L5.

The AdS/CFT correspondence predicts that the volume of the horizon manifold is in-
versely relate to the a-central charge of the dual gauge theory

V ol(L5) =
π3N2

4a
.

Recently this piece of the AdS/CFT conjecture was mathematically proven [8] by analyzing
the leading order behavior of the Hilbert series. The sub-leading coefficients of the Hilbert
series contain a wealth of geometric information as well. The main result of this paper is the
following relation between the coefficients of the singular terms in the Hilbert series of the
quiver gauge theory and curvature invariants of L5

TrH e
−βĤ ∝ lim

s→0

(

2π

3

)3

H0,0(Q, e
−s)

=
vol(L5)

s3
+

vol(L5)

s2
+

(

91

216
vol(L5) +

1

1728

∫

L5

Riem2(L5)

)

1

s
+O(1) (1.1)

This is also an asymptotic expansion of the quantum partition function for dual giant gravi-
tons. We are able to prove this when L5 is a regular Sasaki-Einstein manifold (that is when
it is the total space of a regular U(1) bundle over a 4d Kähler-Einstein base B4). Our proof
uses the Tian-Yau-Zelditch (TYZ) expansion of the heat kernel [9, 10, 11, 12] which relates
the Hilbert series to the curvatures of the 4d base and then we “undo” the Kaluza-Klein
reduction to rewrite this in terms of the 5d total space. For several irregular Sasaki-Einstein
manifolds where an explicit metric is known [13] we have verified by direct calculation that
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(1.1) also holds. We therefore conjecture that (1.1) holds not only for L5 regular Sasaki-
Einstein, but for quasi-regular and irregular Sasaki-Einstein manifolds as well.

The physics motivating our proof is as follows. First, we believe from AdS/CFT that
the partition functions for dual giant gravitons is the Hilbert series for the quiver gauge
theory. Indeed, Martelli and Sparks showed that BPS dual giant gravitons act as point
particles in time × L5 [7]. It is clear that a point particle moving on L5 can be Kaluza-
Klein reduced to an electrically charged point particle moving in an electromagnetic field in
B4. This scenario was analyzed by Douglas and Klevtsov [14] and they re-derived the TYZ
expansion of the partition function for a particle in a magnetic field. Therefore the problem
of counting mesonic operators in the CFT is reduced to counting the number of states in
the lowest Landau level in the base space B4. Douglas and Klevtsov relate the expansion
of the Landau level counting to curvature invariants on the base space B4. However, the
requirement that L5 be Sasaki-Einstein and that B4 be at least locally Kähler-Einstein with
a U(1) line bundle is a strong enough condition that it fixes a relationship between 4d and
5d curvature invariants. Since in both the regular and irregular cases, L5 is smooth, we
conjecture that the expansion written in 5d curvatures also holds in the irregular case.

The outline of the rest of the paper is as follows. In section 2 we review the Hilbert series
and the correspondence between mesonic operators and holomorphic functions on the Calabi-
Yau cone. Section 3 reviews the results of Martelli and Sparks [7], which relates the Hilbert
series to the partition function of dual giant gravitons. We then connect their partition
function to that of the integer quantum hall system studied by Douglas and Klevtsov [14].
In section 4 we express the sub-leading terms in the asymptotic expansion of the Hilbert
series as geometric invariants, provide a proof of the conjectured form for regular Sasaki-
Einstein manifolds, and provide evidence that the result holds more generally for quasi-
regular and irregular Sasaki-Einstein manifolds as well. Finally, we conclude in section 5
with more general remarks and avenues for future research. We also include an appendix
which provides further details omitted from the main body of the paper.

As this work was nearing publication, we became aware of the work of Liu and Minasian
[15] which computes contributions to 1/N2 corrections to the anomaly coefficients a and c
of the dual field theory. Such corrections correspond to higher curvature terms in the AdS
gravitational action, which reduce to integrated curvature invariants in the expansion, an
interpretation complementary to the work presented in this paper. Our work provides a
method of calculating these curvature invariants from purely field theoretic data.

