Vacua of $N=10$ three dimensional gauged supergravity

Auttakit Chatrabhuti ${ }^{a, b}$ and Parinya Karndumri ${ }^{c, d}$
${ }^{a}$ Theoretical High-Energy Physics and Cosmology Group, Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand auttakit@sc.chula.ac.th
${ }^{b}$ Thailand Center of Excellence in Physics, CHE, Ministry of Education, Bangkok 10400, Thailand
${ }^{c}$ INFN, Sezione di Trieste, Italy
${ }^{d}$ International School for Advanced Studies (SISSA), via Bonomea 265, 34136 Trieste, Italy
karndumr@sissa.it

Abstract

We study scalar potentials and the corresponding vacua of $N=10$ three dimensional gauged supergravity. The theory contains 32 scalar fields parametrizing the exceptional coset space $\frac{E_{6(-14)}}{S O(10) \times U(1)}$. The admissible gauge groups considered in this work involve both compact and noncompact gauge groups which are maximal subgroups of $S O(10) \times U(1)$ and $E_{6(-14)}$, respectively. These gauge groups are given by $S O(p) \times S O(10-p) \times$ $U(1)$ for $p=6, \ldots 10, S O(5) \times S O(5), S U(4,2) \times S U(2), G_{2(-14)} \times S U(2,1)$ and $F_{4(-20)}$. We find many AdS_{3} critical points with various unbroken gauge symmetries. The relevant background isometries associated to the maximally supersymmetric critical points at which all scalars vanish are also given. These correspond to the superconformal symmetries of the dual conformal field theories in two dimensions.

1 Introduction

Gauged supergravities play an important role in many aspects of string theory. Some of them arise as effective theories of string compactifications in the presence of fluxes of various p-form fields, see for example, [1 for a recent review. Furthermore, they are very useful in the AdS/CFT correspondence [2]. This is due to the fact that in gauged supergravity theories, supersymmetry allows scalar potentials which admit some critical points with negative cosmological constants, AdS critical points. These critical points are of particular interest in the context of the AdS/CFT correspondence because they correspond to conformal field theories on the boundary of AdS space.

In the original $\mathrm{AdS}_{5} / \mathrm{CFT}_{4}$ correspondence, critical points of $N=8$ five dimensional gauged supergravity found in [3] describe various phases of $N=4$ SYM. The correspondence is now extended to other dimensions as well. These include $\mathrm{AdS}_{4} / \mathrm{CFT}_{3}$ and $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$ correspondences. The former is of interest in the sense that it might give some insight to the condense matter systems, for example, superconductors. Gauged supergravities in four dimensions are useful to this study in much the same way as five dimensional gauged supergravities in $\mathrm{AdS}_{5} / \mathrm{CFT}_{4}$. Vacua of $N=8$ four dimensional gauged supergravity have been classified in [4, 5] soon after its construction [6], and recently, some new vacua of this theory have been identified in [7, 8]. Although, a lot of works have been done in finding critical points of this theory, it is expected that many critical points remain to be found. On the other hand, $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$ correspondence is a good place to test and study many aspects of the AdS/CFT correspondence. This is because there are many known two dimensional conformal field theories, and things are more controllable in two dimensions. So, we hope to understand $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$ in much more detail than the higher dimensional analogues. In this case, three dimensional gauged supergravities are, of course, the natural framework. In comparison with the higher dimensional counterparts, $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$ is not only important for understanding the AdS/CFT correspondence but also for the study of black hole entropy, see [9] for a review and references therein.

Three dimensional Chern-Simons gauged supergravity, see, for example, [10, 11, 12, 13] and [14] for the construction, has a much richer structure than the analogous theories in higher dimensions due to the duality between vectors and scalars in three dimensions. The admissible gauge groups include compact, noncompact, non-semisimple and complex ones. Supersymmetry determines unique scalar target spaces for theories with $N>8$, [15]. Some works have been done in studying critical points or vacua of gauged supergravities in three dimensions [16, 17, 18, 19, 20, 21]. The theories considered in these works have $N=4,8,9,16$ supersymmetry, respectively. In this paper, we study $N=10$ theory whose 32 scalar fields parametrizing the coset $\frac{E_{6(-14)}}{S O(10) \times U(1)}$. The admissible gauge groups are subgroups of $E_{6(-14)}$. Some of compact and non-compact admissible gauge groups have been classified in [14. These are gauge groups we will study in this
work. The compact gauge groups are $S O(p) \times S O(10-p) \times U(1)$ for $p=6, \ldots 10$ and $S O(5) \times S O(5)$. The non-compact gauge groups are $G_{2(-14)} \times S U(2,1)$, $S U(4,2) \times S U(2)$ and $F_{4(-20)}$. All of these gauge groups are maximal subgroups of $S O(10) \times U(1)$ and $E_{6(-14)}$, respectively.

We will study some critical points of the scalar potentials in all of the gaugings mentioned above by using the technique introduced in 4. In this "subgroup method", we start by choosing a particular subgroup of the gauge group and study the potential on the restricted scalar manifold which is invariant under this subgroup. As a consequence of Schur's lemma, the critical points found on this invariant manifold are critical points of the potential on the whole scalar manifold, 32-dimensional $\frac{E_{6(-14)}}{S O(10) \times U(1)}$ manifold in this work. This method has been used to study critical points of scalar potentials of $N=16$ gauged supergravity in [20] and in other dimensions as well.

The paper is organized as follows. In section 2, we review some useful ingredients to construct $N=10$ gauged supergravity theory. We use the parametrization of the scalar coset manifold $\frac{E_{6(-14)}}{S O(10) \times U(1)}$ in much the same way as the $\frac{F_{4(-20)}}{S O(9)}$ coset in $N=9$ theory. All details of the gauge group generators and other needed information can be found in appendix A. Various vacua are given in section 3 including the background isometries of the maximally supersymmetric critical points at which all scalars vanish. The computations are carried out with the help of the computer program Mathematica [22]. We finally summarize our results and give some conclusions in section 4 .

$2 \quad N=10$ three dimensional gauged supergravity

In this section, we construct $N=10$ three dimensional gauged supergravity using the formulation given in [14]. The procedure is essentially the same as that given in [18], so we will give only the needed ingredients and refer the reader to [14] for the full detail of the construction.

We start by giving a description of symmetric spaces. In three dimensional gauged supergravity with $N>8$, scalar fields parametrize a unique coset space of the form G / H. The group G given by some non-compact real form of an exceptional group is the global symmetry of the theory with the maximal compact subgroup H. The subgroup H is further decomposed to $S O(N) \times H^{\prime}$ in which $S O(N)$ is the R-symmetry. Note that the additional factor H^{\prime} does not appear when $S O(N)$ is the maximal compact subgroup of G. This is the case for $N=9$ and $N=16$ theories in which G is given by $F_{4(-20)}$ and $E_{8(8)}$, respectively. The G generators $t^{\mathcal{M}}$ decompose into $\left\{X^{I J}, X^{\alpha}\right\}$ which are generators of $\left\{S O(N), H^{\prime}\right\}$ and non-compact generators Y^{A}.

In general, the G algebra, \mathfrak{g}, is formed by the isometries of the target space that can be extended to an invariance of the Lagrangian. As shown in [14],
under the map \mathcal{V}

$$
\begin{equation*}
\mathcal{V}: \mathfrak{g} \rightarrow \mathfrak{a}, \quad \mathcal{V}^{\mathcal{M}} t^{\mathcal{A}}=\frac{1}{2} \mathcal{V}^{\mathcal{M} I J} t^{I J}+\mathcal{V}_{\alpha}^{\mathcal{M}} t^{\alpha}+\mathcal{V}_{A}^{\mathcal{M}} t^{A} \tag{1}
\end{equation*}
$$

the algebra \mathfrak{g} is mapped to an associative subalgebra of $\mathfrak{a}=\left\{t^{I J}, t^{\alpha}, t^{A}\right\}$. The algebra \mathfrak{a} is an extension of $S O(N) \times H^{\prime}$ algebra, $\mathfrak{s o}(N) \times \mathfrak{h}^{\prime}$, with the commutation relations given by

$$
\begin{align*}
{\left[t^{I J}, t^{K L}\right] } & =-4 \delta^{[I[K} t^{L] J]}, \quad\left[t^{I J}, t^{A}\right]=-\frac{1}{2} f^{I J, A B} t_{B}, \quad\left[t^{\alpha}, t^{\beta}\right]=f_{\gamma}^{\alpha \beta} t^{\gamma}, \\
{\left[t^{A}, t^{B}\right] } & =\frac{1}{4} f_{I J}^{A B} t^{I J}+\frac{1}{8} C_{\alpha \beta} h^{\beta A B} t^{\alpha}, \quad\left[t^{\alpha}, t^{A}\right]=h_{B}^{\alpha}{ }_{B} t^{B} \tag{2}
\end{align*}
$$

where $C_{\alpha \beta}$ and $h^{\alpha}{ }_{B}{ }^{A}$ are an H^{\prime} invariant tensor and anti-symmetric tensors defined in [14. $f_{i j}^{I J}$ tensors are constructed from $N-1$ almost complex structures f^{P}, $2, \ldots N$. For symmetric target spaces, all the \mathcal{V} 's are given by the expansion

$$
\begin{equation*}
L^{-1} t^{\mathcal{M}} L=\frac{1}{2} \mathcal{V}^{\mathcal{M} I J} X^{I J}+\mathcal{V}_{\alpha}^{\mathcal{M}} X^{\alpha}+\mathcal{V}_{A}^{\mathcal{M}} Y^{A} \tag{3}
\end{equation*}
$$

and the map \mathcal{V} is now an isomorphism, see [14] for further detail. We have introduced "flat" indices A, B, \ldots for the scalar manifold. The target space metric $g_{i j}, i, j=1,2, \ldots d=\operatorname{dim} G / H$ is given by

$$
\begin{equation*}
g_{i j}=e_{i}^{A} e_{j}^{B} \delta_{A B} \tag{4}
\end{equation*}
$$

where the vielbein e_{i}^{A} is encoded in the expansion

$$
\begin{equation*}
L^{-1} \partial_{i} L=\frac{1}{2} Q_{i}^{I J} X^{I J}+Q_{i}^{\alpha} X^{\alpha}+e_{i}^{A} Y^{A} . \tag{5}
\end{equation*}
$$

$Q_{i}^{I J}$ and Q_{i}^{α} are composite connections for $S O(N)$ and H^{\prime}, respectively. Rsymmetry indices $I, J, \ldots=1, \ldots, N$ and $\alpha, \beta, \ldots=1, \ldots, \operatorname{dim} H^{\prime}$. Finally, the coset representative L transforms under G and H by multiplications from the left and right, respectively.

The scalar manifold of $N=10$ theory is a 32 dimensional symmetric space $\frac{E_{6(-14)}}{S O(10) \times U(1)}$. We will use the E_{6} generators constructed in [24]. Notice that there is an additional factor $H^{\prime}=U(1)$ in this theory in contrast to $N=9$ and $N=16$ theories studied in [18] and [20]. The 78 generators of E_{6} are given in [23] for the first 52 generators and in [24] for the remaining 26 . We can construct the non-compact form $E_{6(-14)}$ by making 32 generators non-compact using "Weyl unitarity". These are given by

$$
Y^{A}=\left\{\begin{array}{ll}
i c_{A+21} & \text { for } A=1, \ldots, 8 \tag{6}\\
i c_{A+28} & \text { for } A=9, \ldots, 16 \\
i c_{A+37} & \text { for } A=17, \ldots, 32
\end{array} .\right.
$$

The 46 compact generators are the generators of $S O(10) \times U(1)$ and are given in appendix A. The next ingredient we need is the $f_{i j}^{I J}$ tensors which can be read off from the second commutator of (2) as we have described in [18].

We now come to various gaugings described by the gauge invariant embedding tensor $\Theta_{\mathcal{M N}}$. From $\Theta_{\mathcal{M N}}$, we can compute A_{1} and A_{2} tensors as well as the scalar potential via the so-called T-tensors using

$$
\begin{align*}
A_{1}^{I J} & =-\frac{4}{N-2} T^{I M, J M}+\frac{2}{(N-1)(N-2)} \delta^{I J} T^{M N, M N} \\
A_{2 j}^{I J} & =\frac{2}{N} T^{I J}+\frac{4}{N(N-2)} f_{j}^{M(I m} T_{m}^{J) M}+\frac{2}{N(N-1)(N-2)} \delta^{I J} f_{j}^{K L}{ }_{j}^{m} T^{K L}{ }_{m}^{K L} \\
V & =-\frac{4}{N} g^{2}\left(A_{1}^{I J} A_{1}^{I J}-\frac{1}{2} N g^{i j} A_{2 i}^{I J} A_{2 j}^{I J}\right) \tag{7}
\end{align*}
$$

with T-tensors

$$
\begin{equation*}
T_{\mathcal{A B}}=\mathcal{V}_{\mathcal{A}}^{\mathcal{M}} \Theta_{\mathcal{M} \mathcal{N}} \mathcal{V}_{\mathcal{B}}^{\mathcal{N}} . \tag{8}
\end{equation*}
$$

The embedding tensors for the compact gaugings with gauge groups $S O(p) \times$ $S O(10-p) \times U(1), p=0, \ldots, 4$ and $S O(5) \times S O(5)$ are given by [14]

$$
\begin{equation*}
\Theta_{I J, K L}=\theta \delta_{I J}^{K L}+\delta_{[I[K} \Xi_{L] J]}+\frac{1}{3}(5-p) \Theta_{U(1)} \tag{9}
\end{equation*}
$$

where

$$
\Xi_{I J}=\left\{\begin{array}{rl}
2\left(1-\frac{p}{10}\right) \delta_{I J} & \text { for } I \leq p \tag{10}\\
-\frac{p}{5} \delta_{I J} & \text { for } I>p
\end{array}, \quad \theta=\frac{p-5}{5} .\right.
$$

For $p=5$, the gauge group is $S O(5) \times S O(5)$ which lies entirely in $S O(10)$. This is the case in which the $U(1)$ is not gauged. The generators for these gauge groups can be obtained by choosing appropriate generators of $S O(10)$, and the $U(1)$ generator is simply given by $2 \tilde{c}_{70}$. We refer the reader to appendix A for further details.

Non-compact gaugings considered in this work are those given in [14]. The gauge groups are $S U(4,2) \times S U(2), G_{2(-14)} \times S U(2,1)$ and $F_{4(-20)}$. We find the following embedding tensors

$$
\begin{align*}
G_{2(-14)} \times S U(2,1) & : \tag{11}\\
S U(4,2) \times S U(2) & : \quad \Theta_{\mathcal{M N}}=\eta_{\mathcal{M N}}=\eta_{\mathcal{M} \mathcal{N}}^{G_{2}}-\frac{2}{3} \eta_{\mathcal{M N}}^{S U(2,1)}-6 \eta_{\mathcal{M N}}^{S U(2)} \tag{12}\\
F_{4(-20)} & : \quad \Theta_{\mathcal{M N}}=\eta_{\mathcal{M N}}^{F_{4(-20)}} \tag{13}
\end{align*}
$$

where $\eta^{G_{0}}$ is the Cartan Killing form of the gauge group G_{0}. The gauge generators of these three gaugings are given in appendix A.

We finally repeat the stationarity condition for the critical points of the scalar potential 14

$$
\begin{equation*}
3 A_{1}^{I K} A_{2 j}^{K J}+N g^{k l} A_{2 k}^{I K} A_{3 l j}^{K J}=0 \tag{14}
\end{equation*}
$$

where $A_{3 l j}^{K L}$ is defined by

$$
\begin{equation*}
A_{3 i j}^{I J}=\frac{1}{N^{2}}\left[-2 D_{(i} D_{j)} A_{1}^{I J}+g_{i j} A_{1}^{I J}+A_{1}^{K[I} f_{i j}^{J] K}+2 T_{i j} \delta^{I J}-4 D_{[i} T^{I J}{ }_{j]}-2 T_{k[i} f_{j]}^{I J k}\right] \tag{5}
\end{equation*}
$$

For supersymmetric critical points, the unbroken supersymmetries are are encoded in the condition

$$
\begin{equation*}
A_{1}^{I K} A_{1}^{K J} \epsilon^{J}=-\frac{V_{0}}{4 g^{2}} \epsilon^{I}=\frac{1}{N}\left(A_{1}^{I J} A_{1}^{I J}-\frac{1}{2} N g^{i j} A_{2 i}^{I J} A_{2 i}^{I J}\right) \epsilon^{I} \tag{16}
\end{equation*}
$$

The notations and all definitions are the same as those in [14]. In the next section, we will give the scalar potential for each gauging along with the corresponding critical points.

3 Vacua of $N=10$ gauged supergravity

In this section, we give some vacua of the $N=10$ gauged theory with the gaugings described in the previous section. We will also discuss the isometry groups of the background with maximal supersymmetry at $L=\mathbf{I}$. This is a supersymmetric extension of the $S O(2,2) \sim S O(1,2) \times S O(1,2)$ isometry group of AdS_{3}. A similar study has been done in [20] and [18] for $N=16$ and $N=9$ theories, respectively. For the full list of superconformal groups in two dimensions, we refer the reader to [25]. As a general strategy, we give the trivial critical point in which all scalars are zero, $L=\mathbf{I}$, as the first critical point. It is also useful to compare the cosmological constants of other critical points with the trivial one. According to the AdS/CFT correspondence, the cosmological constant V_{0} is related to the central charge in the dual CFT as $c \sim \frac{1}{\sqrt{-V_{0}}}$, so we will give the ratio of the central charges for each non trivial critical point with respect to the trivial critical point at $L=\mathbf{I}$. We first start with compact gaugings.

3.1 Vacua of compact gaugings

The compact gauging includes gauge groups $S O(p) \times S O(10-p) \times U(1)$ for $p=6, \ldots, 10$ and $S O(5) \times S O(5)$. We give the scalar potential in $S O(p) \times$ $S O(10-p) \times U(1)$ for $p=7, \ldots, 10$ gaugings in the G_{2} invariant scalar sector. For $S O(6) \times S O(4) \times U(1)$ gauging, we study the potential in $S O(4)_{\text {diag }}$ and $S O(3)_{\text {diag }}$ sectors. Finally, for $S O(5) \times S O(5)$ gauging, we study the potential in $S O(5)_{\text {diag }}, S O(4)_{\text {diag }}$ and $S O(3)_{\text {diag }}$ sectors. All notations are the same as in [16] and 18 .

3.1.1 $S O(10) \times U(1)$ gauging

We will study the potential in the G_{2} invariant scalar manifold. From 32 scalars, there are four singlets under $G_{2} \subset S O(p), p=7, \ldots, 10$. These four scalars corre-
spond to non-compact directions of $S U(2,1)$. We use the same parametrization as in [20] namely using three compact generators of the $S U(2)$ subgroup and one non-compact generator. With this parametrization, the coset representative takes the form

$$
\begin{equation*}
L=e^{a_{1} c_{78}} e^{a_{2} \tilde{c}_{53}} e^{a_{3} c_{52}} e^{b_{1}\left(Y_{1}+Y_{6}\right)} e^{-a_{3} c_{52}} e^{-a_{2} \tilde{c}_{53}} e^{-a_{1} c_{78}} . \tag{17}
\end{equation*}
$$

This choice of L will also be used in the next three gauge groups. In this $S O(10) \times$ $U(1)$ gauging, the potential is given by

$$
\begin{equation*}
V=\frac{1}{2} g^{2}\left[-101-28 \cosh \left(2 \sqrt{2} b_{1}\right)+\cosh \left(4 \sqrt{2} b_{1}\right)\right] . \tag{18}
\end{equation*}
$$

The potential does not depend on a_{1}, a_{2} and a_{3}.
The first critical point is the trivial one in which all scalars are zero. We find

$$
\begin{equation*}
V_{0}=-64 g^{2}, \quad A_{1}=-4 \mathbf{I}_{10} \tag{19}
\end{equation*}
$$

We use the notation \mathbf{I}_{n} for an $n \times n$ identity matrix from now on. This is the critical point with $(10,0)$ supersymmetry according to our convention. The corresponding background isometry is $\operatorname{Osp}(10 \mid 2, \mathbb{R}) \times S O(2,1)$.

The second critical point is at $b_{1}=\frac{\cosh ^{-1} 2}{\sqrt{2}}$ with cosmological constant $V_{0}=-100 g^{2}$. This is a non-supersymmetric point. The ratio of the central charges between this point and the maximally supersymmetric point is

$$
\begin{equation*}
\frac{c_{(0)}}{c_{(1)}}=\sqrt{\frac{V_{0}^{(1)}}{V_{0}^{(0)}}}=\frac{5}{4} . \tag{20}
\end{equation*}
$$

Here and from now on, the notations $c_{(0)}$ and $c_{(i)}$ mean the central charges of the trivial and $i^{\text {th }}$ non trivial critical points, respectively.

For $a_{1}=a_{3}=0$, the coset representative (17) has a larger symmetry $S O(7)$. This $S O(7)$ is embedded in $S O(8)$ in such a way that it stabilizes one component of the $S O(8)$ spinor. In [20], this $S O(7)$ has been called $S O(7)^{ \pm}$according to a component of $\mathbf{8}_{s}$ or $\mathbf{8}_{c}$ is stabilized. Our critical point is parametrized only by b_{1}, so has $S O(7)$ symmetry. Notice that this point is very similar to the non-supersymmetric $S O(7) \times S O(7)$ critical point of the $S O(8) \times S O(8)$ gauged $N=16$ theory given in [20] and the $S O(7)$ point in $S O(9)$ gauged $N=9$ theory studied in [18]. The location and the value of the cosmological constant relative to the trivial point are similar for these points.

3.1.2 $\quad S O(9) \times U(1)$ gauging

The potential in this gauging is much more complicated than the previous gauge group and depends on all four scalars. So, we use the local $H=S O(10) \times$ $U(1)$ symmetry to remove $e^{-a_{3} c_{52}} e^{-a_{2} \tilde{c}_{53}} e^{-a_{1} c_{78}}$ factor in the (17) to simplify the
computation and reduce the calculation time. The potential is given in appendix C.

Although we do not have a systematic way of finding critical points of this complicated potential, we find some critical points, numerically.

