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Perturbative expansion of N < 8 Supergravity
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Abstract

We characterise the one-loop amplitudes for N = 6 and N = 4 supergravity in four dimensions. For
N = 6 we find that the one-loop n-point amplitudes can be expanded in terms of scalar box and
triangle functions only. This simplification is consistent with a loop momentum power count of n−3,
which we would interpret as being n+4 for gravity with a further −7 from the N = 6 superalgebra.
For N = 4 we find that, in contrast to previous studies, the amplitude is consistent with a loop
momentum power count of n, which we would interpret as being n + 4 for gravity with a further
−4 from the N = 4 superalgebra. Specifically the N = 4 amplitudes contain non-cut-constructible
rational terms.

1. Introduction

Superficially the perturbative expansion of gravity scattering amplitudes [1] is extremely com-
plicated and power counting suggests the theory is plagued with ultra-violet divergences. However,
there is growing evidence that the ultra-violet behaviour of gravity theories is significantly softer
than expected. The bulk of this evidence has arisen from studies of explicit on-shell scattering ampli-
tudes rather than formal structures. The underlying drivers for this behaviour remain unclear. Even
at tree level surprises have recently been noted: the large momentum behaviour of tree scattering
amplitudes has a softer behaviour than expected [2–5] and a rich structure of relationships between
the tree amplitudes has been uncovered [6–13], which go beyond the well known KLT relations [14].

At loop level, the softest theory is expected to be maximally supersymmetric N = 8 supergrav-
ity [15] . Reexaminations of the perturbative expansion of N = 8 have uncovered evidence that
this theory has a softer UV structure than previously thought [16]. Explicit calculations of physical
scattering amplitudes have shown that the four-graviton amplitude is finite at two [17], three [18, 19]
and four loops [20]. In particular, the results indicate cancellations between diagrams beyond these
explicit in any known formalism. At one-loop N = 8 amplitudes for arbitrary numbers of external
gravitons have been shown to have a very restricted form, to O(ǫ):

A =
∑

i

ciI
i
4 (1.1)

where Ii4 are scalar box-functions and ci are rational coefficients [21–23]. This “no-triangle hypothe-
sis” [24] must result from a much stronger cancellation within supergravity theories than previously
thought and has been checked by explicit computations up to seven points [21–24] and proven within
a string-based rules formalism [25] . Both of these calculations indicate that in the UV limit the
behaviour of N = 8 supergravity tracks that of N = 4 super-Yang-Mills. This opens the possibility
that N = 8 supergravity is a finite quantum field theory of gravity. There is no evidence to the
contrary at this point.
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In [26] and implicitly in [24] the source of these cancellations was examined. When calculating
a one-loop amplitude in a general gravity theory we sum over diagrams. Let m be the number of
legs attached to the loop, m ≤ n. We expect loop momentum integrals of the form

Im[P 2m[ℓ]] (1.2)

where P 2m[ℓ] is a polynomial of degree 2m in the loop momentum ℓ. Cancellations between diagrams
can reduce the effective degree of the loop momentum polynomial. We denote this effective degree by
deff. The traditional expectation within supergravity theories is that cancellation between particle
types within a supermultiplet reduces the degree of the loop momentum polynomial from 2m to
deff = 2m − r, where r depends upon the degree of supersymmetry. For maximal supergravity
r = 8 [27, 28] is manifest within the “string-based rules” method. However the no-triangle hypothesis
indicates that further cancellations arise, resulting in deff = m− 4. This suggests a degree of m+ 4
(rather than 2m) for pure gravity, reduced by 8 by the N = 8 supersymmetry. In this article we
explore the perturbative expansion of N = 6 and N = 4 supergravity theories to examine their UV
behaviour. A starting hypothesis for the reduction in the degree of the loop momentum polynomial
is

deff = (m+ 4)− r (1.3)

where r = 4 for N = 4 supergravity and r = 6 for N = 6 supergravity. To understand the
implications of this for the structure of these amplitudes, we recall that a general one-loop amplitude
in a theory of massless particles can be expressed, after a Passarino–Veltman reduction [29], in the
form

Aone-loop
n =

∑

i∈C

ai I
i
4 +

∑

j∈D

bj I
j
3 +

∑

k∈E

ck I
k
2 +Rn , (1.4)

where the If are f -point scalar integral functions and the ai etc. are rational coefficients. Rn is a
purely rational term. For deff ≥ n we expect this full generic form, while for deff < n the rational
term is absent, for deff ≤ n − 3 the bubbles I2 are also absent and for deff ≤ n − 4 only the box
functions appear.