2 The Hilbert series

In this section we consider N = 1 supersymmetric conformal field theories (SCFTs) ob-
tained from a stack of N D3-branes at a Calabi-Yau singularity X6. For toric Calabi-Yau
3-folds, mesonic operators in the gauge theory are in one-to-one correspondence with holo-
morphic functions on the Calabi-Yau manifold [16, 17, 7]. For general N = 1 superconformal
quiver gauge theories we can identify mesonic operators based at a U(N) gauge group with
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holomorphic functions on the Calabi-Yau manifold [8].

We consider local Calabi-Yau singularities X6 = SpecR where R is a Gorenstein ring of
dimension 3. A broad class of such singularities can be described by quiver gauge theories
with superpotential algebras A of the form

A = EndR(R +M1 + · · ·+Mn) (2.1)

where Mi are R-modules corresponding to fractional branes. Since EndR(R) = R, it is
possible to identify closed loops based at the node corresponding to R with the elements of
the ring R. These loops are the holomorphic functions on the Calabi-Yau singularity X6,
and thus the based mesonic operators in the CFT are in one-to-one correspondence with
holomorphic functions on the Calabi-Yau 3-fold.

The Hilbert series of a quiver gauge theory is defined to be

H(t) =
∑

O∈ Mesons

tR(O)

where the sum extends over all mesonic operators O based at a U(N) gauge group up to F-
term equivalence. For a superconformal quiver gauge theory, we define an adjacency matrix
graded by R-charge,

M(Q; t)ij =
∑

e∈Arrows(i→j)

tR(e) , (2.2)

where R(e) is a trial R-charge assignment for the edge e. A trial R-charge is an R-charge
assignment such that the quiver gauge theory has vanishing beta functions and is hence
superconformal. The true R-charge assignment in the infrared is determined by the A-
maximization procedure of Intriligator and Wecht [18]. The Hilbert series of the supercon-
formal quiver gauge theory is the (0, 0) component of the matrix [8]

H(Q; t) =
1

1−MQ(t) + t2MT
Q(t

−1)− t2
. (2.3)

We now explain the Hilbert series in the context of singularities X that are the total space
of a line bundle L → B4, which is the case of primary interest throughout the remainder of
this paper 1. In this case, the corresponding Sasaki-Einstein manifold is regular. For such
Calabi-Yau manifolds, the Hilbert series takes the form

H(t, X) =
∞
∑

k=0

dim H0(B,L⊗k)tk (2.4)

1Not all Sasaki-Einstein manifolds are of this form. The base B4 = F1, known as the first del Pezzo
surface, has no Kähler-Einstein metric. The existence of a Kähler-Einstein metric in this case is obstructed
by the Matsushima and Futaki theorems [23, 19, 25]. However the “link” of the total space of the anti-
canonical line bundle over F1, which is called Y 2,1, does admit a Sasaki-Einstein metric [24].
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in this case, the TYZ asymptotic expansion of the Hilbert series is sensitive to the volume
and curvature of the base B4 [9, 10, 11, 15]

H(t, X) = g(k) =
1

2

(

k2 + k
R

2
+

(

1

24
Riem2 − 1

6
Ric2 +

1

8
R2

))

+O(
1

k
) . (2.5)

It is also useful to consider the restriction of C to U(1), which naturally gives L5 as a
circle bundle over B4

S1 → L5

↓
B4 .

(2.6)

As an explicit example, consider the case X = C3, in which case L = S5 and B = CP
2

and the relevant line bundle is L = O(1).

dim H0(B,L⊗k) =
(k + 1)(k + 2)

2
. (2.7)

Computing the Hilbert series for C3, we find

H(t, X) =
∞
∑

k=0

(k + 1)(k + 2)

2
tk =

1

(1− t)3
. (2.8)

As shown by Martelli, Sparks, and Yau [5, 6] and will be further elaborated in section
4, the TYZ expansion determines dim H0(B,L⊗k) as a quadratic polynomial ak2 + bk + c
whose leading coefficient a is proportional to the volume of the horizon manifold. Similarly,
the linear term b is fixed by the Calabi-Yau condition, and as we will show, the constant
term c is determined by integrating a linear combination of quadratic curvatures over the
horizon manifold L.

Given the Hilbert series H(t) for a Calabi-Yau 3-algebra, which has a pole at t = 1, the
coefficients a, b, and c are easily computed from the singular part of H(e−s) near s = 0,

lim
s→0

H(e−s) =
2a

s3
+

b

s2
+
c

s
+O(1) . (2.9)

The Hilbert series and TYZ expansion for several examples are given in table 1.