The first critical point is the maximally supersymmetric $(9,1)$ point

$$
\begin{align*}
& a_{1}=a_{2}=a_{3}=b_{1}=0, \quad V_{0}=-64 g^{2} \\
& A_{1}=\operatorname{diag}(-4,-4,-4,-4,-4,-4,-4,-4,-4,4) \tag{21}
\end{align*}
$$

The background isometry is given by $\operatorname{Osp}(9 \mid 2, \mathbb{R}) \times \operatorname{Osp}(1 \mid 2, \mathbb{R})$.
The second critical point is given by

$$
\begin{align*}
b_{1} & =\frac{1}{\sqrt{2}} \cosh ^{-1} \frac{7}{3}, \quad a_{1}=\pi, a_{2}=\frac{3 \pi}{2}, a_{3}=\frac{\pi}{2}, \quad V_{0}=-\frac{1024}{9} g^{2} \\
A_{1} & =\operatorname{diag}\left(-8,-8,-8,-8,-8,-8,-8, \frac{16}{3},-\frac{16}{3},-\frac{16}{3}\right) \tag{22}
\end{align*}
$$

This G_{2} critical point has $(2,1)$ supersymmetry with

$$
\begin{equation*}
\frac{c_{(0)}}{c_{(1)}}=\frac{4}{3} . \tag{23}
\end{equation*}
$$

This critical point should be compared with the $(1,1) G_{2} \times G_{2}$ point in the $S O(8) \times$ $S O(8)$ gauged $N=16$ theory. The two point have similar locations and values of the cosmological constant relative to the trivial point.

The last critical point in this gauging is given by

$$
\begin{align*}
b_{1} & =\frac{1}{\sqrt{2}} \cosh ^{-1} 2, \quad a_{1}=a_{3}=\frac{\pi}{2}, \quad a_{2}=\text { arbitrary, } \quad V_{0}=-100 g^{2} \\
A_{1} & =\operatorname{diag}(-7,-7,-7,-7,-7,-7,-7,-7,7,-5) \tag{24}
\end{align*}
$$

This is a $(1,0)$ point with G_{2} symmetry and

$$
\begin{equation*}
\frac{c_{(0)}}{c_{(2)}}=\frac{5}{4} . \tag{25}
\end{equation*}
$$

3.1.3 $\quad S O(8) \times S O(2) \times U(1)$ gauging

The potential in the G_{2} sector is given by

$$
\begin{align*}
V= & \frac{1}{4096} e^{-4 \sqrt{2} b_{1}} g^{2}\left[3\left(-1+e^{\sqrt{2} b_{1}}\right)^{8} \cos \left(4 a_{1}\right)+4\left(-1+e^{\sqrt{2} b_{1}}\right)^{6} \cos \left(2 a_{1}\right)[27\right. \\
& \left.+170 e^{\sqrt{2} b_{1}}+27 e^{2 \sqrt{2} b_{1}}+4\left(e^{\sqrt{2} b_{1}}-1\right)^{2} \cos ^{2} a_{1} \cos \left(2 a_{3}\right)\right] \\
& +8\left(e^{\sqrt{2} b_{1}}-1\right)^{6} \cos ^{2} a_{1}\left[2\left(13+86 e^{\sqrt{2} b_{1}}+13 e^{2 \sqrt{2} b_{1}}\right) \cos \left(2 a_{3}\right)\right. \\
& \left.+\left(e^{\sqrt{2} b_{1}}-1\right)^{2} \cos ^{2} a_{1} \cos \left(4 a_{3}\right)\right]-2 e^{4 \sqrt{2} b_{1}}\left[88549+21112 \cosh \left(\sqrt{2} b_{1}\right)\right. \\
& \left.\left.+22148 \cosh \left(2 \sqrt{2} b_{1}\right)-56 \cosh \left(3 \sqrt{2} b_{1}\right)-681 \cosh \left(4 \sqrt{2} b_{1}\right)\right]\right] . \tag{26}
\end{align*}
$$

The potential does not depend on a_{2}. We find the following critical points.
First of all, when $a_{1}=a_{2}=a_{3}=b_{1}=0$, we find the maximally supersymmetric critical points. At this is point, we find

$$
\begin{align*}
V_{0} & =-64 g^{2} \\
A_{1} & =\operatorname{diag}(-4,-4,-4,-4,-4,-4,-4,-4,4,4) \tag{27}
\end{align*}
$$

This point has $(8,2)$ supersymmetry and $\operatorname{Osp}(8 \mid 2, \mathbb{R}) \times \operatorname{Osp}(2 \mid 2, \mathbb{R})$ as the background isometry group.

The next point is given by

$$
\begin{equation*}
b_{1}=\cosh ^{-1} 2, \quad a_{1}=a_{3}=0, \quad V_{0}=-100 g^{2} . \tag{28}
\end{equation*}
$$

This is an $S O(7)$ non-supersymmetric point with

$$
\begin{equation*}
\frac{c_{(0)}}{c_{(1)}}=\frac{5}{4} . \tag{29}
\end{equation*}
$$

This point is very similar to the non-supersymmetric $S O(7) \times S O(7)$ point of the $S O(8) \times S O(8)$ gauged $N=16$ theory studied in [20].

The last critical point is given by

$$
\begin{align*}
b_{1} & =\frac{1}{\sqrt{2}} \cosh ^{-1} \frac{7}{3}, \\
A_{1}=0, & a_{3}=\frac{\pi}{2}, \quad V_{0}=-\frac{1024}{9} g^{2}, \tag{30}\\
A_{1} & =\left(\begin{array}{cccccccccc}
-8 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -8 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -8 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -8 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -8 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -8 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -8 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -\frac{16}{3} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & x_{1} & x_{2} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & x_{2} & x_{3}
\end{array}\right)
\end{align*}
$$

where

$$
\begin{align*}
& x_{1}=-\frac{4}{3}\left[-5+\cos \left(2 a_{2}\right)\right] \quad x_{2}=\frac{4}{3} \sin \left(2 a_{2}\right) \\
& x_{3}=\frac{4}{3}\left[5+\cos \left(2 a_{2}\right)\right] . \tag{31}
\end{align*}
$$

We find that this is the $(1,1)$ point with G_{2} symmetry, and the diagonalized A_{1} tensor is given by

$$
\begin{equation*}
A_{1}=\operatorname{diag}\left(-8,-8,-8,-8,-8,-8,-8,8,-\frac{16}{3}, \frac{16}{3}\right) . \tag{32}
\end{equation*}
$$

The ratio of the central charges is

$$
\begin{equation*}
\frac{c_{(0)}}{c_{(2)}}=\frac{4}{3} . \tag{33}
\end{equation*}
$$

This point is similar to the $G_{2} \times G_{2}$ point with $(1,1)$ supersymmetry in $S O(8) \times$ $S O(8)$ gauged $N=16$ theory.

3.1.4 $\quad S O(7) \times S O(3) \times U(1)$ gauging

In this gauging, we still work with the G_{2} invariant scalar sector. The potential is given by

$$
\begin{equation*}
V=-\frac{1}{32} g^{2}\left[1301+448 \cosh \left(\sqrt{2} b_{1}\right)+308 \cosh \left(2 \sqrt{2} b_{1}\right)-9 \cosh \left(4 \sqrt{2} b_{1}\right)\right] \tag{34}
\end{equation*}
$$

This case is very similar to the $S O(10) \times U(1)$ gauging in the sense that the potential dose not depend on a_{1}, a_{2} and a_{3} and admits two critical points.

The first critical point is as usual at $L=\mathbf{I}$. This point is a $(7,3)$ point with

$$
\begin{align*}
V_{0} & =-64 g^{2} \\
A_{1} & =\operatorname{diag}(-4,-4,-4,-4,-4,-4,-4,4,4,4) \tag{35}
\end{align*}
$$

The background isometry is $\operatorname{Osp}(7 \mid 2, \mathbb{R}) \times \operatorname{Osp}(3 \mid 2, \mathbb{R})$.
The second critical point is given by

$$
\begin{equation*}
b_{1}=\frac{1}{\sqrt{2}} \cosh ^{-1} \frac{7}{3}, \quad V_{0}=-\frac{1024}{9} g^{2} . \tag{36}
\end{equation*}
$$

The A_{1} tensor is very complicated, so we give its explicit form in appendix B equation (104). Remarkably, the complicated matrix $M_{3}^{(1)}$ can be diagonalized to $\operatorname{diag}\left(8,8, \frac{16}{3}\right)$. This gives

$$
\begin{equation*}
A_{1}=\operatorname{diag}\left(-8,-8,-8,-8,-8,-8,-8,8,8, \frac{16}{3}\right) \tag{37}
\end{equation*}
$$

So, this critical point has $(0,1)$ supersymmetry with

$$
\begin{equation*}
\frac{c_{(0)}}{c_{(1)}}=\frac{4}{3} . \tag{38}
\end{equation*}
$$

Notice that this point has G_{2} symmetry although it is characterized only by b_{1}. This is because the $S O(7)$ in the gauge group is not the same as $S O(7)^{ \pm}$, and b_{1} is not invariant under this $S O(7)$. The $S O(7)$ in the gauge group is embedded in $S O(8)$ as $\mathbf{8}_{v} \rightarrow \mathbf{7}+\mathbf{1}$. This point is similar to the $(1,1) G_{2} \times G_{2}$ point in [20].

3.1.5 $\quad S O(6) \times S O(4) \times U(1)$ gauging

We first study the potential in the $S O(4)_{\text {diag }}$ scalar sector. There are four singlets in this sector corresponding the non-compact directions of $S O(2,2) \sim S O(2,1) \times$ $S O(2,1)$. We parametrize the coset representative by

$$
\begin{equation*}
L=e^{a_{1}\left[V_{1}, V_{2}\right]} e^{b_{1} V_{1}} e^{-a_{1}\left[V_{1}, V_{2}\right]} e^{a_{2}\left[V_{3}, V_{4}\right]} e^{b_{2} V_{1}} e^{-a_{2}\left[V_{3}, V_{4}\right]} \tag{39}
\end{equation*}
$$

where

$$
\begin{align*}
& V_{1}=j_{1}+j_{2} \\
& V_{2}=j_{3}-j_{4} \\
& V_{3}=j_{3}+j_{4} \\
& V_{4}=j_{1}-j_{2} \tag{40}
\end{align*}
$$

and

$$
\begin{align*}
j_{1} & =Y_{1}+Y_{5}-Y_{9}+Y_{13}-Y_{17}-Y_{21}+Y_{30}+Y_{32} \\
j_{2} & =Y_{2}+Y_{10}-Y_{11}+Y_{18}+Y_{19}-Y_{28}+Y_{31}+Y_{3} \\
j_{3} & =Y_{4}+Y_{7}+Y_{12}-Y_{15}+Y_{20}+Y_{23}+Y_{26}-Y_{27} \\
j_{4} & =Y_{6}-Y_{8}+Y_{14}+Y_{16}-Y_{22}+Y_{24}+Y_{25}-Y_{29} \tag{41}
\end{align*}
$$

We find the potential

$$
\begin{align*}
V= & -2 e^{-4 \sqrt{2}\left(b_{1}+b_{2}\right)}\left[1+4 e^{4 \sqrt{2} b_{1}}+e^{8 \sqrt{2} b_{1}}+4 e^{4 \sqrt{2} b_{2}}+e^{8 \sqrt{2} b_{2}}\right. \\
& \left.+12 e^{4 \sqrt{2}\left(b_{1}+b_{2}\right)}+e^{8 \sqrt{2}\left(b_{1}+b_{2}\right)}+4 e^{4 \sqrt{2}\left(2 b_{1}+b_{2}\right)}+4 e^{4 \sqrt{2}\left(b_{1}+2 b_{2}\right)}\right] g^{2} . \tag{42}
\end{align*}
$$

Unfortunately, there is no non-trivial critical point in this potential. So, there is no critical point with $S O(4)_{\text {diag }}$ symmetry.

The next sector we will consider is $S U(3)$ invariant sector. The $S U(3)$ is a subgroup of $S O(6) \sim S U(4)$. There are eight singlets in this sector. The coset representative is parametrized by

$$
\begin{equation*}
L=e^{a_{1} c_{36}} e^{a_{2} c_{51}} e^{a_{3} c_{52}} e^{a_{4} \tilde{c}_{53}} e^{a_{5} c_{77}} e^{a_{6} c_{78}} e^{b_{1} Y_{1}} e^{b_{2} Y_{3}} \tag{43}
\end{equation*}
$$

in which the eight scalars correspond to non-compact directions of $S U(2,2)$. As usual, we have used local H symmetry to simplify the parametrization of L. The potential is given in appendix D . We find two critical points.

The trivial $(6,4)$ critical point at $L=\mathbf{I}$ is given by

$$
\begin{align*}
V_{0} & =-64 g^{2} \\
A_{1} & =\operatorname{diag}(-4,-4,-4,-4,-4,-4,4,4,4,4) \tag{44}
\end{align*}
$$

The background isometry is $\operatorname{Osp}(6 \mid 2, \mathbb{R}) \times \operatorname{Osp}(4 \mid 2, \mathbb{R})$.
The non trivial critical point is given by

$$
\begin{align*}
a_{i} & =\frac{\pi}{2}, \quad i=1, \ldots, 6 \\
b_{1} & =b_{2}=\cosh ^{-1} \sqrt{3}, \quad V_{0}=-144 g^{2} \\
A_{1} & =\operatorname{diag}(-10,-10,-10,-10,-10,-10,6,6,10,10) \tag{45}
\end{align*}
$$

This point preserves $(0,2)$ supersymmetry and $S U(3)$ symmetry. The ratio of the central charges is

$$
\begin{equation*}
\frac{c_{(0)}}{c_{(1)}}=\frac{3}{2} . \tag{46}
\end{equation*}
$$

3.1.6 $\quad S O(5) \times S O(5)$ gauging

We start with the potential in the $S O(5)_{\text {diag }}$ scalar sector. There are two singlets in this sector corresponding to the non-compact directions of $S L(2)$. We parametrize the coset representative by

$$
\begin{equation*}
L=e^{a_{1} V} e^{b_{1} U} e^{-a_{1} V} \tag{47}
\end{equation*}
$$

where the compact and non-compact generators of $S L(2)$ are given by

$$
\begin{align*}
V & =\frac{1}{\sqrt{2}}\left(c_{11}-c_{17}+c_{32}-c_{48}+c_{75}+\frac{\sqrt{3}}{2} \tilde{c}_{70}\right) \tag{48}\\
U & =Y_{3}-Y_{5}-Y_{12}+Y_{16}+Y_{17}-Y_{18}+Y_{27}+Y_{29} \tag{49}
\end{align*}
$$

The potential is given by

$$
\begin{equation*}
V=-8 g^{2}\left(5+3 \cosh \left(4 b_{1}\right)\right) \tag{50}
\end{equation*}
$$

which does not have any non-trivial critical points.
We then move to smaller unbroken gauge symmetry namely $S O(4)_{\text {diag. }}$. The parametrization of L is the same as in (39). The potential turns out to be the same as that of $S O(6) \times S O(4) \times U(1)$ gauging, and, of course, does not have any non trivial critical points.

To proceed further, we need to reduce the residual symmetry to a smaller group. The next sector we will consider is $S O(3)_{\text {diag. }}$. There are eight singlets in this sector. These are non-compact directions of $S O(4,2) \sim S U(2,2)$. We parametrize the coset representative in this sector by

$$
\begin{equation*}
L=e^{a_{1} c_{10}} e^{a_{2} c_{14}} e^{a_{3} c_{15}} e^{a_{4} c_{19}} e^{a_{5} c_{20}} e^{a_{6} c_{21}} e^{b_{1} Z_{1}} e^{b_{2} Z_{2}} \tag{51}
\end{equation*}
$$

where

$$
\begin{equation*}
Z_{1}=Y_{1}+Y_{11}-Y_{20}-Y_{29}, \quad Z_{2}=Y_{2}+Y_{13}-Y_{24}+Y_{27} \tag{52}
\end{equation*}
$$

The potential depends on all eight scalars. Its explicit form is given in appendix E

The trivial $(5,5)$ critical point at $L=\mathbf{I}$ is characterized by

$$
\begin{equation*}
V_{0}=-64 g^{2}, \quad A_{1}=\operatorname{diag}(-4,-4,-4,-4,-4,4,4,4,4,4) . \tag{53}
\end{equation*}
$$

The corresponding background isometry group is $\operatorname{Osp}(5 \mid 2, \mathbb{R}) \times \operatorname{Osp}(5 \mid 2, \mathbb{R})$.
We find a non trivial critical point given by

$$
\begin{align*}
a_{i} & =\frac{\pi}{2}, \quad i=1, \ldots, 6, \quad b_{2}=0 \\
b_{1} & =\frac{\cosh ^{-1} 5}{2} \quad V_{0}=-256 g^{2} \\
A_{1} & =\operatorname{diag}(-8,-8,-8,16,16,-16,-16,16,16,16) \tag{54}
\end{align*}
$$

This critical point has $(3,0)$ supersymmetry with the ratio of the central charges

$$
\begin{equation*}
\frac{c_{(0)}}{c_{(1)}}=2 . \tag{55}
\end{equation*}
$$

3.2 Vacua of non-compact gaugings

We now consider non-compact gaugings with gauge groups $S U(4,2) \times S U(2)$, $G_{2(-14)} \times S U(2,1)$ and $F_{4(-20)}$. At $L=\mathbf{I}$, the gauge group is broken down to its maximal compact subgroup, and the bosonic part of the background isometry is formed by this subgroup and $S O(2,2)$. These gauge groups contain $S U(3)$ subgroup, so we study the potential in the $S U(3)$ scalar sector in all non-compact gaugings. For $G_{2(-14)} \times S U(2,1)$ and $F_{4(-20)}$ gaugings, the $S U(3) \subset G_{2}$ sector consists of eight scalars which is twice the number of scalars in the G_{2} sector. The $S U(3)$ is embedded in G_{2} as $\mathbf{7} \rightarrow \mathbf{3}+\overline{\mathbf{3}}+\mathbf{1}$. The eight scalars correspond to noncompact directions of the $S O(4,2) \sim S U(2,2) \subset E_{6(-14)}$. For $S U(4,2) \times S U(2)$ gauging, the $S U(3)$ is embedded in $S U(4) \subset S U(4,2)$ as $\mathbf{4} \boldsymbol{\rightarrow} \mathbf{3}+\mathbf{1}$. Similarly, the eight scalars are described by non-compact directions of $S U(2,2)$. This sector is essentially the same as that used in $S O(6) \times S O(4) \times U(1)$ gauging.

Fortunately, we do not need to deal with all eight scalars. In these three gaugings, four of the eight $S U(3)$ singlets lie along the gauge group, so only four directions orthogonal to the gauge group are relevant. This is because the singlets which are parts of the gauge group will drop out from the potential and correspond to flat directions of the potential. The relevant four singlets are contained in the $S U(2,1)$ sub group of $S U(2,2)$. We also study the potentials in other sectors specific to each gauging. The details of these sectors will be explained below.

3.2.1 $\quad G_{2(-14)} \times S U(2,1)$ gauging

If we study the potential in the G_{2} sector in this gauging, we will find the constant potential. This is because all scalars in the G_{2} sector are parts of the gauge group
and will drop out from the potential. We then start with $S U(3) \subset G_{2}$ sector. As discussed above, this sector contains four relevant scalars parametrized by

$$
\begin{equation*}
L=e^{a_{1} c_{52}} e^{a_{2} c_{78}} e^{a_{3} \tilde{c}_{53}} e^{b_{1}\left(Y_{1}-Y_{6}\right)} e^{-a_{3} \tilde{c}_{53}} e^{-a_{2} c_{78}} e^{-a_{1} c_{52}} \tag{56}
\end{equation*}
$$

The potential is given by

$$
\begin{equation*}
V=\frac{1}{18} g^{2}\left[-101-28 \cosh \left(2 \sqrt{2} b_{1}\right)+\cosh \left(4 \sqrt{2} b_{1}\right)\right] \tag{57}
\end{equation*}
$$

There are two critical points. The first one is the trivial critical point given by $L=\mathbf{I}$ and

$$
\begin{align*}
& V_{0}=-\frac{64}{9} g^{2} \\
& A_{1}=\operatorname{diag}\left(-\frac{4}{3},-\frac{4}{3},-\frac{4}{3},-\frac{4}{3},-\frac{4}{3},-\frac{4}{3},-\frac{4}{3}, \frac{4}{3}, \frac{4}{3}, \frac{4}{3}\right) \tag{58}
\end{align*}
$$

We find that this point has $(7,3)$ supersymmetry. The symmetry of this point is given by the maximal compact subgroup $G_{2} \times S U(2) \times U(1)$ of $G_{2(-14)} \times S U(2,1)$. The left handed supercharges transform as 7 under G_{2} while the right handed supercharges transform as $\mathbf{3}$ under the $S U(2) \sim S O(3)$. So, the background isometry is given by $G(3) \times \operatorname{Osp}(3 \mid 2, \mathbb{R})$.

The second critical point is characterized by

$$
\begin{align*}
& b_{1}=\frac{\cosh ^{-1} 2}{\sqrt{2}}, \\
& A_{1}=-\frac{100}{9} g^{2}, \tag{59}\\
&=\left(\begin{array}{cccccccccc}
-\frac{7}{3} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -\frac{7}{3} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -\frac{7}{3} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -\frac{7}{3} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -\frac{11}{3} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -\frac{7}{3} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -\frac{7}{3} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & y_{1} & y_{4} & y_{5} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & y_{4} & y_{2} & y_{6} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & y_{5} & y_{6} & y_{3}
\end{array}\right)
\end{align*}
$$

where

$$
\begin{align*}
& y_{1}=\frac{1}{6}\left[13-\cos \left(2 a_{1}\right)-2 \cos ^{2} a_{1} \cos \left(2 a_{2}\right)\right] \\
& y_{2}=\frac{1}{6}\left[13+\cos \left(2 a_{1}\right)-2 \cos \left(2 a_{2}\right) \sin ^{2} a_{1}\right] \\
& y_{3}=\frac{1}{3}\left(6+\cos \left(2 a_{2}\right)\right), \quad y_{4}=\frac{1}{3} \cos ^{2} a_{2} \sin \left(2 a_{1}\right) \\
& y_{5}=-\frac{1}{3} \cos a_{1} \sin \left(2 a_{2}\right), \quad y_{6}=\frac{1}{3} \sin a_{1} \sin \left(2 a_{2}\right) . \tag{60}
\end{align*}
$$

We can diagonalize A_{1} to

$$
\begin{equation*}
A_{1}=\operatorname{diag}\left(-\frac{11}{3},-\frac{7}{3},-\frac{7}{3},-\frac{7}{3},-\frac{7}{3},-\frac{7}{3},-\frac{7}{3}, \frac{7}{3}, \frac{7}{3}, \frac{5}{3}\right) \tag{61}
\end{equation*}
$$

from which we find that this is a $(0,1)$ supersymmetric critical point. The ratio of the central charges relative to the $L=\mathbf{I}$ point is

$$
\begin{equation*}
\frac{c_{(0)}}{c_{(1)}}=\frac{5}{4} \tag{62}
\end{equation*}
$$

This $S U(3)$ point is closely related to the $(0,1) S U(3)$ point in $G_{2(-14)} \times S L(2)$ gauged $N=9$ theory in [18].