For N = 6 our explicit calculations indicate deff = n− 3, i.e. r = 7. Compared with (1.3) there
is an extra reduction in the power count by one for N = 6 amplitudes, giving them a simplified
expansion:

Mone-loop
n

,N=6 =
∑

i∈C

ai I
i
4 +

∑

j∈D

bj I
j
3 . (1.5)

This is consistent with the expectations of [25, 26]. For N = 4 we find amplitudes consistent with
deff = n, implying that r = 4 and Rn 6= 0 in eq. (1.4). This contradicts previous expectations [25, 26].
The evidence for this, together with a discussion of the implications, will form the remainder of this
article.

2. IR consistency and Choice of Integral Function Basis

For one-loop amplitudes IR consistency imposes a system of constraints on the rational coef-
ficients of the integral functions. For the matter multiplets [30] there are in fact no IR singular
terms in the amplitude, so the singular terms in the individual integral functions cancel. This gives
enough information to fix the coefficients of the one- and two-mass triangles in terms of the box
coefficients. The three-mass triangle is IR finite, so its coefficient is not determined by these con-
straints. It is convenient to combine the boxes and triangles in such a way that these infinities are
manifestly absent. There are several ways to do this [31–34], here we choose to work with truncated
box functions

Itrunc4 = I4 −
∑

i

αi
(−si)

−ǫ

ǫ2
(2.1)
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where the αi and si are chosen to make Itrunc4 IR finite. This effectively incorporates the one-
and two-mass triangles together with the box integral functions. Using these truncated boxes, the
coefficients of the one and two-mass triangles vanish and the amplitudes can be written as

Mone-loop
n =

∑

i∈C

ai I
i,trunc
4 +

∑

j∈D′

bj I
j,3-mass
3 +

∑

k∈E

ck I
k
2 +Rn , (2.2)

with the single additional constraint
∑

ck = 0.

3. N = 6 one-loop amplitudes

At one-loop our N = 6 supergravity theory is specified by its particle content and tree am-
plitudes. There are two possible multiplets: the vector multiplet and the matter multiplet, with
particle contents as follows:

Helicity 2 3/2 1 1/2 0 −1/2 −1 −3/2 −2

vector 1 6 16 26 30 26 16 6 1
matter 0 1 6 15 20 15 6 1 0

The contributions to the one-loop n-graviton scattering amplitude from the two N = 6 multiplets
satisfy

MN=6,vector = MN=8 − 2MN=6,matter. (3.1)

As MN=8 is known, it is sufficient to compute the contribution from the matter multiplet alone.

3.1. MHV amplitudes

The one-loop n-point MHV amplitude1 in N = 8 supergravity is [22]

Mone-loop,N=8
n (1−, 2−, 3+, . . . , n+) =

(−1)n

8
〈1 2〉8

∑

1≤a<b≤n

M,N

h(a,M, b)h(b,N, a) tr2[aM bN ] IaMbN
4 + O(ǫ) , (3.2)

where h(a,M, b) are the “half-soft” functions of ref. [22] and IaMbN
4 are the “two-mass-easy” scalar

box functions with massless legs a and b and massive clusters M and N . The summation includes
the degenerate cases where M or N reduce to a single massless leg. The half-soft functions have
the explicit form

h(a, {1, 2, . . . , n}, b) ≡
[1 2]

〈1 2〉

[3|K12|a〉[4|K123|a〉 · · · [n|K1···n−1|a〉

〈2 3〉 〈3 4〉 · · · 〈n− 1, n〉 〈a 1〉 〈a 2〉 〈a 3〉 · · · 〈an〉 〈1 b〉 〈n b〉

+ P(2, 3, . . . , n),

(3.3)

where we are using the usual spinor products 〈j l〉 ≡ 〈j−|l+〉 = ū−(kj)u+(kl) and [j l] ≡ 〈j+|l−〉 =
ū+(kj)u−(kl), and where [i|Kabc|j〉 denotes 〈i+| /Kabc|j

+〉 with Kµ
abc = kµa + kµb + kµc and sab =

(ka + kb)
2, etc.