3 BPS states and free particles

In this section we will review how the action for dual giant gravitons can be locally viewed as
the action of an electrically charged particle on a Kähler-Einstein manifold in the presence of
a magnetic field. This allows us to relate the partition function for dual giant gravitons to the
curvature invariants of the Kähler-Einstein manifold following the path integral derivation
of Douglas and Klevtsov.
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L5 Exact Hilbert Series Small s Expansion

S5 1
(1−t2/3)3

1
s3
+ 1

s2
+ 4

9s

T 1,1 1+t
(1−t)3

16
27s3

+ 16
27s2

+ 8
27s

S5/Z3
1+7t2+t4

(1−t2)3
1

3s3
+ 1

3s2
+ 4

27s

Y 2,1 8t2
√

13/3f(t)

27(t−t(1+2
√

13)/3)2(t5−t(1+2
√

13)/3)2
(46+13

√
13)

324
1
s3
+ (46+13

√
13)

324
1
s2

+ (22+7
√
13)

324
1
s

f(t) = 2t22/3 + t
2
3
(4+

√
13) + 3t

2
3
(7+

√
13) − 3t

2
3
(10+

√
13) − t

2
3
(13+

√
13) − 2t

4
3
(3+

√
13)

Table 1: Hilbert Series

We first review the brane construction that leads to the class of theories relevant to this
work. Compactifying type IIB string theory to four dimensions on a Calabi-Yau manifold
X6 preserves N = 2 supersymmetry in 4d. If the Calabi-Yau manifold X6 is a real cone
over a Sasaki-Einstein base L5, then placing a stack of N D3-branes at a singular point in
X6 leads to a theory with N = 1 supersymmetry on the D3-brane world-volume. The near
horizon geometry is AdS5 × L5, where L5 is a Sasaki-Einstein manifold, called the “horizon
manifold.” The AdS radial direction r combines with L5 to give a non-compact Calabi-Yau
cone X6 with metric

ds2X = dr2 + r2ds2L .
2 (3.1)

Every Sasaki-Einstein manifold has a distinguished vector field

ξ = J(r
∂

∂r
) =

∂

∂ψ

called the Reeb vector field. It is defined using the complex structure J of the Calabi-Yau
singularity. The abelian part of the isometry group of X6 is (C∗)s where s = 1, 2 or 3.
The Reeb vector field can be written as a linear combination of the generators of the U(1)s

isometry group as

ξ =
∑

i

bi
∂

∂φi
.

For certain linear combinations of the U(1) generators, the orbits no longer close and the
Sasaki-Einstein manifold is called irregular. If the orbits close, the Sasaki-Einstein manifold
is regular or quasi-regular.

Dual Giant Gravitons are supersymmetric configurations corresponding to D3-branes
wrapped on S3 × time ⊆ AdS5. The dynamics of BPS dual giants (the BPS condition

2While we will make extensive use of the assumption that X6 can be written as a cone over a Sasaki-
Einstein base, it is important to note that not all non-compact Calabi-Yau manifolds are of this form, and
for such exotic spaces that cannot be written as metric cones, it is unclear how to formulate the AdS/CFT
correspondence [20].

5



fixes the brane’s radial position as well as it’s position in B4 ) is equivalent to that of BPS
point-particles on L5 with Hamiltonian

HBPS =
1

ℓ
Pψ

where ℓ is the AdS5 radius
ℓ = 4πgsNα

′2,

and Pψ is the momentum conjugate to ψ. The phase space for BPS dual giant gravitons
is (X6, ds2X). Using geometric quantization, Martelli and Sparks [7] quantize the classical
phase space, to obtain the quantum Hamiltonian, Ĥ, for a BPS point-particle. The partition
function dual giant gravitons is

Zquantum(β) = TrH e
−βĤ (3.2)

where the trace is over all states in the Hilbert space H. Martelli and Sparks show that the
space of states is precisely the space of holomorphic functions on X6 and that the eigenvalues
of the holomorphic functions under the (C∗)s action are qm =

∏s
i=1 q

mi
i . They then write

the partition function as

TrH e
−βĤ ∼= C(qi = e−βξi/ℓ, X6) . (3.3)

where the equivariant character C(q,X6) is the Hilbert series of X6.