We now study the potential in different sector, $S U(2)_{\text {diag }}$ sector. From the $S U(3)$ sector discussed above, the next symmetry to consider could be the $S U(2) \subset S U(3)$. In general, we expect more scalars than those appearing in the $S U(3)$ sector. This will make the calculation takes much longer time. We then consider $S U(2)_{\text {diag }}$ sector in which $S U(2)_{\text {diag }} \subset S U(2) \times S U(2)$. The first and second $S U(2)$'s are subgroups of $S U(3) \subset G_{2(-14)}$ and $S U(2,1)$, respectively. There are four singlets in this sector corresponding to the non-compact directions of $S O(4,1) \sim S p(1,1)$. We choose to parametrize the coset representative by applying three $S O(3) \subset S O(4) \sim S O(3) \times S O(3)$ rotations as follow

$$
\begin{equation*}
L=e^{a_{1} c_{8}} e^{a_{2} c_{17}} e^{a_{3} c_{20}} e^{b_{1}\left(Y_{2}-Y_{16}+Y_{19}+Y_{29}\right)} e^{-a_{3} c_{20}} e^{-a_{2} c_{17}} e^{-a_{1} c_{8}} \tag{63}
\end{equation*}
$$

The potential is

$$
\begin{equation*}
V=\frac{1}{72} g^{2}\left[-269-192 \cosh \left(2 b_{1}\right)-52 \cosh \left(4 b_{1}\right)+\cosh \left(8 b_{1}\right)\right] . \tag{64}
\end{equation*}
$$

There is one non trivial critical points given by

$$
\begin{equation*}
b_{1}=\cosh ^{-1} \sqrt{2}, \quad V_{0}=-16 g^{2} . \tag{65}
\end{equation*}
$$

This is a supersymmetric point with the associated A_{1} tensor given in appendix (B) equation (106). After diagonalization, we find

$$
\begin{equation*}
A_{1}=\operatorname{diag}\left(-4,-4,-4,-4,-\frac{10}{3},-2,-2,2,2,2\right) \tag{66}
\end{equation*}
$$

which gives $(2,3)$ supersymmetry. The ratio of the central charges is

$$
\begin{equation*}
\frac{c_{(0)}}{c_{(2)}}=\frac{3}{2} . \tag{67}
\end{equation*}
$$

This critical point has $S U(2)_{\text {diag }} \times U(1)$ symmetry.

3.2.2 $\quad F_{4(-20)}$ gauging

In this gauging with simple gauge group, we study the potential in the G_{2} and $S U(3)$ scalar sectors. We start with the G_{2} sector. Two of the four scalars are parts of the gauge group, so we only need to parametrize the coset representative with the other two scalars. These two scalars correspond to the non-compact directions of $S L(2)$. The L is then parametrized by

$$
\begin{equation*}
L=e^{a_{1} c_{52}} e^{b_{1}\left(Y_{25}+Y_{30}\right)} e^{-a_{1} c_{52}} . \tag{68}
\end{equation*}
$$

The potential is

$$
\begin{equation*}
V=\frac{g^{2}}{8}\left[-101-28 \cosh \left(2 \sqrt{2} b_{1}\right)+\cosh \left(4 \sqrt{2} b_{1}\right)\right] . \tag{69}
\end{equation*}
$$

There are two critical points. The first one is trivial and given by

$$
\begin{align*}
L & =\mathbf{I}, \quad V_{0}=-16 g^{2} \\
A_{1} & =\operatorname{diag}(-2,-2,-2,-2,-2,-2,-2,-2,-2,2) \tag{70}
\end{align*}
$$

This is the maximally supersymmetric point with $(9,1)$ supersymmetry. The gauge symmetry is broken down to its maximal compact subgroup $S O(9)$, and the background isometry is $\operatorname{Osp}(9 \mid 2, \mathbb{R}) \times \operatorname{Osp}(1 \mid 2, \mathbb{R})$.

The second critical point is given by

$$
\begin{align*}
b_{1} & =\frac{\cosh ^{-1} 2}{\sqrt{2}}, \\
A_{1} & =\left(\begin{array}{cccccccccc}
-\frac{7}{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -\frac{7}{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -\frac{7}{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -\frac{7}{2} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -\frac{7}{2} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -\frac{7}{2} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -\frac{7}{2} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & w_{1} & w_{3} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & w_{3} & w_{2} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{11}{2}
\end{array}\right) \tag{71}
\end{align*}
$$

where

$$
\begin{equation*}
w_{1}=-3-\frac{1}{2} \cos \left(2 a_{1}\right), w_{2}=\frac{1}{2}\left[-6+\cos \left(2 a_{1}\right)\right], w_{3}=\cos a_{1} \sin a_{1} . \tag{72}
\end{equation*}
$$

The A_{1} tensor can be diagonalized to

$$
\begin{equation*}
A_{1}=\operatorname{diag}\left(\frac{11}{2},-\frac{7}{2},-\frac{7}{2},-\frac{7}{2},-\frac{7}{2},-\frac{7}{2},-\frac{7}{2},-\frac{7}{2},-\frac{7}{2},-\frac{5}{2}\right) . \tag{73}
\end{equation*}
$$

This critical point is a $(1,0)$ point with

$$
\begin{equation*}
\frac{c_{(0)}}{c_{(1)}}=\frac{5}{4} \tag{74}
\end{equation*}
$$

and preserves $S O(7) \subset S O(9) \subset F_{4(-20)}$ symmetry.
In the $S U(3)$ sector, there are eight singlets, but four of them are parts of the $F_{4(-20)}$. So, there are four singlets orthogonal to the gauge group. These are non-compact directions of $S U(2,1)$, and L can be parametrized by

$$
\begin{equation*}
L=e^{a_{1} c_{34}} e^{a_{2} c_{49}} e^{a_{3} c_{52}} e^{b_{1} Y_{21}} e^{-a_{3} c_{52}} e^{-a_{2} c_{49}} e^{-a_{1} c_{34}} \tag{75}
\end{equation*}
$$

The potential is given by

$$
\begin{equation*}
V=\frac{g^{2}}{8}\left[-101-28 \cosh \left(2 \sqrt{2} b_{1}\right)+\cosh \left(4 \sqrt{2} b_{1}\right)\right] \tag{76}
\end{equation*}
$$

which is the same as the potential in the G_{2} sector. The non-trivial critical point is at the same position and cosmological constant, $b_{1}=\cosh ^{-1} 2, V_{0}=-25 g^{2}$. The residual symmetry is $S O(7)$ as in the previous critical point. Although the A_{1} tensor in this case is more complicated, it is the same as (73) after diagonalization. The explicit form of A_{1} is given in appendix B equation (108).

3.2.3 $S U(4,2) \times S U(2)$ gauging

This gauging is the most difficult one to find a suitable scalar sector in order to reveal non trivial critical points and still have a manageable number of scalars. We start with the $S O(4)_{\text {diag }}$ scalar sector. The $S O(4)_{\text {diag }}$ is formed by taking the subgroup $S U(2) \times S U(2) \times S U(2) \times S U(2)$ of $S U(4,2) \times S U(2)$. The first two $S U(2)$'s are subgroups of $S U(4) \subset S U(4,2)$, the third $S U(2)$ is the $S U(2) \subset$ $S U(4,2)$. Our $S O(4)_{\text {diag }}$ is the diagonal subgroup of $(S U(2) \times S U(2)) \times(S U(2) \times$ $S U(2)) \sim S O(4) \times S O(4)$. There are two singlets in this sector. These are non-compact directions of $S L(2)$, and L can be parametrized by

$$
\begin{align*}
L= & e^{a_{1} c_{15}} e^{b_{1} \tilde{Y}} e^{-a_{1} c_{15}} \\
\tilde{Y}= & Y_{1}+Y_{2}-Y_{6}-Y_{7}-Y_{9}+Y_{10}-Y_{14}+Y_{15} \\
& +Y_{17}-Y_{18}-Y_{22}+Y_{23}-Y_{27}+Y_{28}-Y_{29}-Y_{32} \tag{77}
\end{align*}
$$

which, unfortunately, gives a constant potential $V=-16 g^{2}$. So, we move to a smaller residual symmetry to obtain a non trivial structure of the potential.

We now study the potential in the scalar sector parametrizing the $S U(3)$ invariant manifold. This $S U(3)$ is a subgroup of $S U(4) \subset S U(4,2)$. The eight singlet scalars in this sector are the non-compact directions of $S O(4,2) \sim S U(2,2)$. The four directions which are orthogonal to the gauge group are non-compact directions of $S U(2,1) \subset S U(2,2)$. The coset representative is given by

$$
\begin{align*}
& L= e^{a_{1}\left(c_{51}+c_{78}\right)} e^{a_{2}\left(c_{36}+\tilde{c}_{53}\right)} e^{a_{3}\left(c_{77}-c_{52}\right)} e^{b_{1}\left(Y_{1}-Y_{23}\right)} \\
& e^{-a_{3}\left(c_{77}-c_{52}\right)} e^{-a_{2}\left(c_{36}+\tilde{c}_{53}\right)} e^{-a_{1}\left(c_{51}+c_{78}\right)} \tag{78}
\end{align*}
$$

We find the potential

$$
\begin{equation*}
V=-2 g^{2}\left(5+3 \cosh \left(2 b_{1}\right)\right) \tag{79}
\end{equation*}
$$

which, again, does not admit any non trivial critical points.
The next sector we will study is $S U(2)_{\text {diag }}$. This symmetry is a diagonal subgroup of $S U(2) \times S U(2)$ in which the first $S U(2)$ is a subgroup of $S U(4) \subset$ $S U(4,2)$, and the second $S U(2)$ is the $S U(2)$ factor in the gauge group. There are four scalars in this sector. These scalars are non-compact directions of $S U(2,1)$, and L can be parametrized by

$$
\begin{equation*}
L=e^{a_{1} c_{10}} e^{a_{2} c_{14}} e^{a_{3} c_{15}} e^{b_{1} Y} e^{-a_{3} c_{15}} e^{-a_{2} c_{14}} e^{-a_{1} c_{10}} \tag{80}
\end{equation*}
$$

where

$$
\begin{equation*}
Y=Y_{7}-Y_{6}-Y_{12}-Y_{16}+Y_{17}+Y_{18}+Y_{30}+Y_{31} \tag{81}
\end{equation*}
$$

The corresponding potential is

$$
\begin{equation*}
V=\frac{g^{2}}{8}\left[-101-28 \cosh \left(4 \sqrt{2} b_{1}\right)+\cosh \left(8 \sqrt{2} b_{1}\right)\right] \tag{82}
\end{equation*}
$$

We now discuss its trivial critical point at $L=\mathbf{I}$. This point is characterized by

$$
\begin{equation*}
V_{0}=-16 g^{2}, \quad A_{1}=\operatorname{diag}(-2,-2,-2,-2,-2,-2,2,2,2,2) . \tag{83}
\end{equation*}
$$

The critical point has $(6,4)$ supersymmetry. The gauge group is broken down to its maximal compact subgroup $S U(4) \times S U(2) \times U(1) \times S U(2)$. The left handed supercharges transform as $\mathbf{6}$ under $S U(4) \sim S O(6)$ while the right handed supercharges transform as 4 under $S U(2) \times S U(2) \sim S O(4)$. So, the background isometry is given by $\operatorname{Osp}(6 \mid 2, \mathbb{R}) \times \operatorname{Osp}(4 \mid 2, \mathbb{R})$.

The non trivial critical point with $S U(2)_{\text {diag }} \times S U(2) \times S U(2) \times U(1)$ symmetry is given by

$$
\begin{equation*}
b_{1}=\frac{1}{\sqrt{2}} \cosh ^{-1} \sqrt{\frac{3}{2}}, \quad V_{0}=-25 g^{2} \tag{84}
\end{equation*}
$$

The associated A_{1} tensor is given in appendix B equation (110) which can be diagonalized to

$$
\begin{equation*}
A_{1}=\operatorname{diag}\left(\frac{11}{2}, \frac{11}{2}, \frac{11}{2}, \frac{11}{2},-\frac{7}{2},-\frac{7}{2},-\frac{5}{2},-\frac{5}{2},-\frac{5}{2},-\frac{5}{2}\right) \tag{85}
\end{equation*}
$$

So, this is a $(4,0)$ point with

$$
\begin{equation*}
\frac{c_{(0)}}{c_{(1)}}=\frac{5}{4} \tag{86}
\end{equation*}
$$

4 Conclusions

In this paper, we have studied critical points of $N=10$ three dimensional gauged supergravity with both compact and non-compact gauge groups. Remarkably, all critical points found in this paper are AdS critical points. This is in contrast to the results of [20] in which some Minkowski and dS vacua have been found. In $S O(10) \times U(1)$ gauging, there is one non trivial critical point which completely breaks all the supersymmetries and breaks the gauge group down to $S O(7)$. In $S O(9) \times U(1)$ gauging, we have found two non trivial critical points with $(2,1)$ and $(1,1)$ supersymmetries. Both of them break the gauge group down to G_{2}. In $S O(8) \times S O(2) \times U(1)$ gauging, there are two non trivial critical points. One of them completely breaks all of the supersymmetries and preserves $S O(7)$ subgroup of the gauge group. Another critical point preserves G_{2} symmetry and $(1,1)$ supersymmetry. In $S O(7) \times S O(3) \times U(1)$ gauging, there is one non trivial critical point with $(0,1)$ supersymmetry and G_{2} symmetry. In $S O(6) \times S O(4) \times U(1)$ gauging, there is one non trivial $S U(3)$ critical point with $(0,2)$ supersymmetry. In $S O(5) \times S O(5)$ gauging, we have found one nontrivial critical point breaking the gauge group down to $S O(3)_{\text {diag }}$ and preserving $(3,0)$ supersymmetry.

Our results in non-compact gaugings are as follows. In $G_{2(-14)} \times S U(2,1)$ gauging, we have found two non trivial critical points. One of them has $(0,1)$ supersymmetry and preserves $S U(3)$ symmetry of the gauge group. The second critical point breaks the gauge group down to $S U(2)_{\text {diag }} \times U(1)$ and preserves $(2,3)$ supersymmetry. In $F_{4(-20)}$ gauging, we have found one $S O(7)$ critical point with $(1,0)$ supersymmetry. Finally, in $S U(4,2) \times S U(2)$ gauging, there is one non trivial $(4,0)$ critical point with $S U(2)_{\text {diag }} \times S U(2) \times S U(2) \times U(1) \sim$ $S U(2)_{\text {diag }} \times S O(4) \times U(1)$ symmetry.

The gauge groups considered in this work are only maximal subgroups of $E_{6(-14)}$. It is interesting to study gaugings with other gauge groups which are not maximal subgroups of $E_{6(-14)}$ along with their scalar potentials and the corresponding critical points. In particular, non-semisimple gaugings are very interesting in the sense that they are related to semisimple Yang-Mills gaugings which arise from dimensional reductions of higher dimensional theories [26]. Furthermore, studies of RG flows between critical points identified in this work are of particular interest in studying deformations of the two dimensional CFT's. We hope to give further results on these issues in future works.

Acknowledgement We gratefully thank the Extreme Condition Physics Research Laboratory at Department of Physics, Faculty of Science, Chulalongkorn University for computing facilities.

A Essential formulae

In this appendix, we give all necessary formulae in order to obtain the scalar potential. We use the 52 generators of the F_{4} subgroup of E_{6} from [23]. The remaining 26 generators are given in [24]. The generators are normalized by

$$
\begin{equation*}
\operatorname{Tr}\left(c_{i} c_{j}\right)=-6 \delta_{i j} \tag{87}
\end{equation*}
$$

With this normalization, we find that

$$
\begin{align*}
\mathcal{V}^{\alpha I J} & =-\frac{1}{6} \operatorname{Tr}\left(L^{-1} T_{G}^{\alpha} L X^{I J}\right) \tag{88}\\
\mathcal{V}^{\alpha A} & =\frac{1}{6} \operatorname{Tr}\left(L^{-1} T_{G}^{\alpha} L Y^{A}\right) \tag{89}\\
\mathcal{V}_{U(1)}^{I J} & =-\frac{1}{6} \operatorname{Tr}\left(L^{-1} X L X^{I J}\right) \tag{90}\\
\mathcal{V}_{U(1)}^{A} & =\frac{1}{6} \operatorname{Tr}\left(L^{-1} X L Y^{A}\right) \tag{91}
\end{align*}
$$

where we have introduced the symbol T_{G}^{α} for gauge group generators as in [18]. T_{G}^{α} will be replaced by some appropriate generators of the gauge group being considered in each gauging.

The following mapping provides the relation between c_{i} and $X^{I J}$, generators of $S O(10)$,

$$
\begin{align*}
X^{12} & =c_{1}, X^{13}=-c_{2}, X^{23}=c_{3}, X^{34}=c_{6}, X^{14}=c_{4}, X^{24}=-c_{5}, \\
X^{15} & =c_{7}, X^{25}=-c_{8}, X^{35}=c_{9}, X^{45}=-c_{10}, X^{56}=-c_{15}, X^{16}=c_{11}, \\
X^{26} & =-c_{12}, X^{46}=-c_{14}, X^{36}=c_{13}, X^{17}=c_{16}, X^{27}=-c_{17}, X^{47}=-c_{19}, \\
X^{37} & =c_{18}, X^{67}=-c_{21}, X^{57}=-c_{20}, X^{78}=-c_{36}, X^{18}=c_{30}, X^{28}=-c_{31}, \\
X^{48} & =-c_{33}, X^{38}=c_{32}, X^{68}=-c_{35}, X^{58}=-c_{34}, X^{29}=-c_{46}, X^{19}=c_{45}, \\
X^{49} & =-c_{48}, X^{39}=c_{47}, X^{69}=-c_{50}, X^{59}=-c_{49}, X^{89}=-c_{52}, X^{79}=-c_{51}, \\
X^{1,10} & =-c_{71}, X^{2,10}=c_{72}, X^{3,10}=-c_{73}, X^{4,10}=c_{74}, X^{5,10}=c_{75}, \\
X^{6,10} & =c_{76}, X^{7,10}=c_{77}, \quad X^{8,10}=c_{78}, X^{9,10}=\tilde{c}_{53} . \tag{92}
\end{align*}
$$

The \tilde{c}_{53} and \tilde{c}_{70} are defined by [24]

$$
\begin{equation*}
\tilde{c}_{53}=\frac{1}{2} c_{53}+\frac{\sqrt{3}}{2} c_{70} \quad \text { and } \quad \tilde{c}_{70}=-\frac{\sqrt{3}}{2} c_{53}+\frac{1}{2} c_{70} . \tag{93}
\end{equation*}
$$

All the $f^{I J}$,s components can be obtained from the structure constants of the $\left[X^{I J}, Y^{A}\right]$ given in [23] and [24].