The N = 6 matter multiplet’s contribution to one-loop n-point MHV amplitudes has van-
ishing three-mass triangle coefficients. The bubble coefficients also vanish as explicitly shown in
appendix Appendix A. Considering the rational terms, Rn, the existence of an overall deff that
ensures that the bubble coefficients vanish would also ensure the vanishing of Rn. Additionally,

1For clarity we suppress a factor of iκn−2 in each tree amplitude and iκn/(4π2) in each one-loop amplitude.
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power counting in the string-based rules [27, 28] gives R4 = R5 = 0, and if we assume Rn could be
recursively generated from Rn−1, this would be sufficient to ensure Rn = 0 for all n.

Consequently these contributions can be expressed purely as sums of truncated boxes with a
single negative helicity leg in each massive corner, as shown in fig. 1. The box coefficients may be
determined using unitarity methods [31] including quadruple cuts [35]. To use quadruple cuts we
require the MHV tree amplitudes for n− 2 gravitons and a pair of particles of helicity ±h

M(1−, 2−h, 3+h, 4+ · · · n+) =

(

〈1 3〉

〈1 2〉

)2h−4

M(1−, 2−, 3+, 4+ · · · n+) (3.4)

where the MHV amplitudes from n-gravitons are given in [36]. We find the box-coefficients are
related to the maximally supersymmetric case by simple factors, as in QCD [32],

MN=6,matter
n (1−, 2−, 3+, . . . , n+) =

(−1)n

8
〈1 2〉8

∑

2<a<b≤n

1∈M,2∈N

(

〈1 a〉 〈2 a〉 〈1 b〉 〈2 b〉

〈a b〉2 〈1 2〉2

)

h(a,M, b)h(b,N, a) tr2[aM bN ]IaMbN,trunc
4 (3.5)

This gives an all-n expression for the amplitude consistent with a loop momentum power count of
n− 3 in agreement with previous results.

b+

a+

2−1−M

{ }

N

Figure 1: The box functions appearing in the N = 6 MHV one-loop amplitude

3.2. Six-point NMHV

The six-point next-to-MHV (NMHV) amplitude contains several features that are not present
in the MHV amplitudes: in addition to the one-mass truncated boxes the amplitude also contains
two-mass-hard truncated boxes and three-mass triangles.
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f+ e−

a+
b− c− d+

I
(abc)def
4

f− e+

a−
b+ c+ d−

I
(abc)def
4

a− f+

b−
c+ d−

e+

I
a(bc)(de)f
4

a−

b+

c− d+

e−

f+

I
(ab)(cd)(ef)
3

Figure 2: The box-functions appearing in the NMHV six-point one-loop amplitude

In terms of these integral functions the amplitude is,

MN=6,matter
6 (1−, 2−, 3−, 4+, 5+, 6+) =

∑

(abd)∈P3(123);(cef)∈P3(456)

c a(bc)(de)f I
a(bc)(de)f,trunc
4 +

∑

(adf)∈P3(456);(bcd)∈P3(123)

c
(abc)def
N=6 I

(abc)def,trunc
4

+
∑

(adf)∈P3(123);(bcd)∈P3(456)

c
(abc)def
N=6 I

(abc)def,trunc
4 +

∑

(bde)∈P3(456)

c
(1b),(2d),(3e)
N=6 I

(1b)(2d)(3e)
3 .

(3.6)
The sums run over the permutations of indices 1, . . . , 6, modulo symmetries of the integral functions

I
(abc)def
4 and I

a(bc)(de)f
4 .