Because the BPS condition fixes the radial position and the position on the Kähler-
Einstein base, and the Hamiltonian restricted to BPS geodesics given by the Dirac-Born-
Infeld and Wess-Zumino terms is precisely that corresponding to a BPS point particle moving
in L5 [7]. Any Sasakian metric can be written locally in the form

ds2L = ds2B +

(

1

3
dψ + A

)2

(3.4)

where ds2B is locally a Kähler-Einstein metric. We consider the more general case of geodesic
motion on a Lorentzian manifold with metric

ds2 = −dt2 + ds2L = −dt2 + ds2B +

(

1

3
dψ + A

)2

(3.5)

where (L, gL) is a Sasakian manifold, written locally as a U(1) bundle over a base manifold
(B, hB) with Reeb vector ξ = ∂/∂ψ. We may derive geodesic motion from the following
action

S =
1

2

∫

dτ

[

−ṫ2 + hij ẋ
iẋj +

(

1

3
ψ̇ + Aiẋ

i

)2
]

. (3.6)

Absorbing a factor of 3 in the definition of pψ, the Hamiltonian is then

H =
1

2

[

−p2t + p2ψ + hij(pi − pψAi)(pj − pψAj)
]

. (3.7)
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Since ∂/∂t and ∂/∂ψ are isometries of the system, they must then have conserved conjugate
momenta

pt = E, pψ = q . (3.8)

We look for on-shell solutions, i.e. those with H = 0, which tells us the energy is simply

E2 = q2 + hij(pi − qAi)(pj − qAj) . (3.9)

Since h is a Euclidean metric, we have the BPS bound

E ≥ q . (3.10)

A geodesic which saturates this bound is called a BPS geodesic. The full trajectory of a
BPS geodesic is

pi = qAi, ẋ
i = 0, ψ̇ = q , (3.11)

and it follows that a BPS geodesic is an orbit of the Reeb vector with fixed momentum
q. Indeed [7] shows an identification between the BPS dual giant graviton phase space and
that of the geodesics studied above. This action can be dimensionally reduced to that of a
charged particle in an electric field, which is studied by Douglas and Klevtsov in [14]. This
is motivated by the result from Kaluza-Klein theory [21], given a 5d metric with a U(1)
isometry,

ds2 = hijdx
idxj + φ2

(

1

3
dψ + A

)2

, (3.12)

pψ is constant and the geodesic equation reduces to

ẍi + Γijkẋ
j ẋk − q

m
F i
j ẋ

j = 0 . (3.13)

The connection of the bundle is proportional to the base Kähler form (when L5 is quasi-
regular or irregular, this is true away from fixed points), so it is like a magnetic field,
F ∼ Bxydx ∧ dy + Bzwdz ∧ dw, as in the work of Douglas and Klevtsov. Indeed, the usual
rules of Kaluza-Klein reduction allow us to start with (3.6), restrict to BPS states, gauge fix
the re-parametrization invariance by choosing t = τ , fix a holomorphic gauge choice for A,
and add an overall constant shift, which reduces the action to

SBPS,fixed =

∫

dt
[

−1 + hīẋ
i ˙̄x̄ + Aiẋ

i + Ā̄ ˙̄x
̄
]

, (3.14)

precisely the action Douglas and Klevtsov study in [14].

4 The proof and a conjecture

In [7], Martelli and Sparks relate the quantum partition function of free BPS particles moving
on the Sasaki-Einstein manifold L5 to the asymptotic number of holomorphic functions on
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L5 Volume
∫

Riem2

S5 π3 40π3

T 1,1 16π3

27
2176π3

27

S5/Z3
π3

3
40π3

3

Y pq
π3q2

(

2+

√

4− 3q2

p2

)

3p
(

3q2+p
(

−2p+
√

4p2−3q2
))

8π3
(

2p2−3q2+p
√

4p2−3q2
)

(

106−19

√

4− 3q2

p2

)

27(p3−pq2)

Table 2: Volumes and integrated curvatures

L5. Simple dimensional analysis tells us that these terms are increasing powers of curvatures.
The leading term in the asymptotic expansion of the Hilbert series is determined in terms of
the volume of L5. If we consider the entire quadratic polynomial ak2+bk+c, or equivalently
all singular terms resulting from the asymptotic expansion of the Hilbert series 2.9, we find
an interesting result, namely, that these terms can also be expressed in terms of geometric
curvature invariants of L5.