Generators of the $S O(p) \times S O(10-p)$ compact gauge group are given by

$$
\begin{array}{ll}
T_{1}^{I J}=X^{I J}, & I, J=1, \ldots p \\
T_{2}^{I J}=X^{I J}, & I, J=p+1, \ldots 10 \tag{94}
\end{array}
$$

The $U(1)$ subgroup is generated by $X=2 \tilde{c}_{70}$.
In the non-compact $G_{2(-14)} \times S U(2,1)$ gauging, the generators of $G_{2(-14)}$ can be obtained from combinations of $S O(7)$ generators [27]

$$
\begin{align*}
& T_{1}=\frac{1}{\sqrt{2}}\left(X^{36}+X^{41}\right), \quad T_{2}=\frac{1}{\sqrt{2}}\left(X^{31}-X^{46}\right), \\
& T_{3}=\frac{1}{\sqrt{2}}\left(X^{43}-X^{16}\right), \quad T_{4}=\frac{1}{\sqrt{2}}\left(X^{73}-X^{24}\right), \\
& T_{5}=-\frac{1}{\sqrt{2}}\left(X^{23}+X^{47}\right), \quad T_{6}=-\frac{1}{\sqrt{2}}\left(X^{26}+X^{71}\right), \\
& T_{7}=\frac{1}{\sqrt{2}}\left(X^{76}-X^{21}\right), \quad T_{8}=\frac{1}{\sqrt{6}}\left(X^{16}+X^{43}-2 X^{72}\right), \\
& T_{9}=-\frac{1}{\sqrt{6}}\left(X^{41}-X^{36}+2 X^{25}\right), \quad T_{10}=-\frac{1}{\sqrt{6}}\left(X^{31}+X^{46}-2 X^{57}\right), \\
& T_{11}=\frac{1}{\sqrt{6}}\left(X^{73}+X^{24}+2 X^{15}\right), \quad T_{12}=-\frac{1}{\sqrt{6}}\left(X^{74}-X^{23}+2 X^{65}\right), \\
& T_{13}=\frac{1}{\sqrt{6}}\left(X^{26}-X^{71}+2 X^{35}\right), \quad T_{14}=\frac{1}{\sqrt{6}}\left(X^{21}+X^{76}-2 X^{45}\right) \tag{95}
\end{align*}
$$

These generators are essentially the same as those used in [18], but we repeat them here for conveniences. The $S U(2,1)$ generators are given by

$$
\begin{align*}
& J_{1}=-c_{52}, \quad J_{2}=-\tilde{c}_{53}, \quad J_{3}=-c_{78}, \quad J_{4}=\tilde{c}_{70}, \\
& J_{5}=\frac{1}{\sqrt{2}}\left(Y_{1}+Y_{6}\right), \quad J_{6}=\frac{1}{\sqrt{2}}\left(Y_{9}+Y_{14}\right), \\
& J_{7}=\frac{1}{\sqrt{2}}\left(Y_{21}+Y_{24}\right), \quad J_{8}=\frac{1}{\sqrt{2}}\left(Y_{25}+Y_{30}\right) . \tag{96}
\end{align*}
$$

We have normalized these generators according to the embedding tensor given in section 2,

In $S U(4,2) \times S U(2)$ gauging, the relevant generators are given by

- $S U(4,2)$:

$$
\begin{align*}
Q_{i} & =c_{i}, \quad i=1, \ldots, 15, \\
Q_{16} & =\frac{1}{\sqrt{2}}\left(c_{52}+c_{77}\right), \quad Q_{17}=\frac{1}{\sqrt{2}}\left(c_{51}-c_{78}\right), \quad Q_{18}=\frac{1}{\sqrt{2}}\left(\tilde{c}_{53}-c_{36}\right), \\
Q_{19} & =\tilde{c}_{70}, \quad Q_{20}=\frac{1}{\sqrt{2}}\left(Y_{1}+Y_{23}\right), \quad Q_{21}=\frac{1}{\sqrt{2}}\left(Y_{2}-Y_{22}\right), \\
Q_{22} & =\frac{1}{\sqrt{2}}\left(Y_{3}+Y_{24}\right), \quad Q_{23}=\frac{1}{\sqrt{2}}\left(Y_{4}-Y_{21}\right), \quad Q_{24}=\frac{1}{\sqrt{2}}\left(Y_{5}+Y_{20}\right), \\
Q_{25} & =\frac{1}{\sqrt{2}}\left(Y_{6}+Y_{18}\right), \quad Q_{26}=\frac{1}{\sqrt{2}}\left(Y_{7}-Y_{17}\right), \quad Q_{27}=\frac{1}{\sqrt{2}}\left(Y_{8}-Y_{19}\right), \\
Q_{28} & =\frac{1}{\sqrt{2}}\left(Y_{9}+Y_{27}\right), \quad Q_{29}=\frac{1}{\sqrt{2}}\left(Y_{10}-Y_{29}\right), \quad Q_{30}=\frac{1}{\sqrt{2}}\left(Y_{11}-Y_{25}\right), \\
Q_{31} & =\frac{1}{\sqrt{2}}\left(Y_{12}+Y_{30}\right), \quad Q_{32}=\frac{1}{\sqrt{2}}\left(Y_{13}+Y_{26}\right), \quad Q_{33}=\frac{1}{\sqrt{2}}\left(Y_{14}-Y_{28}\right), \\
Q_{34} & =\frac{1}{\sqrt{2}}\left(Y_{15}-Y_{32}\right), \quad Q_{35}=\frac{1}{\sqrt{2}}\left(Y_{16}+Y_{31}\right) . \tag{97}
\end{align*}
$$

- $S U(2)$:

$$
\begin{equation*}
K_{1}=\frac{1}{2}\left(c_{51}+c_{78}\right), \quad K_{2}=-\frac{1}{2}\left(c_{52}-c_{77}\right), \quad K_{3}=\frac{1}{2}\left(c_{36}+\tilde{c}_{53}\right) . \tag{98}
\end{equation*}
$$

To find the above generators, we first look at the generators of the compact subgroup $S U(4) \times S U(2) \times U(1)$ of the $S U(4,2)$. Using the fact that $S U(4) \sim$ $S O(6)$ and $S U(2) \times S U(2) \sim S O(4)$, we can identify $S U(4) \times S U(2) \times S U(2)$ with $S O(6) \times S O(4) \subset S O(10)$. The $U(1)$ generator is simply \tilde{c}_{70}.

The final non-compact gauge group is $F_{4(-20)}$. Its generators can be easily identified by c_{1}, \ldots, c_{52} in the construction of the E_{6} given in [24].

We can now compute the T-tensors using

$$
\begin{align*}
T^{I J, K L} & =\mathcal{V}^{I J, \alpha} \mathcal{V}^{K L, \beta} \delta_{\alpha \beta}^{S O(p)}-\mathcal{V}^{I J, \alpha} \mathcal{V}^{K L, \beta} \delta_{\alpha \beta}^{S O(10-p)}+\frac{1}{3}(5-p) \mathcal{V}_{U(1)}^{I J} \mathcal{V}_{U(1)}^{K L}, \tag{99}\\
T^{I J, A} & =\mathcal{V}^{I J, \alpha} \mathcal{V}^{A, \beta} \delta_{\alpha \beta}^{S O(p)}-\mathcal{V}^{I J, \alpha} \mathcal{V}^{A, \beta} \delta_{\alpha \beta}^{S O(10-p)}+\frac{1}{3}(5-p) \mathcal{V}_{U(1)}^{I J} \mathcal{V}_{U(1)}^{A} \tag{100}
\end{align*}
$$

for compact gaugings and

$$
\begin{align*}
T^{I J, K L} & =\mathcal{V}^{I J, \alpha} \mathcal{V}^{K L, \beta} \eta_{\alpha \beta}^{G_{1}}-K \mathcal{V}^{I J, \alpha} \mathcal{V}^{K L, \beta} \eta_{\alpha \beta}^{G_{2}}, \tag{101}\\
T^{I J, A} & =\mathcal{V}^{I J, \alpha} \mathcal{V}^{A, \beta} \eta_{\alpha \beta}^{G_{1}}-K \mathcal{V}^{I J, \alpha} \mathcal{V}^{A, \beta} \eta_{\alpha \beta}^{G_{2}} \tag{102}
\end{align*}
$$

for non-compact gaugings with K being $\frac{2}{3}$ and 6 for $G_{1} \times G_{2}$ being $G_{2(-14)} \times$ $S U(2,1)$ and $S U(4,2) \times S U(2)$, respectively. As in [18], we use summation convention over gauge indices α, β with the notation $\delta^{G_{0}}$ and $\eta^{G_{0}}$ meaning that the
summation is restricted to the G_{0} generators. For $F_{4(-20)}$ gauging, we have the simpler expressions for the T-tensors namely

$$
\begin{align*}
T^{I J, K L} & =\mathcal{V}^{I J, \alpha} \mathcal{V}^{K L, \beta} \eta_{\alpha \beta}^{F_{4(-20)}} \\
T^{I J, A} & =\mathcal{V}^{I J, \alpha} \mathcal{V}^{A, \beta} \eta_{\alpha \beta}^{F_{4(-20)}} . \tag{103}
\end{align*}
$$

B Explicit forms of the A_{1} tensors

In this section, we give the explicit forms of the A_{1} tensors mentioned in the main text. We collect them here due to their lengthly and complicated forms.

- $S O(7) \times S O(3) \times U(1)$ gauging
G_{2} sector:

$$
A_{1}=\left(\begin{array}{cc}
-8 \mathbf{I}_{7} & 0 \tag{104}\\
0 & M_{3}^{(1)}
\end{array}\right) \quad M_{3}^{(1)}\left(\begin{array}{ccc}
m_{1} & m_{4} & m_{5} \\
m_{4} & m_{2} & m_{6} \\
m_{5} & m_{6} & m_{3}
\end{array}\right) .
$$

The elements of the matrix $M^{(1)}$ are given by

$$
\begin{align*}
m_{1}= & \frac{1}{3}\left[21-\cos \left(2 a_{3}\right)-\cos \left(2 a_{1}\right)\left(1+3 \cos \left(2 a_{3}\right)\right)+4 \cos \left(2 a_{2}\right) \sin ^{2}\left(a_{1}\right) \sin ^{2} a_{3}\right. \\
& \left.+4 \sin \left(2 a_{1}\right) \sin a_{2} \sin \left(2 a_{3}\right)\right] \\
m_{2}= & -\frac{2}{3}\left[-11+\cos \left(2 a_{2}\right)-2 \cos ^{2} a_{2} \cos \left(2 a_{3}\right)\right] \\
m_{3}= & \frac{1}{3}\left[21-\cos \left(2 a_{3}\right)+\cos \left(2 a_{1}\right)\left(1+3 \cos \left(2 a_{3}\right)\right)+4 \cos ^{2} a_{1} \cos \left(2 a_{2}\right) \sin ^{2} a_{3}\right. \\
& \left.-4 \sin \left(2 a_{1}\right) \sin a_{2} \sin \left(2 a_{3}\right)\right] \\
m_{4}= & \frac{8}{3} \cos a_{2} \sin a_{3}\left[\cos a_{1} \cos a_{3}-\sin a_{1} \sin a_{2} \sin a_{3}\right] \\
m_{5}= & \frac{1}{3}\left[\left[-2 \cos ^{2} a_{2}+\left(-3+\cos \left(2 a_{2}\right)\right) \cos \left(2 a_{3}\right)\right] \sin \left(2 a_{1}\right)\right. \\
& \left.-4 \cos \left(2 a_{1}\right) \sin a_{2} \sin \left(2 a_{3}\right)\right] \\
m_{6}= & \frac{8}{3} \cos a_{2} \sin a_{3}\left(\cos a_{3} \sin a_{1}+\cos a_{1} \sin a_{2} \sin a_{3}\right) . \tag{105}
\end{align*}
$$

- $G_{2(-14)} \times S U(2,1)$ gauging
$S U(2)_{\text {diag }}$ sector:

$$
A_{1}=\left(\begin{array}{cccccccccc}
-4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \tag{106}\\
0 & m_{22} & 0 & 0 & m_{52} & 0 & m_{72} & 0 & 0 & 0 \\
0 & 0 & -4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -4 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & m_{52} & 0 & 0 & m_{55} & 0 & m_{75} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -4 & 0 & 0 & 0 & 0 \\
0 & m_{72} & 0 & 0 & m_{75} & 0 & m_{77} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2
\end{array}\right)
$$

where

$$
\begin{align*}
m_{22}= & \frac{1}{12}\left[-30+\cos \left[2\left(a_{1}-a_{2}\right)\right]+\cos \left[2\left(a_{1}+a_{2}\right)\right]-2 \cos \left(2 a_{3}\right)\right. \\
& +\cos \left(2 a_{1}\right)\left(2+6 \cos \left(2 a_{3}\right)\right)+\cos \left(2 a_{2}\right)\left(2-4 \cos ^{2} a_{1} \cos \left(2 a_{3}\right)\right) \\
& \left.+8 \sin \left(2 a_{1}\right) \sin a_{2} \sin \left(2 a_{3}\right)\right] \\
m_{52}= & \frac{1}{6}\left[\left(-2 \cos ^{2} a_{2}+\left(-3+\cos \left(2 a_{2}\right)\right) \cos \left(2 a_{3}\right)\right) \sin \left(2 a_{1}\right)\right. \\
& \left.+4 \cos \left(2 a_{1}\right) \sin a_{2} \sin \left(2 a_{3}\right)\right] \\
m_{72}= & \frac{4}{3} \cos a_{2} \sin a_{3}\left(\cos a_{3} \sin a_{1}-\cos a_{1} \sin a_{2} \sin a_{3}\right) \\
m_{55}= & \frac{1}{12}\left[-\cos \left[2\left(a_{1}-a_{2}\right)\right]-\cos \left[2\left(a_{1}+a_{2}\right)\right]-2 \cos \left(2 a_{1}\right)\left(1+3 \cos \left(2 a_{3}\right)\right)\right. \\
& +\cos \left(2 a_{2}\right)\left(2-4 \cos \left(2 a_{3}\right) \sin ^{2} a_{1}\right)-2\left(15+\cos \left(2 a_{3}\right)\right. \\
& \left.\left.+4 \sin \left(2 a_{1}\right) \sin a_{2} \sin \left(2 a_{3}\right)\right)\right] \\
m_{75}= & \frac{4}{3} \cos a_{2} \sin a_{3}\left(\cos a_{1} \cos a_{3}+\sin a_{1} \sin a_{2} \sin a_{3}\right) \\
m_{77}= & \frac{1}{3}\left[-7-\cos \left(2 a_{2}\right)+2 \cos ^{2} a_{2} \cos \left(2 a_{3}\right)\right] . \tag{107}
\end{align*}
$$

- $F_{4(-20)}$ gauging
$S U(3)$ sector:

$$
A_{1}=\left(\begin{array}{cccccccccc}
-\frac{7}{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \tag{108}\\
0 & -\frac{7}{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -\frac{7}{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -\frac{7}{2} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & a_{55} & 0 & 0 & a_{85} & a_{95} & 0 \\
0 & 0 & 0 & 0 & 0 & -\frac{7}{2} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -\frac{7}{2} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & a_{85} & 0 & 0 & a_{88} & a_{98} & 0 \\
0 & 0 & 0 & 0 & a_{95} & 0 & 0 & a_{98} & a_{99} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{11}{2}
\end{array}\right)
$$

where

$$
\begin{align*}
a_{55}= & \frac{1}{16}\left[-50-2 \cos \left(2 a_{1}\right)+3 \cos \left[2\left(a_{1}-a_{3}\right)\right]-8 \cos ^{2} a_{1} \cos \left(2 a_{2}\right) \cos ^{2} a_{3}\right. \\
& \left.-2 \cos \left(2 a_{3}\right)+3 \cos \left[2\left(a_{1}+a_{3}\right)\right]+8 \sin \left(2 a_{1}\right) \sin a_{2} \sin \left(2 a_{3}\right)\right] \\
a_{85}= & \frac{1}{8}\left[\left[2 \cos ^{2} a_{2}+\left(-3+\cos \left(2 a_{2}\right)\right) \cos \left(2 a_{3}\right)\right] \sin \left(2 a_{1}\right)\right. \\
& \left.+4 \cos \left(2 a_{1}\right) \sin a_{2} \sin \left(2 a_{3}\right)\right] \\
a_{95}= & \frac{1}{2} \cos a_{2}\left[2 \cos a_{1} \cos ^{2} a_{3} \sin a_{2}+\sin a_{1} \sin \left(2 a_{3}\right)\right] \\
a_{88}= & \frac{1}{16}\left[\cos \left[2\left(a_{1}-a_{2}\right)\right]+\cos \left[2\left(a_{1}+a_{2}\right)\right]+\cos \left(2 a_{1}\right)\left(2-6 \cos \left(2 a_{3}\right)\right)\right. \\
& -2 \cos \left(2 a_{2}\right)\left[1+2 \cos \left(2 a_{3}\right) \sin ^{2} a_{1}\right]-2\left(25+\cos \left(2 a_{3}\right)\right. \\
& \left.\left.+4 \sin \left(2 a_{1}\right) \sin a_{2} \sin \left(2 a_{3}\right)\right)\right] \\
a_{99}= & \frac{1}{4}\left[-13+\cos \left(2 a_{2}\right)+2 \cos ^{2} a_{2} \cos \left(2 a_{3}\right)\right] \\
a_{98}= & \frac{1}{2} \cos a_{2}\left[-2 \cos ^{2} a_{3} \sin a_{1} \sin a_{2}+\cos a_{1} \sin \left(2 a_{3}\right)\right] . \tag{109}
\end{align*}
$$

- $S U(4,2) \times S U(2)$ gauging
$S U(2)_{\text {diag }}$ sector:

$$
A_{1}=\left(\begin{array}{cccccccccc}
-\frac{5}{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \tag{110}\\
0 & -\frac{5}{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -\frac{5}{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & u_{1} & u_{4} & u_{5} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & u_{4} & u_{2} & u_{6} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & u_{5} & u_{6} & u_{3} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{11}{2} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{11}{2} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{11}{2} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{11}{2}
\end{array}\right)
$$

where

$$
\begin{align*}
u_{1}= & \frac{1}{16}\left[-50-\cos \left[2\left(a_{1}-a_{2}\right)\right]-\cos \left[2\left(a_{1}+a_{2}\right)\right]+2 \cos \left(2 a_{3}\right)\right. \\
& -2 \cos \left(2 a_{1}\right)\left(1+3 \cos \left(2 a_{3}\right)\right)+\cos \left(2 a_{2}\right)\left(-2+4 \cos ^{2} a_{1} \cos \left(2 a_{3}\right)\right) \\
& \left.-8 \sin \left(2 a_{1}\right) \sin a_{2} \sin \left(2 a_{3}\right)\right] \\
u_{2}= & \frac{1}{16}\left[-50+2 \cos \left(2 a_{1}\right)+\cos \left[2\left(a_{1}-a_{2}\right)\right]-2 \cos \left(2 a_{2}\right)\right. \\
& +\cos \left[2\left(a_{1}+a_{2}\right)\right]+\cos \left(2 a_{3}\right)\left(2+6 \cos \left(2 a_{1}\right)+4 \cos \left(2 a_{2}\right) \sin ^{2} a_{1}\right) \\
& \left.+8 \sin \left(2 a_{1}\right) \sin a_{2} \sin \left(2 a_{3}\right)\right] \\
u_{3}= & \frac{1}{4}\left[-13+\cos \left(2 a_{2}\right)-2 \cos ^{2} a_{2} \cos \left(2 a_{3}\right)\right] \\
u_{4}= & \frac{1}{8}\left[\left(2 \cos ^{2} a_{2}-\left(-3+\cos \left(2 a_{2}\right)\right) \cos \left(2 a_{3}\right)\right) \sin \left(2 a_{1}\right)\right. \\
& \left.-4 \cos \left(2 a_{1}\right) \sin a_{2} \sin \left(2 a_{3}\right)\right] \\
u_{5}= & \cos a_{2} \sin a_{3}\left(-\cos a_{3} \sin a_{1}+\cos a_{1} \sin a_{2} \sin a_{3}\right) \\
u_{6}= & \left.-\cos a_{2}\right] \sin a_{3}\left(\cos a_{1} \cos a_{3}+\sin a_{1} \sin a_{2} \sin a_{3}\right) \tag{111}
\end{align*}
$$

C \quad Scalar potential for $S O(9) \times U(1)$ gauging in G_{2} sector

$$
\begin{align*}
V= & -\frac{1}{327680} g^{2} e^{-4 \sqrt{2} b_{1}}\left[-2\left(4\left(-1+e^{\sqrt{2} b_{1}}\right)^{3}\left(1+e^{\sqrt{2} b_{1}}\right) \cos \left[2 a_{1}\right]\left(1+3 \cos \left[2 a_{3}\right]\right)\right.\right. \\
& +4\left(-1+e^{2 \sqrt{2} b_{1}}\right)\left(29+6 e^{\sqrt{2} b_{1}}+29 e^{2 \sqrt{2} b_{1}}-\left(-1+e^{\sqrt{2} b_{1}}\right)^{2} \cos \left[2 a_{3}\right]\right. \\
& \left.\left.+4\left(-1+e^{\sqrt{2} b_{1}}\right)^{2}\left(\cos \left[a_{1}\right]^{2} \cos \left[2 a_{2}\right] \sin \left[a_{3}\right]^{2}-\sin \left[2 a_{1}\right] \sin \left[a_{2}\right] \sin \left[2 a_{3}\right]\right)\right)\right)^{2} \\
& +20\left((- 1 + e ^ { \sqrt { 2 } b _ { 1 } }) ^ { 4 } \left(4 \cos \left[a_{2}\right]^{2} \cos \left[2 a_{3}\right]+2 \cos \left[2 a_{1}\right]\left(-2 \cos \left[a_{2}\right]^{2}\right.\right.\right. \\
& \left.\left.\left.+\left(-3+\cos \left[2 a_{2}\right]\right) \cos \left[2 a_{3}\right]\right)+8 \sin \left[2 a_{1}\right] \sin \left[a_{2}\right] \sin \left[2 a_{3}\right]\right)\right)^{2} \\
& -2621440 e^{4 \sqrt{2} b_{1}} \cos \left[a_{1}\right]^{2} \cos \left[a_{2}\right]^{2}\left(\cos \left[a_{3}\right] \sin \left[a_{1}\right]+\cos \left[a_{1}\right] \sin \left[a_{2}\right] \sin \left[a_{3}\right]\right)^{2} \times \\
& \sinh \left[\frac{b_{1}}{\sqrt{2}}\right]^{6}-384 e^{\sqrt{2} b_{1}}\left(-1+e^{\sqrt{2} b_{1}}\right)^{6}\left(4 \cos \left[2 a_{3}\right] \sin \left[2 a_{1}\right] \sin \left[a_{2}\right]\right. \\
& \left.+\left(3 \cos \left[2 a_{1}\right]-2 \cos \left[a_{1}\right]^{2} \cos \left[2 a_{2}\right]-1\right) \sin \left[2 a_{3}\right]\right)^{2} \\
& -96\left(-1+e^{2 \sqrt{2} b_{1}}\right)^{2}\left(2 \left(4\left(3+2 e^{\sqrt{2} b_{1}}+3 e^{2 \sqrt{2} b_{1}}\right)+4\left(-1+e^{\sqrt{2} b_{1}}\right)^{2} \cos \left[a_{1}\right]^{2} \cos \left[a_{3}\right]^{2}\right.\right. \\
& +\left(-1+e^{\sqrt{2} b_{1}}\right)^{2}\left(\left(3+\cos \left[2 a_{2}\right]-2 \cos \left[2 a_{1}\right] \sin \left[a_{2}\right]^{2}\right) \sin \left[a_{3}\right]^{2}\right. \\
& \left.\left.\left.-2 \sin \left[2 a_{1}\right] \sin \left[a_{2}\right] \sin \left[2 a_{3}\right]\right)\right)\right)^{2}-4\left(-1+e^{2 \sqrt{2} b_{1}}\right)^{2}\left(2 \left(29-2 e^{\sqrt{2} b_{1}}\left(-3+\cos \left[2 a_{2}\right]\right)\right.\right. \\
& +\cos \left[2 a_{2}\right]+e^{2 \sqrt{2} b_{1}}\left(29+\cos \left[2 a_{2}\right]\right)+\left(e^{\sqrt{2} b_{1}}-1\right)^{2} \cos \left[2 a_{1}\right]\left(2 \cos \left[a_{2}\right]^{2}\right. \\
& \left.-\left(\cos \left[2 a_{2}\right]-3\right) \cos \left[2 a_{3}\right]\right)-2\left(e^{\sqrt{2} b_{1}}-1\right)^{2}\left(\cos \left[a_{2}\right]^{2} \cos \left[2 a_{3}\right]\right. \\
& \left.\left.\left.+2 \sin \left[2 a_{1}\right] \sin \left[a_{2}\right] \sin \left[2 a_{3}\right]\right)\right)\right)^{2}-16 e^{\sqrt{2} b_{1}}\left(-1+e^{\sqrt{2} b_{1}}\right)^{6}\left(12 \cos \left[2 a_{1}\right] \sin \left[2 a_{3}\right]\right. \\
& \left.+16 \cos \left[2 a_{3}\right] \sin \left[2 a_{1}\right] \sin \left[a_{2}\right]-4\left(1+2 \cos \left[a_{1}\right]^{2} \cos \left[2 a_{2}\right]\right) \sin \left[2 a_{3}\right]\right)^{2} \\
& -\left(-4\left(-1+e^{\sqrt{2} b_{1}}\right)^{3}\left(1+e^{\sqrt{2} b_{1}}\right) \cos \left[2 a_{1}\right]\left(1+3 \cos \left[2 a_{3}\right]\right)\right. \\
& -4\left(-1+e^{2 \sqrt{2} b_{1}}\right)\left(29+6 e^{\sqrt{2} b_{1}}+29 e^{2 \sqrt{2} b_{1}}-\left(-1+e^{\sqrt{2} b_{1}}\right)^{2} \cos \left[2 a_{3}\right]\right. \\
& \left.\left.\left.+4\left(-1+e^{\sqrt{2} b_{1}}\right)^{2}\left(\cos \left[a_{1}\right]^{2} \cos \left[2 a_{2}\right] \sin \left[a_{3}\right]^{2}-\sin \left[2 a_{1}\right] \sin \left[a_{2}\right] \sin \left[2 a_{3}\right]\right)\right)\right)^{2}\right] \quad(112) \tag{112}
\end{align*}
$$