The two-mass-hard box coefficients are

c
a−(b−c+)(d−e+)f+

N=6 =
i

2

sbcsdes
2
af (K

2
abc)[a|Kabc|d〉[c|Kabc|f〉[c|Kabc|d〉

6

[a b] [b c]2 〈d e〉2 〈e f〉 [a|Kabc|d〉[a|Kabc|e〉[b|Kabc|e〉[c|Kabc|f〉[a|Kabc|f〉2
,

(3.7)
the one-mass box coefficients are

c
(a−b+c+)d−e+f−

N=6 =

i

2

〈d e〉2 〈e f〉2 [d e] [e f ] [e|Kabc|a〉
6
(

〈a b〉 [b c] [f |Kabc|c〉 [d a] + [a b] 〈b c〉 [c d] [f |Kabc|a〉
)

〈a b〉 〈b c〉 〈a c〉 [d f ]2 [d|Kabc|b〉[f |Kabc|b〉[d|Kabc|c〉[f |Kabc|c〉K2
abc

,
(3.8)

and
c
(a+b−c−)d+e−f+

N=6 = c
(a−b+c+)d−e+f−

N=6 |λ↔λ̄. (3.9)

The three-mass triangle coefficients can be evaluated using analytic techniques [37–39] and are

c
(a−b+)(c−d+)(e−f+)
N=6 =

1

sabscdsef 〈c d〉
2

6
∑

i=1

CAi

〈B6|[Kab,Kcd]|Ai〉

〈Ai|KabKcd|Ai〉
, (3.10)

where
{|Ai〉} = {|b〉, |f〉,Kef |c],Kab|d],KabKcd|f〉,KefKcd|b〉}, (3.11)
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with
|B1〉 = |B2〉 = |a〉[d|f |e〉 + |e〉[d|b|a〉,

|B3〉 = |B4〉 = |c〉[f |b|a〉 + |a〉[f |d|c〉,

|B5〉 = |B6〉 = |e〉[b|d|c〉 + |c〉[b|f |e〉,

(3.12)

and

CAi
=

∏5
j=1〈Bj |Ai〉

∏

j 6=i〈Aj |Ai〉
. (3.13)

This explicit six-point amplitude has all the correct cuts and is, again, consistent with a loop
momentum power count of n−3. The absence of cut-constructible bubble terms can be seen from the
N = 6 version of the analysis in section (3.3) of reference [24]. We have presented results for external
gravitons: the box-coefficients for other external states may be obtained using supersymmetric Ward
identities [40].

4. N = 4 one-loop amplitudes

The particle content multiplicities of N = 4 graviton and matter multiplets are as follows:

Helicity 2 3/2 1 1/2 0 −1/2 −1 −3/2 −2

graviton 1 4 6 4 2 4 6 4 1
matter 0 0 1 4 6 4 1 0 0

For convenience, we will calculate the one-loop amplitude using the N = 4 matter multiplet, which
is related to the amplitude containing the graviton by

MN=4,graviton = MN=8 − 4MN=6,matter + 2MN=4,matter. (4.1)

To order ǫ0, the four-point one-loop N = 4 amplitude is given by [28]

M1-loop,N=4(1−, 2−, 3+, 4+) =
F

2s4

(

(t− u)s ln(−t/− u)− tu
(

ln2(−t/− u) + π2
)

+ s2
)

(4.2)

where

F =
1

16

(

st 〈1 2〉4

〈1 2〉 〈2 3〉 〈3 4〉 〈4 1〉

)2

=
stu

4
M tree(1−, 2−, 3+, 4+) (4.3)

and s ≡ s12, t ≡ s14 and u ≡ s13, are the usual Mandelstam variables. In terms of integral functions
this result can be expressed as

M1-loop,N=4(1−, 2−, 3+, 4+) =
F

2s4

(

(t− u)s(I2(t)− I2(u))− (tu)2Itrunc4 (t, u) + s2
)

. (4.4)

As we can see, this N = 4 amplitude contains a rational term

R4 =
F

2s2
=

(

t 〈1 2〉4

〈1 2〉 〈2 3〉 〈3 4〉 〈4 1〉

)2

. (4.5)

The presence of a rational term indicates that the power count is at least 4 in this case. Since
higher-point amplitudes must reduce to the four-point amplitude in soft and factorisation limits,
it appears inevitable that rational terms also appear in all n-point amplitudes, indicating that the
power count for N = 4 supergravity and one loop is at least n.
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The n-point MHV amplitude is