The first sub-leading term in the asymptotic expansion of the Hilbert series, b, is fixed
by the condition that X6 be Calabi-Yau to be twice the leading term a; thus, b is also
expressible in terms of the volume of L5 [26]. Alternatively, by the Einstein condition,
along with our choice of conventions for the cosmological constant on L5, there is only one
independent curvature invariant up to linear order in the Riemann tensor, which we choose
to parametrize in terms of the volume. This can also be seen from the CFT data. Stanley
[26] shows that the Hilbert series of a Gorenstein (CY) singularity is “palindromic” in the
variable t. A quick exercise shows that when you expand in the variable s after t = e−s, this
automatically implies that the two leading coefficients are equal.

At the next order in the asymptotic expansion, we find that if our conjecture is to be
confirmed, c must be expressible as a linear combination of two independent invariants at
quadratic order in the Riemann curvature, which we choose to parametrize by Riem2 and R2.
Furthermore, by fixing the cosmological constant on L5, we may normalize R = 20, which
allows us to express

∫

L5 R
2 in terms of the volume of L5. Thus, there are two independent

coefficients which we can fix by matching to S5 and the conifold.

As a check of the conjecture, we compute the appropriate curvatures for a wide variety
of Sasaki-Einstein manifolds with known metrics, including the infinite family Y p,q [13] as
well as several examples from the family La,b,c [22], some of which can be found in table 2.
We then compare to the Hilbert series computed by methods described in [8] and find the
results match in all cases, as is shown in table 1.

We prove the conjecture in the restricted case where L5 can be written as a regular
S1 bundle over a Kähler-Einstein manifold B4 by noting that we have related the action
studied by Martelli and Sparks in [7] to the action studied in [14] by Douglas and Klevtsov.
Specifically, from the action 3.14, Douglas computes the TYZ expansion of the partition
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function, which we write here for the case of a Kähler-Einstein manifold

g(k) =
1

2

(

k2 + k
R

2
+

(

1

24
Riem2 − 1

6
Ric2 +

1

8
R2

))

+O(
1

k
) , (4.1)

where we have worked in complex coordinates and followed the standard complex conven-
tions. As explained in equations 2.9 and 2.4, the leading behavior of the Hilbert series H(t)
is determined by TYZ expansion g(k). We find

lim
s→0

H(e−s) =
1

2

(

2

s3
+
R/2

s2
+

(

1
24
Riem2 − 1

6
Ric2 + 1

8
R2
)

s

)

+O(1) . (4.2)

We express these quantities as curvatures on the Sasaki-Einstein space L5, where they are
naturally expressed in terms of real curvature conventions3,

lim
s→0

π3H(e−s) =
vol

s3
+

3

2

vol

s2
+

(

3

2

)2(
91

216
vol +

1

1728
Riem2

)

1

s
+O(1) . (4.3)

Here we have computed the Hilbert series using the degree of the holomorphic functions.
The details for the calculation reversing the Kaluza-Klein compactification and lifting the
curvatures from B4 to L5 giving equation 4.3 from equation 4.2 can be found in appendix
A.

Following the work of Martelli, Sparks, and Yau [5, 6] as outlined in section 9 of [8],
the scaling dimension ∆(O) of a mesonic operator in the gauge theory is the degree of the
corresponding function. The N = 1 superconformal algebra relates the scaling dimensions
of chiral primaries to their R-charge

R(O) =
2

3
∆(O) . (4.4)

This lets us rewrite equation 4.3 as

lim
s→0

(

2π

3

)3

HQ(e
−s) =

vol

s3
+

vol

s2
+

(

91

216
vol +

1

1728
Riem2

)

1

s
+O(1) . (4.5)

Our proof only applies to the case where L5 is a regular Sasaki-Einstein manifold since
it relies on the circle fibers being compact and non-degenerate. Nonetheless, we have shown
by example that the conjecture appears to hold even in the quasi-regular case so long as the
total space L5 remains smooth.