D Scalar potential for $S O(6) \times S O(4) \times U(1)$ gauging in $S U(3)$ sector

$$
\begin{aligned}
& V=-4 g^{2}\left[\frac{1}{64}\left(-11+\cosh \left[2 b_{1}\right]-24 \cosh \left[b_{1}\right] \cosh \left[b_{2}\right]+2 \cosh \left[b_{1}\right]^{2} \cosh \left[2 b_{2}\right]\right)^{2}\right. \\
& -5\left(\frac{1}{10}\left(-3+\cosh \left[b_{1}\right] \cosh \left[b_{2}\right]\right)^{2}\left(\sinh \left[b_{1}\right]^{2}+\cosh \left[b_{1}\right]^{2} \sinh \left[b_{2}\right]^{2}\right)\right. \\
& +\frac{1}{129600}\left(\frac { 1 } { 2 } \left(\frac { 1 } { 4 8 } \left(-48 \csc \left[a_{4}\right] \sin \left[2 a_{4}\right]\left(-\cosh \left[\frac{b_{2}}{2}\right]\left(\sin \left[a_{1}\right] \sin \left[a_{3}\right] \sin \left[a_{5}\right]\right.\right.\right.\right.\right. \\
& \left.+\cos \left[a_{1}\right]\left(\cos \left[a_{2}\right] \cos \left[a_{5}\right] \sin \left[a_{4}\right]+\cos \left[a_{3}\right] \sin \left[a_{2}\right] \sin \left[a_{5}\right]\right)\right) \sinh \left[\frac{b_{1}}{2}\right] \\
& -\cosh \left[\frac{b_{1}}{2}\right]\left(\cos \left[a_{6}\right]\left(\cos \left[a_{3}\right] \sin \left[a_{1}\right]-\cos \left[a_{1}\right] \sin \left[a_{2}\right] \sin \left[a_{3}\right]\right) \sin \left[a_{4}\right]\right. \\
& +\left(\cos \left[a_{5}\right] \sin \left[a_{1}\right] \sin \left[a_{3}\right]+\cos \left[a_{1}\right]\left(\cos \left[a_{3}\right] \cos \left[a_{5}\right] \sin \left[a_{2}\right]\right.\right. \\
& \left.\left.\left.\left.-\cos \left[a_{2}\right] \sin \left[a_{4}\right] \sin \left[a_{5}\right]\right)\right) \sin \left[a_{6}\right]\right) \sinh \left[\frac{b_{2}}{2}\right]\right)\left(\operatorname { c o s h } [\frac { b _ { 1 } } { 2 }] \operatorname { c o s h } [\frac { b _ { 2 } } { 2 }] \left(\cos \left[a_{1}\right] \times\right.\right. \\
& \left.\cos \left[a_{2}\right] \cos \left[a_{6}\right]+\left(\cos \left[a_{3}\right] \sin \left[a_{1}\right]-\cos \left[a_{1}\right] \sin \left[a_{2}\right] \sin \left[a_{3}\right]\right) \sin \left[a_{5}\right] \sin \left[a_{6}\right]\right) \\
& \left.+\cos \left[a_{5}\right]\left(-\cos \left[a_{3}\right] \sin \left[a_{1}\right]+\cos \left[a_{1}\right] \sin \left[a_{2}\right] \sin \left[a_{3}\right]\right) \sinh \left[\frac{b_{1}}{2}\right] \sinh \left[\frac{b_{2}}{2}\right]\right) \\
& +48 \csc \left[a_{4}\right] \sin \left[2 a_{4}\right]\left(\operatorname { c o s h } [\frac { b _ { 2 } } { 2 }] \left(\sin \left[a_{1}\right] \sin \left[a_{3}\right] \sin \left[a_{5}\right]\right.\right. \\
& \left.+\cos \left[a_{1}\right]\left(\cos \left[a_{2}\right] \cos \left[a_{5}\right] \sin \left[a_{4}\right]+\cos \left[a_{3}\right] \sin \left[a_{2}\right] \sin \left[a_{5}\right]\right)\right) \sinh \left[\frac{b_{1}}{2}\right] \\
& +\cosh \left[\frac{b_{1}}{2}\right]\left(\cos \left[a_{6}\right]\left(\cos \left[a_{3}\right] \sin \left[a_{1}\right]-\cos \left[a_{1}\right] \sin \left[a_{2}\right] \sin \left[a_{3}\right]\right) \sin \left[a_{4}\right]\right. \\
& +\left(\cos \left[a_{5}\right] \sin \left[a_{1}\right] \sin \left[a_{3}\right]+\cos \left[a_{1}\right]\left(\cos \left[a_{3}\right] \cos \left[a_{5}\right] \sin \left[a_{2}\right]\right.\right. \\
& \left.\left.\left.\left.-\cos \left[a_{2}\right] \sin \left[a_{4}\right] \sin \left[a_{5}\right]\right)\right) \sin \left[a_{6}\right]\right) \sinh \left[\frac{b_{2}}{2}\right]\right)\left(\operatorname { c o s h } [\frac { b _ { 1 } } { 2 }] \operatorname { c o s h } [\frac { b _ { 2 } } { 2 }] \left(\cos \left[a_{1}\right] \times\right.\right. \\
& \left.\cos \left[a_{2}\right] \cos \left[a_{6}\right]+\left(\cos \left[a_{3}\right] \sin \left[a_{1}\right]-\cos \left[a_{1}\right] \sin \left[a_{2}\right] \sin \left[a_{3}\right]\right) \sin \left[a_{5}\right] \sin \left[a_{6}\right]\right) \\
& \left.+\cos \left[a_{5}\right]\left(-\cos \left[a_{3}\right] \sin \left[a_{1}\right]+\cos \left[a_{1}\right] \sin \left[a_{2}\right] \sin \left[a_{3}\right]\right) \sinh \left[\frac{b_{1}}{2}\right] \sinh \left[\frac{b_{2}}{2}\right]\right) \\
& -96 \cosh \left[\frac{b_{2}}{2}\right] \sinh \left[b_{1}\right] \cos \left[a_{4}\right] \cos \left[a_{5}\right] \cosh \left[\frac{b_{2}}{2}\right]\left(\cos \left[a_{3}\right] \sin \left[a_{1}\right]\right. \\
& \left.-\cos \left[a_{1}\right] \sin \left[a_{2}\right] \sin \left[a_{3}\right]\right)\left(\cos \left[a_{6}\right]\left(\cos \left[a_{3}\right] \sin \left[a_{1}\right]-\cos \left[a_{1}\right] \sin \left[a_{2}\right] \sin \left[a_{3}\right]\right) \times\right. \\
& \sin \left[a_{4}\right]+\left(\cos \left[a_{5}\right] \sin \left[a_{1}\right] \sin \left[a_{3}\right]+\cos \left[a_{1}\right]\left(\cos \left[a_{3}\right] \cos \left[a_{5}\right] \sin \left[a_{2}\right]-\cos \left[a_{2}\right] \times\right.\right. \\
& \left.\left.\left.\sin \left[a_{4}\right] \sin \left[a_{5}\right]\right)\right) \sin \left[a_{6}\right]\right)-192 \cosh \left[\frac{b_{1}}{2}\right]^{2} \cosh \left[\frac{b_{2}}{2}\right] \cos \left[a_{4}\right]\left(\cos \left[a_{1}\right] \cos \left[a_{2}\right] \times\right. \\
& \left.\cos \left[a_{6}\right]+\left(\cos \left[a_{3}\right] \sin \left[a_{1}\right]-\cos \left[a_{1}\right] \sin \left[a_{2}\right] \sin \left[a_{3}\right]\right) \sin \left[a_{5}\right] \sin \left[a_{6}\right]\right) \times \\
& \left(\cos \left[a_{6}\right]\left(-\cos \left[a_{3}\right] \sin \left[a_{1}\right]+\cos \left[a_{1}\right] \sin \left[a_{2}\right] \sin \left[a_{3}\right]\right) \sin \left[a_{4}\right]\right. \\
& -\left(\cos \left[a_{5}\right] \sin \left[a_{1}\right] \sin \left[a_{3}\right]+\cos \left[a_{1}\right]\left(\cos \left[a_{3}\right] \cos \left[a_{5}\right] \sin \left[a_{2}\right]\right.\right. \\
& -192 \sinh \left[\frac{b_{1}}{2}\right]^{2} \sinh \left[\frac{b_{2}}{2}\right] \cos \left[a_{4}\right] \cos \left[a_{5}\right] \cosh \left[\frac{b_{2}}{2}\right]\left(\cos \left[a_{3}\right] \sin \left[a_{1}\right]\right. \\
& \left.\left.\left.\left.-\cos \left[a_{2}\right] \sin \left[a_{4}\right] \sin \left[a_{5}\right]\right)\right) \sin \left[a_{6}\right]\right) \sinh \left[\frac{b_{2}}{2}\right]-\cos \left[a_{1}\right] \sin \left[a_{2}\right] \sin \left[a_{3}\right]\right)\left(\sin \left[a_{1}\right] \times\right. \\
& \left.\sin \left[a_{3}\right] \sin \left[a_{5}\right]+\cos \left[a_{1}\right]\left(\cos \left[a_{2}\right] \cos \left[a_{5}\right] \sin \left[a_{4}\right]+\cos \left[a_{3}\right] \sin \left[a_{2}\right] \sin \left[a_{5}\right]\right)\right) \\
& +96 \sinh \left[b_{1}\right] \sinh \left[\frac{b_{2}}{2}\right] \cos \left[a_{4}\right]\left(\sin \left[a_{1}\right] \sin \left[a_{3}\right] \sin \left[a_{5}\right]+\cos \left[a_{1}\right] \times\right. \\
& \left.\left(\cos \left[a_{2}\right] \cos \left[a_{5}\right] \sin \left[a_{4}\right]+\cos \left[a_{3}\right] \sin \left[a_{2}\right] \sin \left[a_{5}\right]\right)\right)\left(\cos \left[a_{1}\right] \cos \left[a_{2}\right] \cos \left[a_{6}\right]\right. \\
& \left.+\left(\cos \left[a_{3}\right] \sin \left[a_{1}\right]-\cos \left[a_{1}\right] \sin \left[a_{2}\right] \sin \left[a_{3}\right]\right) \sin \left[a_{5}\right] \sin \left[a_{6}\right]\right) \sinh \left[\frac{b_{2}}{2}\right] \\
& +192 \cos \left[a_{4}\right]\left(\operatorname { c o s h } [\frac { b _ { 2 } } { 2 }] \left(\cos \left[a_{2}\right] \cos \left[a_{5}\right] \sin \left[a_{1}\right] \sin \left[a_{4}\right]+\left(\cos \left[a_{3}\right] \sin \left[a_{1}\right] \sin \left[a_{2}\right]\right.\right.\right. \\
& \left.\left.-\cos \left[a_{1}\right] \sin \left[a_{3}\right]\right) \sin \left[a_{5}\right]\right) \sinh \left[\frac{b_{1}}{2}\right]+\cosh \left[\frac{b_{1}}{2}\right]\left(-\cos \left[a_{6}\right]\left(\cos \left[a_{1}\right] \cos \left[a_{3}\right]\right.\right. \\
& \left.+\sin \left[a_{1}\right] \sin \left[a_{2}\right] \sin \left[a_{3}\right]\right) \sin \left[a_{4}\right]+\left(\operatorname { c o s } [a _ { 5 }] \left(\cos \left[a_{3}\right] \sin \left[a_{1}\right] \sin \left[a_{2}\right]\right.\right. \\
& \left.\left.\left.\left.-\cos \left[a_{1}\right] \sin \left[a_{3}\right]\right)-\cos \left[a_{2}\right] \sin \left[a_{1}\right] \sin \left[a_{4}\right] \sin \left[a_{5}\right]\right) \sin \left[a_{6}\right]\right) \sinh \left[\frac{b_{2}}{2}\right]\right) \times \\
& \left(\operatorname { c o s h } [\frac { b _ { 1 } } { 2 }] \operatorname { c o s h } [\frac { b _ { 2 } } { 2 }] \left(\cos \left[a_{2}\right] \cos \left[a_{6}\right] \sin \left[a_{1}\right]-\left(\cos \left[a_{1}\right] \cos \left[a_{3}\right]\right.\right.\right. \\
& \left.\left.+\sin \left[a_{1}\right] \sin \left[a_{2}\right] \sin \left[a_{3}\right]\right) \sin \left[a_{5}\right] \sin \left[a_{6}\right]\right)+\cos \left[a_{5}\right]\left(\cos \left[a_{1}\right] \cos \left[a_{3}\right]\right.
\end{aligned}
$$

```
\(\left.\left.+\sin \left[a_{1}\right] \sin \left[a_{2}\right] \sin \left[a_{3}\right]\right) \sinh \left[\frac{b_{1}}{2}\right] \sinh \left[\frac{b_{2}}{2}\right]\right)+192 \cos \left[a_{4}\right]\left(\cos \left[a_{5}\right] \cosh \left[\frac{b_{2}}{2}\right] \times\right.\)
\(\left(\cos \left[a_{1}\right] \cos \left[a_{3}\right]+\sin \left[a_{1}\right] \sin \left[a_{2}\right] \sin \left[a_{3}\right]\right) \sinh \left[\frac{b_{1}}{2}\right]+\cosh \left[\frac{b_{1}}{2}\right] \times\)
\(\left(\cos \left[a_{2}\right] \cos \left[a_{6}\right] \sin \left[a_{1}\right]-\left(\cos \left[a_{1}\right] \cos \left[a_{3}\right]+\sin \left[a_{1}\right] \sin \left[a_{2}\right] \times\right.\right.\)
\(\left.\left.\left.\sin \left[a_{3}\right]\right) \sin \left[a_{5}\right] \sin \left[a_{6}\right]\right) \sinh \left[\frac{b_{2}}{2}\right]\right)\left(-\cosh \left[\frac{b_{1}}{2}\right] \cosh \left[\frac{b_{2}}{2}\right]\left(\cos \left[a_{6}\right]\left(\cos \left[a_{1}\right] \cos \left[a_{3}\right]\right.\right.\right.\)
\(\left.+\sin \left[a_{1}\right] \sin \left[a_{2}\right] \sin \left[a_{3}\right]\right) \sin \left[a_{4}\right]+\left(-\cos \left[a_{3}\right] \cos \left[a_{5}\right] \sin \left[a_{1}\right] \sin \left[a_{2}\right]\right.\)
\(\left.\left.+\cos \left[a_{1}\right] \cos \left[a_{5}\right] \sin \left[a_{3}\right]+\cos \left[a_{2}\right] \sin \left[a_{1}\right] \sin \left[a_{4}\right] \sin \left[a_{5}\right]\right) \sin \left[a_{6}\right]\right)\)
\(+\left(\cos \left[a_{2}\right] \cos \left[a_{5}\right] \sin \left[a_{1}\right] \sin \left[a_{4}\right]+\left(\cos \left[a_{3}\right] \sin \left[a_{1}\right] \sin \left[a_{2}\right]\right.\right.\)
\(\left.\left.\left.-\cos \left[a_{1}\right] \sin \left[a_{3}\right]\right) \sin \left[a_{5}\right]\right) \sinh \left[\frac{b_{1}}{2}\right] \sinh \left[\frac{b_{2}}{2}\right]\right)\)
\(+96\left(\sinh \left[\frac{b_{1}}{2}\right] \cos \left[a_{2}\right] \cos \left[a_{5}\right] \cosh \left[\frac{b_{2}}{2}\right] \sin \left[a_{3}\right]-\cosh \left[\frac{b_{1}}{2}\right]\left(\cos \left[a_{6} \sin \left[a_{2}\right]\right.\right.\right.\)
\(\left.\left.+\cos \left[a_{2}\right] \sin \left[a_{3}\right] \sin \left[a_{5}\right] \sin \left[a_{6}\right]\right) \sinh \left[\frac{b_{2}}{2}\right]\right)\left(\cosh \left[\frac{b_{1}}{2}\right] \cosh \left[\frac{b_{2}}{2}\right]\left(\sin \left[2 a_{4}\right] \sin \left[a_{2}\right] \times\right.\right.\)
\(\sin \left[a_{5}\right] \sin \left[a_{6}\right]+\cos \left[a_{2}\right]\left(-\sin \left[2 a_{4}\right] \cos \left[a_{6}\right] \sin \left[a_{3}\right]\right.\)
\(\left.\left.+2 \cos \left[a_{4}\right] \cos \left[a_{3}\right] \cos \left[a_{5}\right] \sin \left[a_{6}\right]\right)\right)+\left(-\sin \left[2 a_{4}\right] \cos \left[a_{5}\right] \sin \left[a_{2}\right]\right.\)
\(\left.\left.\left.+2 \cos \left[a_{4}\right] \cos \left[a_{2}\right] \cos \left[a_{3}\right] \sin \left[a_{5}\right]\right) \sinh \left[\frac{b_{1}}{2}\right] \sinh \left[\frac{b_{2}}{2}\right]\right)\right)\)
\(+\frac{1}{4}\left(4 \csc \left[a_{4}\right] \sin \left[2 a_{4}\right]\left(\cosh \left[\frac{b_{2}}{2}\right]\left(\cos \left[a_{1}\right] \cos \left[a_{2}\right] \cos \left[a_{6}\right]\right.\right.\right.\)
\(\left.+\left(\cos \left[a_{3}\right] \sin \left[a_{1}\right]-\cos \left[a_{1}\right] \sin \left[a_{2}\right] \sin \left[a_{3}\right]\right) \sin \left[a_{5}\right] \sin \left[a_{6}\right]\right) \sinh \left[\frac{b_{1}}{2}\right]\)
\(\left.\left.-\cos \left[a_{1}\right] \sin \left[a_{2}\right] \sin \left[a_{3}\right]\right) \sinh \left[\frac{b_{2}}{2}\right]\right)\left(-\cosh \left[\frac{b_{1}}{2}\right] \cosh \left[\frac{b_{2}}{2}\right]\left(\sin \left[a_{1}\right] \sin \left[a_{3}\right] \sin \left[a_{5}\right]\right.\right.\)
\(\left.+\cos \left[a_{1}\right]\left(\cos \left[a_{2}\right] \cos \left[a_{5}\right] \sin \left[a_{4}\right]+\cos \left[a_{3}\right] \sin \left[a_{2}\right] \sin \left[a_{5}\right]\right)\right)\)
\(-\left(\cos \left[a_{6}\right]\left(-\cos \left[a_{3}\right] \sin \left[a_{1}\right]+\cos \left[a_{1}\right] \sin \left[a_{2}\right] \sin \left[a_{3}\right]\right) \sin \left[a_{4}\right]\right.\)
\(-\left(\cos \left[a_{5}\right] \sin \left[a_{1}\right] \sin \left[a_{3}\right]+\cos \left[a_{1}\right]\left(\cos \left[a_{3}\right] \cos \left[a_{5}\right] \sin \left[a_{2}\right]\right.\right.\)
\(\left.\left.\left.\left.-\cos \left[a_{2}\right] \sin \left[a_{4}\right] \sin \left[a_{5}\right]\right)\right) \sin \left[a_{6}\right]\right) \sinh \left[\frac{b_{1}}{2}\right] \sinh \left[\frac{b_{2}}{2}\right]\right)\)
\(+\cos \left[a_{5}\right] \cosh \left[\frac{b_{1}}{2}\right]\left(\cos \left[a_{3}\right] \sin \left[a_{1}\right]-4 \csc \left[a_{4}\right] \sin \left[2 a_{4}\right]\left(\cosh \left[\frac{b_{2}}{2}\right]\left(\cos \left[a_{1}\right] \cos \left[a_{2}\right] \times\right.\right.\right.\)
\(\left.\cos \left[a_{6}\right]+\left(\cos \left[a_{3}\right] \sin \left[a_{1}\right]-\cos \left[a_{1}\right] \sin \left[a_{2}\right] \sin \left[a_{3}\right]\right) \sin \left[a_{5}\right] \sin \left[a_{6}\right]\right) \sinh \left[\frac{b_{1}}{2}\right]\)
\(\left.+\cos \left[a_{5}\right] \cosh \left[\frac{b_{1}}{2}\right]\left(\cos \left[a_{3}\right] \sin \left[a_{1}\right]-\cos \left[a_{1}\right] \sin \left[a_{2}\right] \sin \left[a_{3}\right]\right) \sinh \left[\frac{b_{2}}{2}\right]\right)\left(\cosh \left[\frac{b_{1}}{2}\right] \times\right.\)
\(\cosh \left[\frac{b_{2}}{2}\right]\left(\sin \left[a_{1}\right] \sin \left[a_{3}\right] \sin \left[a_{5}\right]+\cos \left[a_{1}\right]\left(\cos \left[a_{2}\right] \cos \left[a_{5}\right] \sin \left[a_{4}\right]\right.\right.\)
\(\left.\left.+\cos \left[a_{3}\right] \sin \left[a_{2}\right] \sin \left[a_{5}\right]\right)\right)+\left(\cos \left[a_{6}\right]\left(-\cos \left[a_{3}\right] \sin \left[a_{1}\right]+\cos \left[a_{1}\right] \sin \left[a_{2}\right] \times\right.\right.\)
\(\left.\sin \left[a_{3}\right]\right) \sin \left[a_{4}\right]-\left(\cos \left[a_{5}\right] \sin \left[a_{1}\right] \sin \left[a_{3}\right]+\cos \left[a_{1}\right]\left(\cos \left[a_{3}\right] \cos \left[a_{5}\right] \sin \left[a_{2}\right]\right.\right.\)
\(\left.\left.\left.\left.-\cos \left[a_{2}\right] \sin \left[a_{4}\right] \sin \left[a_{5}\right]\right)\right) \sin \left[a_{6}\right]\right) \sinh \left[\frac{b_{1}}{2}\right] \sinh \left[\frac{b_{2}}{2}\right]\right)\)
\(+\left(8 \cosh \left[\frac{b_{1}}{2}\right] \cosh \left[\frac{b_{2}}{2}\right] \sin \left[2 a_{4}\right] \cos \left[a_{2}\right] \cos \left[a_{5}\right] \sin \left[a_{1}\right]\right.\)
\(+8 \sin \left[2 a_{4}\right] \sinh \left[\frac{b_{1}}{2}\right] \sinh \left[\frac{b_{2}}{2}\right] \cos \left[a_{1}\right] \cos \left[a_{3}\right] \cos \left[a_{6}\right]\)
\(+8 \sin \left[2 a_{4}\right] \sinh \left[\frac{b_{1}}{2}\right] \sinh \left[\frac{b_{2}}{2}\right] \cos \left[a_{6}\right] \sin \left[a_{1}\right] \sin \left[a_{2}\right] \sin \left[a_{3}\right]\)
\(+16 \cos \left[a_{4}\right] \cosh \left[\frac{b_{1}}{2}\right] \cosh \left[\frac{b_{2}}{2}\right] \cos \left[a_{3}\right] \sin \left[a_{1}\right] \sin \left[a_{2}\right] \sin \left[a_{5}\right]\)
\(-16 \cos \left[a_{4}\right] \sinh \left[\frac{b_{1}}{2}\right] \sinh \left[\frac{b_{2}}{2}\right] \cos \left[a_{3}\right] \cos \left[a_{5}\right] \sin \left[a_{1}\right] \sin \left[a_{2}\right] \sin \left[a_{6}\right]\)
\(+8 \sin \left[2 a_{4}\right] \sinh \left[\frac{b_{1}}{2}\right] \sinh \left[\frac{b_{2}}{2}\right] \cos \left[a_{2}\right] \sin \left[a_{1}\right] \sin \left[a_{5}\right] \sin \left[a_{6}\right]\)
\(-16 \cos \left[a_{4}\right] \cosh \left[\frac{b_{1}}{2}\right] \cosh \left[\frac{b_{2}}{2}\right] \cos \left[a_{1}\right] \sin \left[a_{3}\right] \sin \left[a_{5}\right]\)
\(\left.+16 \cos \left[a_{4}\right] \sinh \left[\frac{b_{1}}{2}\right] \sinh \left[\frac{b_{2}}{2}\right] \cos \left[a_{1}\right] \cos \left[a_{5}\right] \sin \left[a_{3}\right] \sin \left[a_{6}\right]\right)\left(\cosh \left[\frac{b_{2}}{2}\right] \times\right.\)
\(\left(-\cos \left[a_{2}\right] \cos \left[a_{6}\right] \sin \left[a_{1}\right]+\left(\cos \left[a_{1}\right] \cos \left[a_{3}\right]+\sin \left[a_{1}\right] \sin \left[a_{2}\right] \sin \left[a_{3}\right]\right) \times\right.\)
\(\left.\sin \left[a_{5}\right] \sin \left[a_{6}\right]\right) \sinh \left[\frac{b_{1}}{2}\right]+\cos \left[a_{5}\right] \cosh \left[\frac{b_{1}}{2}\right]\left(\cos \left[a_{1}\right] \cos \left[a_{3}\right]+\sin \left[a_{1}\right] \times\right.\)
\(\left.\left.\sin \left[a_{2}\right] \sin \left[a_{3}\right]\right) \sinh \left[\frac{b_{2}}{2}\right]\right)+16 \cos \left[a_{4}\right]\left(\cosh \left[\frac{b_{2}}{2}\right]\left(\cos \left[a_{6}\right]\left(\cos \left[a_{1}\right] \cos \left[a_{3}\right]\right.\right.\right.\)
\(\left.+\sin \left[a_{1}\right] \sin \left[a_{2}\right] \sin \left[a_{3}\right]\right) \sin \left[a_{4}\right]+\left(-\cos \left[a_{3}\right] \cos \left[a_{5}\right] \sin \left[a_{1}\right] \sin \left[a_{2}\right]\right.\)
\(\left.\left.+\cos \left[a_{1}\right] \cos \left[a_{5}\right] \sin \left[a_{3}\right]+\cos \left[a_{2}\right] \sin \left[a_{1}\right] \sin \left[a_{4}\right] \sin \left[a_{5}\right]\right) \sin \left[a_{6}\right]\right) \sinh \left[\frac{b_{1}}{2}\right]\)
\(+\cosh \left[\frac{b_{1}}{2}\right]\left(\cos \left[a_{2}\right] \cos \left[a_{5}\right] \sin \left[a_{1}\right] \sin \left[a_{4}\right]+\left(\cos \left[a_{3}\right] \sin \left[a_{1}\right] \sin \left[a_{2}\right]\right.\right.\)
```

$$
\begin{align*}
& \left.\left.\left.-\cos \left[a_{1}\right] \sin \left[a_{3}\right]\right) \sin \left[a_{5}\right]\right) \sinh \left[\frac{b_{2}}{2}\right]\right)\left(\cosh \left[\frac{b_{1}}{2}\right] \cos \left[a_{5}\right] \cosh \left[\frac{b_{2}}{2}\right] \times\right. \\
& \left(\cos \left[a_{1}\right] \cos \left[a_{3}\right]+\sin \left[a_{1}\right] \sin \left[a_{2}\right] \sin \left[a_{3}\right]\right)-\sinh \left[\frac{b_{1}}{2}\right]\left(\cos \left[a_{2}\right] \cos \left[a_{6}\right] \sin \left[a_{1}\right]\right. \\
& \left.\left.-\left(\cos \left[a_{1}\right] \cos \left[a_{3}\right]+\sin \left[a_{1}\right] \sin \left[a_{2}\right] \sin \left[a_{3}\right]\right) \sin \left[a_{5}\right] \sin \left[a_{6}\right]\right) \sinh \left[\frac{b_{2}}{2}\right]\right) \\
& -16 \cos \left[a_{4}\right]\left(\operatorname { c o s h } [\frac { b _ { 2 } } { 2 }] \left(\cos \left[a_{6}\right]\left(-\cos \left[a_{3}\right] \sin \left[a_{1}\right]+\cos \left[a_{1}\right] \sin \left[a_{2}\right] \sin \left[a_{3}\right]\right) \times\right.\right. \\
& \sin \left[a_{4}\right]-\left(\cos \left[a_{5}\right] \sin \left[a_{1}\right] \sin \left[a_{3}\right]+\cos \left[a_{1}\right]\left(\cos \left[a_{3}\right] \cos \left[a_{5}\right] \sin \left[a_{2}\right]\right.\right. \\
& \left.\left.\left.-\cos \left[a_{2}\right] \sin \left[a_{4}\right] \sin \left[a_{5}\right]\right)\right) \sin \left[a_{6}\right]\right) \sinh \left[\frac{b_{1}}{2}\right]+\cosh \left[\frac{b_{1}}{2}\right]\left(\sin \left[a_{1}\right] \sin \left[a_{3}\right] \sin \left[a_{5}\right]\right. \\
& \left.\left.+\cos \left[a_{1}\right]\left(\cos \left[a_{2}\right] \cos \left[a_{5}\right] \sin \left[a_{4}\right]+\cos \left[a_{3}\right] \sin \left[a_{2}\right] \sin \left[a_{5}\right]\right)\right) \sinh \left[\frac{b_{2}}{2}\right]\right) \times \\
& \left(\cos \left[a_{5}\right] \cosh \left[\frac{b_{1}}{2}\right] \cosh \left[\frac{b_{2}}{2}\right]\left(\cos \left[a_{3}\right] \sin \left[a_{1}\right]-\cos \left[a_{1}\right] \sin \left[a_{2}\right] \sin \left[a_{3}\right]\right)\right. \\
& +\left(\cos \left[a_{3}\right] \sin \left[a_{1}\right] \sin \left[a_{5}\right] \sin \left[a_{6}\right]+\cos \left[a_{1}\right]\left(\cos \left[a_{2}\right] \cos \left[a_{6}\right]\right.\right. \\
& \left.\left.\left.-\sin \left[a_{2}\right] \sin \left[a_{3}\right] \sin \left[a_{5}\right] \sin \left[a_{6}\right]\right)\right) \sinh \left[\frac{b_{1}}{2}\right] \sinh \left[\frac{b_{2}}{2}\right]\right)+4\left(\operatorname { c o s h } [\frac { b _ { 2 } } { 2 }] \left(\cos \left[a_{6}\right] \sin \left[a_{2}\right]\right.\right. \\
& \left.+\cos \left[a_{2}\right] \sin \left[a_{3}\right] \sin \left[a_{5}\right] \sin \left[a_{6}\right]\right) \sinh \left[\frac{b_{1}}{2}\right]+\cos \left[a_{2}\right] \cos \left[a_{5}\right] \cosh \left[\frac{b_{1}}{2}\right] \sin \left[a_{3}\right] \times \\
& \left.\sinh \left[\frac{b_{2}}{2}\right]\right)\left(\operatorname { c o s h } [\frac { b _ { 1 } } { 2 }] \operatorname { c o s h } [\frac { b _ { 2 } } { 2 }] \left(-2 \sin \left[2 a_{4}\right] \cos \left[a_{5}\right] \sin \left[a_{2}\right]\right.\right. \\
& \left.+4 \cos \left[a_{4}\right] \cos \left[a_{2}\right] \cos \left[a_{3}\right] \sin \left[a_{5}\right]\right)-\sinh \left[\frac{b_{1}}{2}\right]\left(2 \sin \left[2 a_{4}\right] \sin \left[a_{2}\right] \sin \left[a_{5}\right] \sin \left[a_{6}\right]\right. \\
& \left.+\cos \left[a_{2}\right]\left(-2 \sin \left[2 a_{4}\right] \cos \left[a_{6}\right] \sin \left[a_{3}\right]+4 \cos \left[a_{4}\right] \cos \left[a_{3}\right] \cos \left[a_{5}\right] \sin \left[a_{6}\right]\right)\right) \times \\
& \left.\sinh \left[\frac{b_{2}}{2}\right]\right)-8\left(\operatorname { s i n h } [\frac { b _ { 1 } } { 2 }] \operatorname { c o s h } [\frac { b _ { 2 } } { 2 }] \left(\sin \left[2 a_{4}\right] \sin \left[a_{2}\right] \sin \left[a_{5}\right] \sin \left[a_{6}\right]\right.\right. \\
& \left.+\cos \left[a_{2}\right]\left(-\sin \left[2 a_{4}\right] \cos \left[a_{6}\right] \sin \left[a_{3}\right]+2 \cos \left[a_{4}\right] \cos \left[a_{3}\right] \cos \left[a_{5}\right] \sin \left[a_{6}\right]\right)\right) \\
& -\cosh \left[\frac{b_{1}}{2}\right]\left(-\sin \left[2 a_{4}\right] \cos \left[a_{5}\right] \sin \left[a_{2}\right]+2 \cos \left[a_{4}\right] \cos \left[a_{2}\right] \cos \left[a_{3}\right] \sin \left[a_{5}\right]\right) \times \\
& \left.\sinh \left[\frac{b_{2}}{2}\right]\right)\left(\cos \left[a_{2}\right] \cos \left[a_{5}\right] \cosh \left[\frac{b_{1}}{2}\right] \cosh \left[\frac{b_{2}}{2}\right] \sin \left[a_{3}\right]+\left(\cos \left[a_{6}\right] \sin \left[a_{2}\right]\right.\right. \\
& \left.\left.\left.\left.\left.\left.\left.+\cos \left[a_{2}\right] \sin \left[a_{3}\right] \sin \left[a_{5}\right] \sin \left[a_{6}\right]\right) \sinh \left[\frac{b_{1}}{2}\right] \sinh \left[\frac{b_{2}}{2}\right]\right)\right)\right)\right)^{2}\right)\right] \tag{113}
\end{align*}
$$

E Scalar potential for $S O(5) \times S O(5)$ gauging in $S O(3)_{\text {diag }}$ sector