3In order to convert from complex to real curvature conventions, it is useful to note that there are twice
as many real coordinates as complex coordinates, and so there is a factor of two from each trace. As an
example, Riem2

C = 1

16
Riem2

R.
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5 Conclusions

As we have shown, the TYZ asymptotic expansion of the Hilbert series captures significant
information about the curvature of the horizon manifold. While we are only able to construct
a proof for this fact in the regular case, where the U(1) fibration is compact and non-
degenerate, there is significant evidence that our conjecture holds in the quasi-regular case
as well. This is a strong indication that there should be an intrinsically 5 dimensional proof
of the conjecture, rather than relying on the techniques of Kaluza-Klein reduction.

Purely from CFT data, we are able to compute
∫

L5 Riem
2 without reference to an explicit

metric, relating 1/N2 corrections to the counting of long mesonic operators in the CFT to
curvatures in the AdS dual. Such 1/N2 corrections, related to the difference in the a and
c anomalies of the N = 1 SCFT, have recently been shown to be closely related to the ap-
pearance of higher order curvature corrections in the dual gravitational action [15]. Thus, it
should come as no surprise that the AdS/CFT correspondence allows us to extract curvature
information from such corrections. Nonetheless, given the relative scarcity of examples of the
emergent geometry, we should attempt to fully exploit any novel constructions such as this
to increase our knowledge. Hopefully, through careful study, it will be possible to generalize
this result and relate other details of the CFT to the emergence of bulk geometry.

There are a large number of open questions and future directions to look into. The most
obvious one is extending our proof to the quasi-regular and irregular cases. It should be
possible to prove a generalization of (4.1) with proper treatment of the singular points of
the fiber. It would also be interesting to know if there is a directly five dimensional method
of calculating the TYZ expansion, in which case we would not have to worry about any of
the issues in the reduction to the Kähler-Einstein base.

Another question is what further geometric information is hidden in the full matrix
H(Q; t). The full matrix appears to encode information about the baryonic spectrum of the
gauge theory [27] and it would be interesting to relate this to the emergent geometry.

A third question is how such heat kernel expansions carry over to compactifications using
generalized geometry. Given that it was recently shown that the volume-minimization/a-
maximization story translates [28], it would be interesting to study what generalized curva-
ture invariants appear in subleading terms in the heat kernel expansion.

Lastly, we have studied 1/N2 corrections to the CFT which are hiding nontrivial geo-
metric information about the gravity side. Is there geometric information hidden in 1/λ
corrections as well? Given that such α′ corrections to the supergravity theory include higher
curvature corrections, these must be related. It would be very interesting to connect these
to the related work in [15].
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A Kaluza-Klein lift

The near horizon geometry is given by AdS5 × L5. To obtain a total space X6 which is
Calabi-Yau, we require the base space L5 to be Einstein [2, 3], e.g.

Rab = 4gab , (A.1)

where we fix the 5d Einstein coefficient to be 4 by convention (we will use a, b, . . . to denote
indices along L5).

We also know that such an Einstein manifold L5 must have a U(1) isometry and therefore
is Sasakian. Thus L5 may always be written as a principal S1 bundle π : L5 → B4 over
a Kähler-Einstein base with a connection 1-form η [5, 6]. The bundle structure allows the
metric on L5 to be locally written in the form

(5)g = π∗ ((4)h
)

+ φ2η ⊗ η . (A.2)

Making contact with the language of Kaluza-Klein compactifications, φ plays the role of the
dilaton field, while the connection 1-form η = 1

3
dψ+A, where A is a U(1) gauge field on the

base B and ψ is a coordinate on the circle fiber. In order for both B and M to satisfy the
Einstein condition, φ must satisfy the equation (4)

� φ = const. However, the only smooth
solutions to this equation for compact B are constant φ, and thus we may henceforth restrict
ourselves to the case of constant dilaton field φ = 1/2.