$$
\begin{aligned}
& V=-4 g^{2}\left[4\left(1+\cosh \left[2 b_{1}\right] \cosh \left[2 b_{2}\right]\right)^{2}-\frac{1}{2}\left(-1+\cosh \left[2 b_{1}\right] \cosh \left[2 b_{2}\right]\right)^{2} \times\right. \\
& \left(1+\cosh \left[2 b_{1}\right] \cosh \left[2 b_{2}\right]\right)\left(\cos \left[a_{2}\right]^{2}\left(\cos \left[2 a_{3}\right]+\cos \left[2 a_{4}\right]\right) \cos \left[a_{5}\right]^{2}\right. \\
& \left.-2 \sin \left[a_{2}\right]^{2} \sin \left[a_{5}\right]^{2}+\sin \left[2 a_{2}\right] \sin \left[a_{3}\right] \sin \left[a_{4}\right] \sin \left[2 a_{5}\right]\right) \\
& +\frac{1}{64}\left(-1+\cosh \left[2 b_{1}\right] \cosh \left[2 b_{2}\right]\right)^{4}\left(\operatorname { c o s } [a _ { 2 }] ^ { 2 } \left(\cos \left[2 a_{3}\right]\right.\right. \\
& \left.+\cos \left[2 a_{4}\right]\right) \cos \left[a_{5}\right]^{2}-2 \sin \left[a_{2}\right]^{2} \sin \left[a_{5}\right]^{2}+\sin \left[2 a_{2}\right] \sin \left[a_{3}\right] \times \\
& \left.\sin \left[a_{4}\right] \sin \left[2 a_{5}\right]\right)^{2}-5\left(\frac{33}{100}\left(\sinh \left[2 b_{1}\right]^{2}+\cosh \left[2 b_{1}\right]^{2} \sinh \left[2 b_{2}\right]^{2}\right)\right. \\
& -\frac{1}{6400}\left(-1+\cosh \left[2 b_{1}\right] \cosh \left[2 b_{2}\right]\right)\left(-41+23 \cosh \left[4 b_{1}\right]\right. \\
& \left.+2 \cosh \left[2 b_{1}\right]^{2}\left(8 \cosh \left[4 b_{2}\right]+\cosh \left[8 b_{2}\right]\right)\right)\left(\cos \left[2\left(a_{2}-a_{4}\right)\right]\right. \\
& +\cos \left[2\left(a_{2}+a_{4}\right)\right]+8 \cos \left[a_{2}\right]^{2} \cos \left[2 a_{3}\right] \cos \left[a_{5}\right]^{2} \\
& +\cos \left[2 a_{4}\right]\left(2+4 \cos \left[a_{2}\right]^{2} \cos \left[2 a_{5}\right]\right)-16 \sin \left[a_{2}\right]^{2} \sin \left[a_{5}\right]^{2} \\
& \left.+8 \sin \left[2 a_{2}\right] \sin \left[a_{3}\right] \sin \left[a_{4}\right] \sin \left[2 a_{5}\right]\right) \\
& +\frac{1}{12800}\left(-1+\cosh \left[2 b_{1}\right] \cosh \left[2 b_{2}\right]\right)^{3}\left(1+\cosh \left[2 b_{1}\right] \cosh \left[2 b_{2}\right]\right) \times \\
& \left(\cos \left[2\left(a_{2}-a_{4}\right)\right]+\cos \left[2\left(a_{2}+a_{4}\right)\right]+8 \cos \left[a_{2}\right]^{2} \cos \left[2 a_{3}\right] \times\right. \\
& \cos \left[a_{5}\right]^{2}+\cos \left[2 a_{4}\right]\left(2+4 \cos \left[a_{2}\right]^{2} \cos \left[2 a_{5}\right]\right)-16 \sin \left[a_{2}\right]^{2} \sin \left[a_{5}\right]^{2} \\
& \left.+8 \sin \left[2 a_{2}\right] \sin \left[a_{3}\right] \times \sin \left[a_{4}\right] \sin \left[2 a_{5}\right]\right)^{2} \\
& +\frac{1}{800}\left(\operatorname { c o s } [a _ { 2 }] ^ { 2 } \left(5+\cos \left[2 a_{3}\right]+\cos \left[2 a_{4}\right]+\left(3+\cos \left[2 a_{3}\right]\right.\right.\right. \\
& \left.\left.+\cos \left[2 a_{4}\right]\right) \cos \left[2 a_{5}\right]\right)+8 \cos \left[2 a_{5}\right] \sin \left[a_{2}\right]^{2}-3\left(-3+\cos \left[2 a_{2}\right]\right) \times \\
& \sin \left[a_{5}\right]^{2}+4 \cosh \left[2 b_{1}\right] \cosh \left[2 b_{2}\right]\left(\operatorname { c o s } [a _ { 2 }] ^ { 2 } \left(-\cos \left[a_{4}\right]^{2}\right.\right. \\
& \left.\left.+\cos \left[a_{5}\right]^{2} \sin \left[a_{3}\right]^{2}\right)+\left(\cos \left[a_{4}\right]^{2}+\sin \left[a_{2}\right]^{2} \sin \left[a_{4}\right]^{2}\right) \sin \left[a_{5}\right]^{2}\right) \\
& -2\left(-1+\cosh \left[2 b_{1}\right] \cosh \left[2 b_{2}\right]\right) \sin \left[2 a_{2}\right] \sin \left[a_{3}\right] \sin \left[a_{4}\right] \times \\
& \left.\sin \left[2 a_{5}\right]\right) \sinh \left[2 b_{1}\right]^{2}+\frac{1}{800} \sinh \left[2 b_{1}\right]^{2}\left(\cos \left[a_{1}\right]^{2} \cos \left[a_{2}\right]^{2} \cos \left[a_{4}\right]^{2} \times\right. \\
& \left(-1+\cosh \left[2 b_{1}\right] \cosh \left[2 b_{2}\right]\right)+\cos \left[a_{2}\right]^{2} \cos \left[a_{4}\right]^{2}\left(-1+\cosh \left[2 b_{1}\right] \times\right. \\
& \left.\cosh \left[2 b_{2}\right]\right) \sin \left[a_{1}\right]^{2}-\cos \left[a_{4}\right]^{2}\left(3+\cosh \left[2 b_{1}\right] \cosh \left[2 b_{2}\right]\right) \sin \left[a_{5}\right]^{2} \\
& -\left(3+\cosh \left[2 b_{1}\right] \cosh \left[2 b_{2}\right]\right)\left(\cos \left[a_{2}\right] \cos \left[a_{5}\right] \sin \left[a_{3}\right]\right. \\
& \left.-\sin \left[a_{2}\right] \sin \left[a_{4}\right] \sin \left[a_{5}\right]\right)^{2}-2\left(\cos \left[2 a_{5}\right] \sin \left[a_{2}\right]^{2}\right. \\
& +\cos \left[a_{2}\right]^{2}\left(\cos \left[2 a_{3}\right] \cos \left[a_{5}\right]^{2}-\cos \left[2 a_{4}\right] \sin \left[a_{5}\right]^{2}\right) \\
& \left.\left.+\sin \left[2 a_{2}\right] \sin \left[a_{3}\right] \sin \left[a_{4}\right] \sin \left[2 a_{5}\right]\right)\right)^{2} \\
& +\frac{1}{3200}\left(-1+\cosh \left[2 b_{1}\right]^{2} \cosh \left[4 b_{2}\right]\right)\left(28+\cos \left[2\left(a_{2}-a_{3}\right)\right]\right. \\
& +\cos \left[2\left(a_{2}+a_{3}\right)\right]+8 \cos \left[a_{2}\right]^{2} \cos \left[2 a_{4}\right] \cos \left[a_{5}\right]^{2}+4 \cos \left[2 a_{5}\right] \\
& +\cos \left[2 a_{3}\right]\left(2+4 \cos \left[a_{2}\right]^{2} \cos \left[2 a_{5}\right]\right)+8 \cos \left[2 a_{2}\right] \sin \left[a_{5}\right]^{2} \\
& +16 \cosh \left[2 b_{1}\right] \cosh \left[2 b_{2}\right]\left(\cos \left[a_{2}\right]^{2}\left(-\cos \left[a_{4}\right]^{2}+\cos \left[a_{5}\right]^{2} \sin \left[a_{3}\right]^{2}\right)\right. \\
& \left.+\left(\cos \left[a_{4}\right]^{2}+\sin \left[a_{2}\right]^{2} \sin \left[a_{4}\right]^{2}\right) \sin \left[a_{5}\right]^{2}\right)-8\left(-1+\cosh \left[2 b_{1}\right] \times\right. \\
& \left.\left.\cosh \left[2 b_{2}\right]\right) \sin \left[2 a_{2}\right] \sin \left[a_{3}\right] \sin \left[a_{4}\right] \sin \left[2 a_{5}\right]\right)+\frac{1}{204800}\left(-1+\cosh \left[2 b_{1}\right]^{2} \times\right. \\
& \left.\cosh \left[4 b_{2}\right]\right)\left(28+\cos \left[2\left(a_{2}-a_{3}\right)\right]+\cos \left[2\left(a_{2}+a_{3}\right)\right]+8 \cos \left[a_{2}\right]^{2} \times\right. \\
& \cos \left[2 a_{4}\right] \cos \left[a_{5}\right]^{2}+4 \cos \left[2 a_{5}\right]+\cos \left[2 a_{3}\right]\left(2+4 \cos \left[a_{2}\right]^{2} \cos \left[2 a_{5}\right]\right) \\
& +8 \cos \left[2 a_{2}\right] \sin \left[a_{5}\right]^{2}+16 \cosh \left[2 b_{1}\right] \cosh \left[2 b_{2}\right]\left(\operatorname { c o s } [a _ { 2 }] ^ { 2 } \left(-\cos \left[a_{4}\right]^{2}\right.\right. \\
& \left.\left.+\cos \left[a_{5}\right]^{2} \sin \left[a_{3}\right]^{2}\right)+\left(\cos \left[a_{4}\right]^{2}+\sin \left[a_{2}\right]^{2} \sin \left[a_{4}\right]^{2}\right) \sin \left[a_{5}\right]^{2}\right) \\
& \left.-8\left(-1+\cosh \left[2 b_{1}\right] \cosh \left[2 b_{2}\right]\right) \sin \left[2 a_{2}\right] \sin \left[a_{3}\right] \sin \left[a_{4}\right] \sin \left[2 a_{5}\right]\right)^{2}
\end{aligned}
$$

```
+\frac{1}{400}(\operatorname{sinh}[2\mp@subsup{b}{1}{}\mp@subsup{]}{}{2}+\operatorname{cosh}[2\mp@subsup{b}{1}{}\mp@subsup{]}{}{2}\operatorname{sinh}[2\mp@subsup{b}{2}{}\mp@subsup{]}{}{2})(4\operatorname{cos}[\mp@subsup{a}{2}{}\mp@subsup{]}{}{2}\operatorname{cos}[\mp@subsup{a}{4}{}\mp@subsup{]}{}{2}
+\operatorname{cos}[\mp@subsup{a}{4}{}\mp@subsup{]}{}{2}(3+\operatorname{cosh}[2\mp@subsup{b}{1}{}]\operatorname{cosh}[2\mp@subsup{b}{2}{}])\operatorname{sin}[\mp@subsup{a}{2}{}\mp@subsup{]}{}{2}+(3+\operatorname{cosh}[2\mp@subsup{b}{1}{}]\times
cosh[2\mp@subsup{b}{2}{}])\operatorname{sin}[\mp@subsup{a}{4}{}\mp@subsup{]}{}{2}-(-1+\operatorname{cosh}[2\mp@subsup{b}{1}{}]\operatorname{cosh}[2\mp@subsup{b}{2}{}])(\operatorname{cos}[\mp@subsup{a}{3}{}]\times
cos[\mp@subsup{a}{5}{}]\operatorname{sin}[\mp@subsup{a}{1}{}]-\operatorname{cos}[\mp@subsup{a}{1}{}](\operatorname{cos}[\mp@subsup{a}{5}{}]\operatorname{sin}[\mp@subsup{a}{2}{}]\operatorname{sin}[\mp@subsup{a}{3}{}]+\operatorname{cos}[\mp@subsup{a}{2}{}]\operatorname{sin}[\mp@subsup{a}{4}{}]\times
sin[\mp@subsup{a}{5}{}])\mp@subsup{)}{}{2}-(-1+\operatorname{cosh}[2\mp@subsup{b}{1}{}]\operatorname{cosh}[2\mp@subsup{b}{2}{}])(\operatorname{cos}[\mp@subsup{a}{1}{}]\operatorname{cos}[\mp@subsup{a}{3}{}]\operatorname{cos}[\mp@subsup{a}{5}{}]
+ sin [\mp@subsup{a}{1}{}](\operatorname{cos}[\mp@subsup{a}{5}{}]\operatorname{sin}[\mp@subsup{a}{2}{}]\operatorname{sin}[\mp@subsup{a}{3}{}]+\operatorname{cos}[\mp@subsup{a}{2}{}]\operatorname{sin}[\mp@subsup{a}{4}{}]\operatorname{sin}[\mp@subsup{a}{5}{}])\mp@subsup{)}{}{2}\mp@subsup{)}{}{2}
+\frac{1}{20}\operatorname{cos}[\mp@subsup{a}{2}{}\mp@subsup{]}{}{2}\operatorname{cos}[\mp@subsup{a}{4}{}\mp@subsup{]}{}{2}(-1+\operatorname{cosh}[2\mp@subsup{b}{1}{}]\operatorname{cosh}[2\mp@subsup{b}{2}{}]\mp@subsup{)}{}{3}(\operatorname{cos}[\mp@subsup{a}{3}{}\mp@subsup{]}{}{2}\times
sin[\mp@subsup{a}{2}{}\mp@subsup{]}{}{2}+(\operatorname{cos}[\mp@subsup{a}{2}{}]\operatorname{cos}[\mp@subsup{a}{5}{}]\operatorname{sin}[\mp@subsup{a}{4}{}]-\operatorname{sin}[\mp@subsup{a}{2}{}]\operatorname{sin}[\mp@subsup{a}{3}{}]\operatorname{sin}[\mp@subsup{a}{5}{}]\mp@subsup{)}{}{2})
+\frac{3}{400}(-1+\operatorname{cosh}[2\mp@subsup{b}{1}{}]\operatorname{cosh}[2\mp@subsup{b}{2}{}]\mp@subsup{)}{}{2}(-\operatorname{cos}[\mp@subsup{a}{5}{}\mp@subsup{]}{}{2}\operatorname{sin}[2\mp@subsup{a}{2}{}]\operatorname{sin}[\mp@subsup{a}{3}{}]\times
sin [\mp@subsup{a}{4}{}](\operatorname{cosh}[\mp@subsup{b}{2}{}]\operatorname{sinh}[\mp@subsup{b}{1}{}]\operatorname{cos}[\mp@subsup{a}{6}{}]-\operatorname{cosh}[\mp@subsup{b}{1}{}]\operatorname{sinh}[\mp@subsup{b}{2}{}]\operatorname{sin}[\mp@subsup{a}{6}{}])
+(sin[2\mp@subsup{a}{2}{}]\operatorname{sin}[\mp@subsup{a}{3}{}]\operatorname{sin}[\mp@subsup{a}{4}{}]\operatorname{sin}[\mp@subsup{a}{5}{}\mp@subsup{]}{}{2}+\operatorname{sin}[\mp@subsup{a}{2}{}\mp@subsup{]}{}{2}\operatorname{sin}[2\mp@subsup{a}{5}{}])\times
(\operatorname{cosh}[\mp@subsup{b}{2}{}]\operatorname{sinh}[\mp@subsup{b}{1}{}]\operatorname{cos}[\mp@subsup{a}{6}{}]-\operatorname{cosh}[\mp@subsup{b}{1}{}]\operatorname{sinh}[\mp@subsup{b}{2}{}]\operatorname{sin}[\mp@subsup{a}{6}{}])
- cos[\mp@subsup{a}{3}{}]\operatorname{sin}[2\mp@subsup{a}{2}{}]\operatorname{sin}[\mp@subsup{a}{4}{}]\operatorname{sin}[\mp@subsup{a}{5}{}](\operatorname{cosh}[\mp@subsup{b}{1}{}]\operatorname{sinh}[\mp@subsup{b}{2}{}]\operatorname{cos}[\mp@subsup{a}{6}{}]
+ cosh[\mp@subsup{b}{2}{}]\operatorname{sinh}[\mp@subsup{b}{1}{}]\operatorname{sin}[\mp@subsup{a}{6}{}])+\operatorname{cos}[\mp@subsup{a}{2}{}\mp@subsup{]}{}{2}\operatorname{cos}[\mp@subsup{a}{5}{}]\times
(\operatorname{cos}[\mp@subsup{a}{6}{}](\operatorname{cosh}[\mp@subsup{b}{1}{}]\operatorname{sinh}[\mp@subsup{b}{2}{}]\operatorname{sin}[2\mp@subsup{a}{3}{}]+\operatorname{cosh}[\mp@subsup{b}{2}{}]\operatorname{sinh}[\mp@subsup{b}{1}{}](\operatorname{cos}[2\mp@subsup{a}{3}{}]
+ cos[2\mp@subsup{a}{4}{}])\operatorname{sin}[\mp@subsup{a}{5}{}])+(\operatorname{cosh}[\mp@subsup{b}{2}{}]\operatorname{sinh}[\mp@subsup{b}{1}{}]\operatorname{sin}[2\mp@subsup{a}{3}{}]
- cosh[\mp@subsup{b}{1}{}]\operatorname{sinh}[\mp@subsup{b}{2}{}](\operatorname{cos}[2\mp@subsup{a}{3}{}]+\operatorname{cos}[2\mp@subsup{a}{4}{}])\operatorname{sin}[\mp@subsup{a}{5}{}])\operatorname{sin}[\mp@subsup{a}{6}{}])\mp@subsup{)}{}{2}
+\frac{3}{6400}}(-1+\operatorname{cosh}[2\mp@subsup{b}{1}{}]\operatorname{cosh[2\mp@subsup{b}{2}{}]\mp@subsup{)}{}{2}(\operatorname{cos}[\mp@subsup{a}{3}{}]\operatorname{sin}[2\mp@subsup{a}{2}{}]\operatorname{sin}[\mp@subsup{a}{4}{}]\times
sin}[\mp@subsup{a}{5}{}](4\operatorname{cosh}[\mp@subsup{b}{2}{}]\operatorname{sinh}[\mp@subsup{b}{1}{}]\operatorname{cos}[\mp@subsup{a}{6}{}]-4\operatorname{cosh}[\mp@subsup{b}{1}{}]\operatorname{sinh}[\mp@subsup{b}{2}{}]\operatorname{sin}[\mp@subsup{a}{6}{}]
- cos [a5 [ }\mp@subsup{}{}{2}\operatorname{sin}[2\mp@subsup{a}{2}{}]\operatorname{sin}[\mp@subsup{a}{3}{}]\operatorname{sin}[\mp@subsup{a}{4}{}](4\operatorname{cosh}[\mp@subsup{b}{1}{}]\operatorname{sinh}[\mp@subsup{b}{2}{}]\operatorname{cos}[\mp@subsup{a}{6}{}
+4\operatorname{cosh}[\mp@subsup{b}{2}{}]\operatorname{sinh}[\mp@subsup{b}{1}{}]\operatorname{sin}[\mp@subsup{a}{6}{}])+(\operatorname{sin}[2\mp@subsup{a}{2}{}]\operatorname{sin}[\mp@subsup{a}{3}{}]\operatorname{sin}[\mp@subsup{a}{4}{}]\operatorname{sin}[\mp@subsup{a}{5}{}\mp@subsup{]}{}{2}
+\operatorname{sin}[\mp@subsup{a}{2}{}\mp@subsup{]}{}{2}\operatorname{sin}[2\mp@subsup{a}{5}{5}])(4\operatorname{cosh}[\mp@subsup{b}{1}{}]\operatorname{sinh}[\mp@subsup{b}{2}{}]\operatorname{cos}[\mp@subsup{a}{6}{}]+4\operatorname{cosh}[\mp@subsup{b}{2}{}]\times
sinh[\mp@subsup{b}{1}{}]\operatorname{sin}[\mp@subsup{a}{6}{}])+\operatorname{cos}[\mp@subsup{a}{2}{}\mp@subsup{]}{}{2}\operatorname{cos}[\mp@subsup{a}{5}{}](\operatorname{cos}[\mp@subsup{a}{6}{}](-4\operatorname{cosh}[\mp@subsup{b}{2}{}]\times
sinh[\mp@subsup{b}{1}{}]\operatorname{sin}[2\mp@subsup{a}{3}{}]+4\operatorname{cosh}[\mp@subsup{b}{1}{}]\operatorname{sinh}[\mp@subsup{b}{2}{}](\operatorname{cos}[2\mp@subsup{a}{3}{}]+\operatorname{cos}[2\mp@subsup{a}{4}{}])\times
sin[\mp@subsup{a}{5}{}])+(4\operatorname{cosh}[\mp@subsup{b}{1}{}]\operatorname{sinh}[\mp@subsup{b}{2}{}]\operatorname{sin}[2\mp@subsup{a}{3}{}]+4\operatorname{cosh}[\mp@subsup{b}{2}{}]\operatorname{sinh}[\mp@subsup{b}{1}{}]\times
(\operatorname{cos}[2\mp@subsup{a}{3}{}]+\operatorname{cos}[2\mp@subsup{a}{4}{}])\operatorname{sin}[\mp@subsup{a}{5}{}])\operatorname{sin}[\mp@subsup{a}{6}{}])\mp@subsup{)}{}{2}
+\frac{3}{400}}(-1+\operatorname{cosh}[2\mp@subsup{b}{1}{}]\operatorname{cosh}[2\mp@subsup{b}{2}{}]\mp@subsup{)}{}{2}(\operatorname{cosh}[\mp@subsup{b}{2}{}](2\operatorname{cos}[\mp@subsup{a}{2}{}]\operatorname{cos}[\mp@subsup{a}{3}{}]
\operatorname{cos}[\mp@subsup{a}{6}{}](\operatorname{cos}[\mp@subsup{a}{2}{}]\operatorname{cos}[\mp@subsup{a}{5}{}]\operatorname{sin}[\mp@subsup{a}{3}{}]-\operatorname{sin}[\mp@subsup{a}{2}{}]\operatorname{sin}[\mp@subsup{a}{4}{}]\operatorname{sin}[\mp@subsup{a}{5}{}])
+(\operatorname{cos}[2\mp@subsup{a}{5}{}]\operatorname{sin}[2\mp@subsup{a}{2}{}]\operatorname{sin}[\mp@subsup{a}{3}{}]\operatorname{sin}[\mp@subsup{a}{4}{}]-2\operatorname{cos}[\mp@subsup{a}{5}{}](\operatorname{cos}[\mp@subsup{a}{3}{}\mp@subsup{]}{}{2}
+ \operatorname{sin}[\mp@subsup{a}{2}{}\mp@subsup{]}{}{2}\operatorname{sin}[\mp@subsup{a}{3}{}\mp@subsup{]}{}{2}-\operatorname{cos}[\mp@subsup{a}{2}{}\mp@subsup{]}{}{2}\operatorname{sin}[\mp@subsup{a}{4}{}\mp@subsup{]}{}{2})\operatorname{sin}[\mp@subsup{a}{5}{}])\operatorname{sin}[\mp@subsup{a}{6}{}])\operatorname{sinh}[\mp@subsup{b}{1}{}]
+ \operatorname{cosh}[\mp@subsup{b}{1}{}](\operatorname{cos}[\mp@subsup{a}{6}{}](\operatorname{cos}[2\mp@subsup{a}{5}{}]\operatorname{sin}[2\mp@subsup{a}{2}{}]\operatorname{sin}[\mp@subsup{a}{3}{}]\operatorname{sin}[\mp@subsup{a}{4}{}]
-2\operatorname{cos}[\mp@subsup{a}{5}{}](\operatorname{cos}[\mp@subsup{a}{3}{}\mp@subsup{]}{}{2}+\operatorname{sin}[\mp@subsup{a}{2}{}\mp@subsup{]}{}{2}\operatorname{sin}[\mp@subsup{a}{3}{}\mp@subsup{]}{}{2}-\operatorname{cos}[\mp@subsup{a}{2}{}\mp@subsup{]}{}{2}\operatorname{sin}[\mp@subsup{a}{4}{}\mp@subsup{]}{}{2})\times
sin[\mp@subsup{a}{5}{}])+2\operatorname{cos}[\mp@subsup{a}{2}{}]\operatorname{cos}[\mp@subsup{a}{3}{}](-\operatorname{cos}[\mp@subsup{a}{2}{}]\operatorname{cos}[\mp@subsup{a}{5}{}]\operatorname{sin}[\mp@subsup{a}{3}{}]
+ sin[\mp@subsup{a}{2}{}]\operatorname{sin}[\mp@subsup{a}{4}{}]\operatorname{sin}[\mp@subsup{a}{5}{5}])\operatorname{sin}[\mp@subsup{a}{6}{}])\operatorname{sinh}[\mp@subsup{b}{2}{}]\mp@subsup{)}{}{2}
+\frac{1}{50}(-1+\operatorname{cosh}[2\mp@subsup{b}{1}{}]\operatorname{cosh}[2\mp@subsup{b}{2}{}]\mp@subsup{)}{}{2}(\operatorname{cos}[\mp@subsup{a}{4}{}\mp@subsup{]}{}{2}\operatorname{cos}[\mp@subsup{a}{5}{}]\operatorname{sin}[\mp@subsup{a}{5}{}]\times
(- cos[\mp@subsup{a}{6}{}]\operatorname{cosh}[\mp@subsup{b}{2}{}]\operatorname{sinh}[\mp@subsup{b}{1}{}]+\operatorname{cosh}[\mp@subsup{b}{1}{}]\operatorname{sin}[\mp@subsup{a}{6}{}]\operatorname{sinh}[\mp@subsup{b}{2}{}])
-(\operatorname{cos}[\mp@subsup{a}{2}{}]\operatorname{cos}[\mp@subsup{a}{5}{}]\operatorname{sin}[\mp@subsup{a}{3}{}]-\operatorname{sin}[\mp@subsup{a}{2}{}]\operatorname{sin}[\mp@subsup{a}{4}{}]\operatorname{sin}[\mp@subsup{a}{5}{}])(-\operatorname{cosh}[\mp@subsup{b}{2}{}]\times
(\operatorname{cos}[\mp@subsup{a}{5}{}]\operatorname{cos}[\mp@subsup{a}{6}{}]\operatorname{sin}[\mp@subsup{a}{2}{}]\operatorname{sin}[\mp@subsup{a}{4}{}]+\operatorname{cos}[\mp@subsup{a}{2}{}]\times
(cos[\mp@subsup{a}{6}{}]\operatorname{sin}[\mp@subsup{a}{3}{}]\operatorname{sin}[\mp@subsup{a}{5}{}]-\operatorname{cos}[\mp@subsup{a}{3}{}]\operatorname{sin}[\mp@subsup{a}{6}{}]))\operatorname{sinh}[\mp@subsup{b}{1}{}]
+ cosh[\mp@subsup{b}{1}{}](\operatorname{cos}[\mp@subsup{a}{5}{}]\operatorname{sin}[\mp@subsup{a}{2}{}]\operatorname{sin}[\mp@subsup{a}{4}{}]\operatorname{sin}[\mp@subsup{a}{6}{}]+\operatorname{cos}[\mp@subsup{a}{2}{}]\times
```

```
(\operatorname{cos}[\mp@subsup{a}{3}{}]\operatorname{cos}[\mp@subsup{a}{6}{}]+\operatorname{sin}[\mp@subsup{a}{3}{}]\operatorname{sin}[\mp@subsup{a}{5}{}]\operatorname{sin}[\mp@subsup{a}{6}{}]))}\operatorname{sinh}[\mp@subsup{b}{2}{}])\mp@subsup{)}{}{2
+\frac{1}{100}}(-1+\operatorname{cosh}[2\mp@subsup{b}{1}{}]\operatorname{cosh[2\mp@subsup{b}{2}{}])}\mp@subsup{)}{}{2}((\operatorname{cos}[\mp@subsup{a}{2}{}\mp@subsup{]}{}{2}\operatorname{cos}[\mp@subsup{a}{3}{}]\operatorname{cos}[\mp@subsup{a}{4}{}\mp@subsup{]}{}{2}
cos[\mp@subsup{a}{5}{}](\operatorname{cosh}[\mp@subsup{b}{2}{}](\operatorname{cos}[\mp@subsup{a}{3}{}]\operatorname{cos}[\mp@subsup{a}{6}{}]\operatorname{sin}[\mp@subsup{a}{5}{}]+\operatorname{sin}[\mp@subsup{a}{3}{}]\operatorname{sin}[\mp@subsup{a}{6}{}])\times
sinh[\mp@subsup{b}{1}{}]+\operatorname{cosh}[\mp@subsup{b}{1}{}](\operatorname{cos}[\mp@subsup{a}{6}{}]\operatorname{sin}[\mp@subsup{a}{3}{}]-\operatorname{cos}[\mp@subsup{a}{3}{}]\operatorname{sin}[\mp@subsup{a}{5}{}]\operatorname{sin}[\mp@subsup{a}{6}{}])\times
sinh[\mp@subsup{b}{2}{}]) - (cos[\mp@subsup{a}{2}{}]\operatorname{cos}[\mp@subsup{a}{5}{}]\operatorname{sin}[\mp@subsup{a}{3}{}]\operatorname{sin}[\mp@subsup{a}{4}{}]-\operatorname{sin}[\mp@subsup{a}{2}{}]\operatorname{sin}[\mp@subsup{a}{5}{}])\times
(\operatorname{cosh}[\mp@subsup{b}{2}{}](\operatorname{cos}[\mp@subsup{a}{5}{}]\operatorname{cos}[\mp@subsup{a}{6}{}]\operatorname{sin}[\mp@subsup{a}{2}{}]+\operatorname{cos}[\mp@subsup{a}{2}{}]\operatorname{sin}[\mp@subsup{a}{4}{}]\times
(cos[\mp@subsup{a}{6}{}]\operatorname{sin}[\mp@subsup{a}{3}{}]\operatorname{sin}[\mp@subsup{a}{5}{}]-\operatorname{cos}[\mp@subsup{a}{3}{}]\operatorname{sin}[\mp@subsup{a}{6}{}]))\operatorname{sinh}[\mp@subsup{b}{1}{}]
- cosh[\mp@subsup{b}{1}{}](\operatorname{cos}[\mp@subsup{a}{5}{}]\operatorname{sin}[\mp@subsup{a}{2}{}]\operatorname{sin}[\mp@subsup{a}{6}{}]+\operatorname{cos}[\mp@subsup{a}{2}{}]\operatorname{sin}[\mp@subsup{a}{4}{}]\times
(\operatorname{cos}[\mp@subsup{a}{3}{}]\operatorname{cos}[\mp@subsup{a}{6}{}]+\operatorname{sin}[\mp@subsup{a}{3}{}]\operatorname{sin}[\mp@subsup{a}{5}{}]\operatorname{sin}[\mp@subsup{a}{6}{}]))\operatorname{sinh}[\mp@subsup{b}{2}{}]))\mp@subsup{)}{}{2}
+\frac{3}{400}}(-1+\operatorname{cosh}[2\mp@subsup{b}{1}{}]\operatorname{cosh}[2\mp@subsup{b}{2}{}]\mp@subsup{)}{}{2}(\operatorname{cosh}[\mp@subsup{b}{2}{}](\operatorname{cos}[\mp@subsup{a}{6}{}]
(-\operatorname{cos}[2\mp@subsup{a}{5}{}]\operatorname{sin}[2\mp@subsup{a}{2}{}]\operatorname{sin}[\mp@subsup{a}{3}{}]\operatorname{sin}[\mp@subsup{a}{4}{}]+2\operatorname{cos}[\mp@subsup{a}{5}{}](\operatorname{cos}[\mp@subsup{a}{3}{}\mp@subsup{]}{}{2}
+ sin[\mp@subsup{a}{2}{}\mp@subsup{]}{}{2}\operatorname{sin}[\mp@subsup{a}{3}{}\mp@subsup{]}{}{2}-\operatorname{cos}[\mp@subsup{a}{2}{}\mp@subsup{]}{}{2}\operatorname{sin}[\mp@subsup{a}{4}{}\mp@subsup{]}{}{2})\operatorname{sin}[\mp@subsup{a}{5}{}])+2\operatorname{cos}[\mp@subsup{a}{2}{}]\times
cos[\mp@subsup{a}{3}{}](\operatorname{cos}[\mp@subsup{a}{2}{}]\operatorname{cos}[\mp@subsup{a}{5}{}]\operatorname{sin}[\mp@subsup{a}{3}{}]-\operatorname{sin}[\mp@subsup{a}{2}{}]\operatorname{sin}[\mp@subsup{a}{4}{}]\operatorname{sin}[\mp@subsup{a}{5}{}])\times
sin[\mp@subsup{a}{6}{}])\operatorname{sinh}[\mp@subsup{b}{1}{}]+\operatorname{cosh}[\mp@subsup{b}{1}{}](2\operatorname{cos}[\mp@subsup{a}{2}{}]\operatorname{cos}[\mp@subsup{a}{3}{}]\operatorname{cos}[\mp@subsup{a}{6}{}]\times
(cos[\mp@subsup{a}{2}{}]\operatorname{cos}[\mp@subsup{a}{5}{}]\operatorname{sin}[\mp@subsup{a}{3}{}]-\operatorname{sin}[\mp@subsup{a}{2}{}]\operatorname{sin}[\mp@subsup{a}{4}{}]\operatorname{sin}[\mp@subsup{a}{5}{}])
+(\operatorname{cos}[2\mp@subsup{a}{5}{}]\operatorname{sin}[2\mp@subsup{a}{2}{}]\operatorname{sin}[\mp@subsup{a}{3}{}]\operatorname{sin}[\mp@subsup{a}{4}{}]-2\operatorname{cos}[\mp@subsup{a}{5}{}](\operatorname{cos}[\mp@subsup{a}{3}{}\mp@subsup{]}{}{2}
+ sin[\mp@subsup{a}{2}{}\mp@subsup{]}{}{2}\operatorname{sin}[\mp@subsup{a}{3}{}\mp@subsup{]}{}{2}-\operatorname{cos}[\mp@subsup{a}{2}{}\mp@subsup{]}{}{2}\operatorname{sin}[\mp@subsup{a}{4}{}\mp@subsup{]}{}{2})\operatorname{sin}[\mp@subsup{a}{5}{}])\operatorname{sin}[\mp@subsup{a}{6}{}])\operatorname{sinh}[\mp@subsup{b}{2}{}]\mp@subsup{)}{}{2}
+\frac{3}{400}}(-1+\operatorname{cosh}[2\mp@subsup{b}{1}{}]\operatorname{cosh}[2\mp@subsup{b}{2}{}]\mp@subsup{)}{}{2}(\operatorname{cos}[\mp@subsup{a}{4}{}\mp@subsup{]}{}{2}\operatorname{cos}[\mp@subsup{a}{5}{}]\operatorname{sin}[\mp@subsup{a}{5}{}]
(\operatorname{cosh}[\mp@subsup{b}{1}{}]\operatorname{sinh}[\mp@subsup{b}{2}{}]\operatorname{cos}[\mp@subsup{a}{6}{}]+\operatorname{cosh}[\mp@subsup{b}{2}{}]\operatorname{sinh}[\mp@subsup{b}{1}{}]\operatorname{sin}[\mp@subsup{a}{6}{}])
-(cos[\mp@subsup{a}{2}{}]\operatorname{cos}[\mp@subsup{a}{5}{}]\operatorname{sin}[\mp@subsup{a}{3}{}]-\operatorname{sin}[\mp@subsup{a}{2}{}]\operatorname{sin}[\mp@subsup{a}{4}{}]\operatorname{sin}[\mp@subsup{a}{5}{}])(\operatorname{cos}[\mp@subsup{a}{5}{}]\times
sin}[\mp@subsup{a}{2}{}]\operatorname{sin}[\mp@subsup{a}{4}{}](\operatorname{cosh}[\mp@subsup{b}{1}{}]\operatorname{sinh}[\mp@subsup{b}{2}{}]\operatorname{cos}[\mp@subsup{a}{6}{}]+\operatorname{cosh}[\mp@subsup{b}{2}{}]
sinh[\mp@subsup{b}{1}{}]\operatorname{sin}[\mp@subsup{a}{6}{}])+\operatorname{cos}[\mp@subsup{a}{2}{}](\operatorname{cos}[\mp@subsup{a}{3}{}](\operatorname{cosh}[\mp@subsup{b}{2}{}]\operatorname{sinh}[\mp@subsup{b}{1}{}]\times
cos[\mp@subsup{a}{6}{}]-\operatorname{cosh}[\mp@subsup{b}{1}{}]\operatorname{sinh}[\mp@subsup{b}{2}{}]\operatorname{sin}[\mp@subsup{a}{6}{}])+\operatorname{sin}[\mp@subsup{a}{3}{}]\operatorname{sin}[\mp@subsup{a}{5}{}]\times
(\operatorname{cosh}[\mp@subsup{b}{1}{}]\operatorname{sinh}[\mp@subsup{b}{2}{}]\operatorname{cos}[\mp@subsup{a}{6}{}]+\operatorname{cosh}[\mp@subsup{b}{2}{}]\operatorname{sinh}[\mp@subsup{b}{1}{}]\operatorname{sin}[\mp@subsup{a}{6}{}])))\mp@subsup{)}{}{2}
+\frac{1}{80}(-1+\operatorname{cosh}[2\mp@subsup{b}{1}{}]\operatorname{cosh}[2\mp@subsup{b}{2}{}]\mp@subsup{)}{}{2}(-\operatorname{cos}[\mp@subsup{a}{4}{}\mp@subsup{]}{}{2}\operatorname{cos}[\mp@subsup{a}{5}{}]\operatorname{sin}[\mp@subsup{a}{5}{}]\times
(cosh[\mp@subsup{b}{2}{}]\operatorname{sin}[\mp@subsup{a}{6}{}]\operatorname{sinh}[\mp@subsup{b}{1}{}]+\operatorname{cos}[\mp@subsup{a}{6}{}]\operatorname{cosh}[\mp@subsup{b}{1}{}]\operatorname{sinh}[\mp@subsup{b}{2}{}])
+(\operatorname{cos}[\mp@subsup{a}{2}{}]\operatorname{cos}[\mp@subsup{a}{5}{}]\operatorname{sin}[\mp@subsup{a}{3}{}]-\operatorname{sin}[\mp@subsup{a}{2}{}]\operatorname{sin}[\mp@subsup{a}{4}{}]\operatorname{sin}[\mp@subsup{a}{5}{}])(\operatorname{cosh}[\mp@subsup{b}{2}{}]\times
(\operatorname{cos}[\mp@subsup{a}{5}{}]\operatorname{sin}[\mp@subsup{a}{2}{}]\operatorname{sin}[\mp@subsup{a}{4}{}]\operatorname{sin}[\mp@subsup{a}{6}{}]+\operatorname{cos}[\mp@subsup{a}{2}{}](\operatorname{cos}[\mp@subsup{a}{3}{}]\operatorname{cos}[\mp@subsup{a}{6}{}]
+ \operatorname{sin}[\mp@subsup{a}{3}{}]\operatorname{sin}[\mp@subsup{a}{5}{}]\operatorname{sin}[\mp@subsup{a}{6}{}]))\operatorname{sinh}[\mp@subsup{b}{1}{}]+\operatorname{cosh}[\mp@subsup{b}{1}{}](\operatorname{cos}[\mp@subsup{a}{5}{}]\operatorname{cos}[\mp@subsup{a}{6}{}]\operatorname{sin}[\mp@subsup{a}{2}{}]\operatorname{sin}[\mp@subsup{a}{4}{}]
+ cos[\mp@subsup{a}{2}{}](\operatorname{cos}[\mp@subsup{a}{6}{}]\operatorname{sin}[\mp@subsup{a}{3}{}]\operatorname{sin}[\mp@subsup{a}{5}{}]-\operatorname{cos}[\mp@subsup{a}{3}{}]\operatorname{sin}[\mp@subsup{a}{6}{}]))\operatorname{sinh}[\mp@subsup{b}{2}{}])\mp@subsup{)}{}{2}
+\frac{1}{100}}(-1+\operatorname{cosh}[2\mp@subsup{b}{1}{}]\operatorname{cosh}[2\mp@subsup{b}{2}{}]\mp@subsup{)}{}{2}((\operatorname{cos}[\mp@subsup{a}{2}{}\mp@subsup{]}{}{2}\operatorname{cos}[\mp@subsup{a}{3}{}]\operatorname{cos}[\mp@subsup{a}{4}{}\mp@subsup{]}{}{2}\operatorname{cos}[\mp@subsup{a}{5}{}]
(\operatorname{cosh}[\mp@subsup{b}{2}{}](-\operatorname{cos}[\mp@subsup{a}{6}{}]\operatorname{sin}[\mp@subsup{a}{3}{}]+\operatorname{cos}[\mp@subsup{a}{3}{}]\operatorname{sin}[\mp@subsup{a}{5}{}]\operatorname{sin}[\mp@subsup{a}{6}{}])\operatorname{sinh}[\mp@subsup{b}{1}{}]
+ cosh[\mp@subsup{b}{1}{}](\operatorname{cos}[\mp@subsup{a}{3}{}]\operatorname{cos}[\mp@subsup{a}{6}{}]\operatorname{sin}[\mp@subsup{a}{5}{}]+\operatorname{sin}[\mp@subsup{a}{3}{}]\operatorname{sin}[\mp@subsup{a}{6}{}])\operatorname{sinh}[\mp@subsup{b}{2}{}])
-(\operatorname{cos}[\mp@subsup{a}{2}{}]\operatorname{cos}[\mp@subsup{a}{5}{}]\operatorname{sin}[\mp@subsup{a}{3}{}]\operatorname{sin}[\mp@subsup{a}{4}{}]-\operatorname{sin}[\mp@subsup{a}{2}{}]\operatorname{sin}[\mp@subsup{a}{5}{}])(\operatorname{cosh}[\mp@subsup{b}{2}{}]\times
(cos[\mp@subsup{a}{5}{}]\operatorname{sin}[\mp@subsup{a}{2}{}]\operatorname{sin}[\mp@subsup{a}{6}{}]+\operatorname{cos}[\mp@subsup{a}{2}{}]\operatorname{sin}[\mp@subsup{a}{4}{}](\operatorname{cos}[\mp@subsup{a}{3}{}]\operatorname{cos}[\mp@subsup{a}{6}{}]
+ sin[\mp@subsup{a}{3}{}]\operatorname{sin}[\mp@subsup{a}{5}{}]\operatorname{sin}[\mp@subsup{a}{6}{}]))\operatorname{sinh}[\mp@subsup{b}{1}{}]+\operatorname{cosh}[\mp@subsup{b}{1}{}](\operatorname{cos}[\mp@subsup{a}{5}{}]\operatorname{cos}[\mp@subsup{a}{6}{}]\operatorname{sin}[\mp@subsup{a}{2}{}]
+ cos[\mp@subsup{a}{2}{}]\operatorname{sin}[\mp@subsup{a}{4}{}](\operatorname{cos}[\mp@subsup{a}{6}{}]\operatorname{sin}[\mp@subsup{a}{3}{}]\operatorname{sin}[\mp@subsup{a}{5}{}]-\operatorname{cos}[\mp@subsup{a}{3}{}]\operatorname{sin}[\mp@subsup{a}{6}{}]))\operatorname{sinh}[\mp@subsup{b}{2}{}]))\mp@subsup{)}{}{2}
+\frac{1}{1600}}(-1+\operatorname{cosh}[2\mp@subsup{b}{1}{}]\operatorname{cosh}[2\mp@subsup{b}{2}{}]\mp@subsup{)}{}{2}((\operatorname{cosh}[\mp@subsup{b}{2}{}](\operatorname{cos}[\mp@subsup{a}{6}{}](-2\operatorname{cos}[2\mp@subsup{a}{5}{}]
sin[2\mp@subsup{a}{2}{}]\operatorname{sin}[\mp@subsup{a}{3}{}]\operatorname{sin}[\mp@subsup{a}{4}{}]+(1-\operatorname{cos}[2\mp@subsup{a}{2}{}]+\operatorname{cos}[\mp@subsup{a}{2}{}\mp@subsup{]}{}{2}(\operatorname{cos}[2\mp@subsup{a}{3}{}]
+ cos[2\mp@subsup{a}{4}{}]))\operatorname{sin}[2\mp@subsup{a}{5}{}])+2(\operatorname{cos}[\mp@subsup{a}{2}{}\mp@subsup{]}{}{2}\operatorname{cos}[\mp@subsup{a}{5}{}]\operatorname{sin}[2\mp@subsup{a}{3}{}]
```