Since the structure group U(1) is abelian,

dη = Γ (A.3)

where Γ is the curvature form of η. In physicist’s terms

dη =
1

3
d2ψ + dA = dA (A.4)

so we can write

Γ = π∗

(

∑

i,j

Fijθ
i ∧ θj

)

(A.5)

where Fij = −Fji is the curvature of the U(1) bundle on the base and θi form an orthonor-
mal basis of 1-forms on B. (Above and throughout what follows, we will use roman indices
i, j, . . . to denote directions on the base and ψ to denote directions along the circle fiber.)
Furthermore, it will be essential for the computations that follow that we work in an or-
thonormal frame, since then on the bundle, covariant derivatives in bundle directions are
equivalent to covariant derivatives on the base.

Proposition A.1. The Riemann curvature tensor on L can be expressed as the curvature

12



tensor of the base B and the curvature of the U(1) connections as

(5)R ijkl =
(4)R ijkl − φ2 (2FijFkl + FikFjl − FilFjk) (A.6)

(5)R iψkψ = φ2

(

∑

l

FilFkl

)

(A.7)

(5)R iψkl = φ (∇lFik −∇kFil) = −φ∇iFkl (A.8)

The identity
∇lFik −∇kFil = −∇iFkl (A.9)

follows from
∑

ij Fijθ
i ∧ θj being closed.

Proposition A.2. If Fij = 2Jij then

(5)R ij =
(4)R ij − 2hij (A.10)

(5)R iψ = 0 (A.11)
(5)Rψψ = n (A.12)

We need to relate the Riemann curvature tensor on L5 to the Riemann curvature tensor
and Maxwell stress tensor in the Kaluza-Klein reduction to B4. By the Einstein condition,
at second order in curvature there are only two independent quantities, which we choose to
express in terms of the volume and Riem2. By our normalization convention for φ, which
fixes ψ to have period 2π, (5)Vol = 2π(4)Vol. Furthermore, since the Maxwell tensor is
proportional to the complex structure on B, we will be able to express (5)Riem2 purely in
terms of (4)Riem2 and (4)Vol.

Before we continue with the computation, it is worth reminding ourselves of a few useful
facts. First, recall the symmetries of the Riemann tensor, namely

Rijkl = −Rijlk = −Rjikl = Rklij (A.13)

along with the Bianchi identity

Rijkl +Riklj +Riljk = 0 . (A.14)

Given our convention that (4)R ij = 6hij ,
(4)R = 24. Also recall that the complex structure

Jij is antisymmetric and J2 = −1. Furthermore, it is worth noting that, in the case we are
considering

(5)R iψkl = −φ∇iFkl = −2φ∇iJkl = 0 , (A.15)

since the condition ∇iJkl = 0 is simply the integrability condition for the complex structure
on the base, making the base a Kähler manifold. Finally, the compatibility of the complex
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structure with the covariant derivative on the base also allows us to derive one final identity,

(4)R ijkl J
ilJ jk = h((4)R (∂k, ∂l)∂i, ∂j)J

ilJ jk

= h(J il(4)R (∂k, ∂l)∂i, J
jk∂j)

= h((4)R (∂k, ∂l)J
il∂i, J

jk∂j)

= h((4)R (∂k, ∂l)∂i, ∂j)

= −(4)R .

Armed with these facts, we are now prepared to proceed with our computation.

(5)Riem2 = (5)R ijkl
(5)R

ijkl
+ 4

(

(5)R iψkψ
(5)R

iψkψ
)

=
(

(4)R ijkl − φ2 (2FijFkl + FikFjl − FilFjk)
)2

+ 4φ2FikF
ik

=
(4)Riem2 − 8φ2(4)R ijkl (2JijJkl + JikJjl − JilJjk)

+16φ4 (2JijJkl + JikJjl − JilJjk)
2 + 16φ2JikJ

ik

= (4)Riem2 − 2(6 (4)R) + 120 + 16

= (4)Riem2 − 152 .

While this equality is purely geometric and holds locally, our conjecture arises from the
CFT dual and depends on integrated quantities. While the horizon Calabi-Yau manifolds
X6, and hence the Sasaki-Einstein 5-folds L5, are generically not homogeneous spaces, our
count of the number of dual giant gravitons is global (i.e. integrated) and thus does not probe
this inhomogeneity. Therefore, we will make use of an integrated version of this relation,

∫

L5
(5)Riem2

Vol(L5)
=

∫

B4
(4)Riem2

Vol(B4)
− 152 . (A.16)
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