$$
\begin{align*}
& \left.\left.-\cos \left[a_{3}\right] \sin \left[2 a_{2}\right] \sin \left[a_{4}\right] \sin \left[a_{5}\right]\right) \sin \left[a_{6}\right]\right) \sinh \left[b_{1}\right]+\cosh \left[b_{1}\right] \times \\
& \left(2 \operatorname { c o s } [a _ { 6 }] \left(\cos \left[a_{2}\right]^{2} \cos \left[a_{5}\right] \sin \left[2 a_{3}\right]-\cos \left[a_{3}\right] \sin \left[2 a_{2}\right] \sin \left[a_{4}\right] \times\right.\right. \\
& \left.\sin \left[a_{5}\right]\right)+\left(2 \cos \left[2 a_{5}\right] \sin \left[2 a_{2}\right] \sin \left[a_{3}\right] \sin \left[a_{4}\right]-\left(\cos \left[a_{2}\right]^{2} \times\right.\right. \\
& \left.\left.\left.\left.\left.\left(\cos \left[2 a_{3}\right]+\cos \left[2 a_{4}\right]\right)+2 \sin \left[a_{2}\right]^{2}\right) \sin \left[2 a_{5}\right]\right) \sin \left[a_{6}\right]\right) \sinh \left[b_{2}\right]\right)\right)^{2} \\
& +\frac{1}{1600}\left(-1+\cosh \left[2 b_{1}\right] \cosh \left[2 b_{2}\right]\right)^{2}\left(\left(\operatorname { c o s h } [b _ { 2 }] \left(2 \cos \left[a_{6}\right] \times\right.\right.\right. \\
& \left(-\cos \left[a_{2}\right]^{2} \cos \left[a_{5}\right] \sin \left[2 a_{3}\right]+\cos \left[a_{3}\right] \sin \left[2 a_{2}\right] \sin \left[a_{4}\right] \sin \left[a_{5}\right]\right) \\
& +\left(-2 \cos \left[2 a_{5}\right] \sin \left[2 a_{2}\right] \sin \left[a_{3}\right] \sin \left[a_{4}\right]+\left(\operatorname { c o s } [a _ { 2 }] ^ { 2 } \left(\cos \left[2 a_{3}\right]\right.\right.\right. \\
& \left.\left.\left.\left.+\cos \left[2 a_{4}\right]\right)+2 \sin \left[a_{2}\right]^{2}\right) \sin \left[2 a_{5}\right]\right) \sin \left[a_{6}\right]\right) \sinh \left[b_{1}\right]+\cosh \left[b_{1}\right] \times \\
& \left(\operatorname { c o s } [a _ { 6 }] \left(-2 \cos \left[2 a_{5}\right] \sin \left[2 a_{2}\right] \sin \left[a_{3}\right] \sin \left[a_{4}\right]+\left(1-\cos \left[2 a_{2}\right]\right.\right.\right. \\
& \left.\left.+\cos \left[a_{2}\right]^{2}\left(\cos \left[2 a_{3}\right]+\cos \left[2 a_{4}\right]\right)\right) \sin \left[2 a_{5}\right]\right)+2\left(\cos \left[a_{2}\right]^{2} \times\right. \\
& \left.\left.\left.\left.\left.\left.\cos \left[a_{5}\right] \sin \left[2 a_{3}\right]-\cos \left[a_{3}\right] \sin \left[2 a_{2}\right] \sin \left[a_{4}\right] \sin \left[a_{5}\right]\right) \sin \left[a_{6}\right]\right) \sinh \left[b_{2}\right]\right)\right)^{2}\right)\right] \tag{114}
\end{align*}
$$

References

[1] Henning Samtleben, " Lectures on Gauged Supergravity and Flux Compactifications", Class. Quant. Grav. (2008) 25 214002, arXiv: 0808.4076.
[2] J. M. Maldacena, "The large N limit of superconformal field theories and supergravity", Adv. Theor. Math. Phys. 2 (1998) 231-252, arXiv: hep-th/9711200.
[3] A. Khavaev, K. Pilch and N.P. Warner, "New Vacua of Gauged N=8 Supergravity ", Phys. Lett. B487 (2000), 14-21, arXiv: hep-th/9812035.
[4] N. P. Warner, "Some New Extrema of the Scalar Potential of Gauged $N=8$ Supergravity", Phys. Lett. B128 (1983) 169.
[5] N. P. Warner, "Some Properties of the Scalar Petential in Gauged Supergravity Theories", Nucl. Phys. B231, 250 (1984).
[6] B. de Wit and H. Nicolai, " $N=8$ Supergravity", Nucl. Phys. B208, 323 (1982).
[7] T. Fischbacher, "Fourteen new stationary points in the scalar potential of $S O(8)$-gauged $N=8, D=4$ supergravity", JHEP 09 (2010) 068, arXiv: 0912.1636.
[8] Thomas Fischbacher, Krzysztof Pilch and Nicholas P. Warner, "New supersymmetric and stable, non-supersymmetric phases in supergravity and holographic field theory", arXiv: 1010.4910.
[9] Per Kraus, "Lectures on black holes and the $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$ correspondence", Lect. NotesPhys. 755 (2008) 193-247, arXiv: hep-th/0609074.
[10] H. Nicolai and H. Samtleben, "Maximal gauged supergravity in three dimensions", Phys. Rev. Lett. 86 (2001) 1686-1689, arXiv: hep-th/0010076.
[11] H. Nicolai and H. Samtleben, "Compact and noncompact gauged maximal supergravities in three dimensions", JHEP 04 (2001) 022, arXiv: hep-th/0103032.
[12] T. Fischbacher, H. Nicolai and H. Samtleben, "Non-semisimple and Complex Gaugings of $N=16$ Supergravity", Commun.Math.Phys. 249 (2004) 475496, arXiv: hep-th/0306276.
[13] H. Nicolai and H. Samtleben, " $N=8$ matter coupled AdS_{3} supergravities", Phys. Lett. B514 (2001) 165-172, arXiv: hep-th/0106153.
[14] Bernard de Wit, Ivan Herger and Henning Samtleben, "Gauged Locally Supersymmetric $D=3$ Nonlinear Sigma Models", Nucl. Phys. B671 (2003) 175-216, arXiv: hep-th/0307006.
[15] Bernard de Wit, A. K. Tollsten and H. Nicolai, "Locally supersymmetric $D=3$ nonlinear sigma models", Nucl. Phys. B392 (1993) 3-38, arXiv: hep-th/9208074.
[16] Edi Gava, Parinya Karndumri and K. S. Narain, "AdS 3 Vacua and RG Flows in Three Dimensional Gauged Supergravities", JHEP 04 (2010) 117, arXiv: 1002.3760.
[17] M. Berg and H. Samtleben, "An exact holographic RG Flow between 2d Conformal Field Theories", JHEP 05 (2002) 006, arXiv: hep-th/0112154.
[18] Auttakit Chatrabhuti and Parinya Karndumri, "Vacua and RG flows in $N=9$ three dimensional gauged supergravity", JHEP 10 (2010) 098, arXiv: 1007.5438.
[19] T. Fischbacher, "Some stationary points of gauged $N=16 D=3$ supergravity", Nucl.Phys. B638 (2002) 207-219, arXiv: hep-th/0201030.
[20] T. Fischbacher, H. Nicolai and H. Samtleben, "Vacua of Maximal Gauged $D=3$ Supergravities", Class. Quant. Grav. 19 (2002) 5297-5334, arXiv: hep-th/0207206.
[21] T. Fischbacher, "The many vacua of gauged extended supergravities", Gen. Rel. Grav. 41, 315 (2009), arXiv: 0811.1915.
[22] Stephen Wolfram, "The Mathematica Book", 5th ed. Wolfram Media, 2003.
[23] F. Bernardoni, S. L. Cacciatori, B. L. Cerchiai and A. Scotti, "Mapping the geometry of the F_{4} group", Adv. Theor. Math. Phys. Volume 12, Number 4 (2008), 889-994, arXiv: 07053978.
[24] F. Bernardoni, S. L. Cacciatori, B. L. Cerchiai and A. Scotti, "Mapping the geometry of the E_{6} group", J. Math. Phys. 49 (2008) 012107, arXiv: 0710.0356 .
[25] E. S. Fradkin and Y. Ya. Linetsky, "Results of the classification of superconformal algebras in two dimensions", Phys. Lett. B282 (1992) 352-356, arXiv: hep-th/9203045.
[26] H. Nicolai and H. Samtleben, "Chern-Simons vs Yang-Mills gaugings in three dimensions", Nucl. Phys. B 638 (2002) 207-219, arXiv: hep-th/0303213.
[27] Murat Günaydin and Sergei V. Ketov, "Seven-sphere and the exceptional $N=7$ and $N=8$ superconformal algebras", Nucl. Phys. B467 (1996) 215-246, arXiv: hep-th/9601072.