MN=4
n (1−, 2−, 3+, . . . , n+) =

(−1)n

8
〈1 2〉8

∑

2<a<b≤n

1∈M,2∈N

(

〈1 a〉 〈2 a〉 〈1 b〉 〈2 b〉

〈a b〉2 〈1 2〉2

)2

h(a,M, b)h(b,N, a) tr2[aM bN ]IaMbN,trunc
4

+
∑

1∈A,2∈B

c2(1, A; 2, B)I2(P
2
A) +Rn, (4.6)

where the sets A andB, contain at least one positive helicity leg. The bubble coefficients c2(1, A; 2, B)
are derived and given explicitly in the appendix. Previously it has been suggested [25, 26] that
Rn = 0 for N = 4 amplitudes. Our analysis suggests otherwise: we have explicitly seen that
R4 6= 0. As a further check we have evaluated R5 at a specific kinematic point (given in the
appendix) using string-based rules for gravity [27, 28, 41]. At this kinematic point we find

R5 = −589.27 − 1180.37i (4.7)

5. Beyond one-loop

All supergravity theories in D = 4 are one- and two-loop finite since there is no R3 supersym-
metric counterterm, but at three loops a potential R4 counterterm exists [42]. Until recently is was
widely believed that all supergravity theories would generate this counterterm at three loops [16].
(In higher dimensions multiple possible R4 terms exist: for D = 8, 10 the dimensional “lifts” of
N = 8, N = 6 and N = 4 have different counterterm structures [43], but for D = 4 there is a
unique R4 counterterm consistent with supersymmetry.)

We can attempt to estimate the power counting of the multi-loop amplitudes by considering
various cuts. In particular let us consider the “three-particle cut” of the three-loop four-point
amplitude,

∫

dLIPS(li) M
one-loop(1, 2, ℓ1, ℓ2, ℓ3)×M tree(3, 4, ℓ1, ℓ2, ℓ3) (5.1)

as shown in fig. 3.

Figure 3: The three particle cut of a three-loop amplitude

We can estimate the overall power counting by looking at the power count of the uncut loop
momenta. Note that we are looking at the amplitude rather than individual diagrams. For N = 8
supergravity, examining individual diagrams suggests the three-loop power count is [17]

∫

dℓi
P2(ℓi, ki)

∏10
j=1Dj(ℓi, ki)

(5.2)

for a diagram with propagators Dj and where P2 is a polynomial in the the loop momenta of degree
2. However the “no-triangle” property suggest the power count in the indicated cut is only P1. This
gives a degree of divergence of

3D − 20 + 1 (5.3)

7



making the amplitude divergent for
D ≥ 6. (5.4)

This is consistent with the explicit three-loop computation [19].
For N = 6 and N = 4 (assuming the degree of divergence can be inferred from this cut) we

obtain
N = 6: 3D − 20 + 2

N = 4: 3D − 20 + 5
(5.5)

Both degrees of divergence are less than −1 for D = 4 and so we would predict that both theories
remain finite at three-loops. These estimates must be taken with some caution: estimates of the
power counting in supergravity theories have proven wrong on many occasions. Specifically, we
cannot exclude further cancellations within integrands and we are not sensitive to all possible terms.
Experience suggests that explicit calculations are required.

6. Conclusions

Explicit calculations of scattering amplitudes in N = 6 and N = 4 supergravity theories indicate
loop momentum power counts of n − 3 (= n + 4 − 7) and n (= n + 4 − 4) respectively. While
the former is in agreement with previous expectations, the latter in not. In particular, the N = 4
amplitudes contain purely rational terms. We expect both these theories to remain finite up to
three-loops.

This research was supported by the STFC of the UK.

Appendix A. Bubbles in Supergravity MHV amplitudes

Here we present the bubble contributions to MHV amplitudes. Consider a cut in the momenta
P = ka+ · · · kb. The coefficient of the bubble integral function I2(P

2) can be obtained from the cut,

Ca,...,b ≡
i

2

∑

h

∫

dLIPS

[

Mtree(−ℓh1 , a, a+ 1, . . . , b, ℓ−h
2 )×Mtree(−ℓh2 , b+ 1, b+ 2, . . . , a− 1, ℓ−h

1 )

]

,

(A.1)
where

∫

dLIPS denotes integration over the on-shell phase space of the ℓi. We must sum over the
states in the N = 4 matter multiplet. This cut vanishes unless we have a single negative helicity
leg and at least one positive helicity leg on each side.

There are a variety of techniques available to determine the bubble coefficient from the cut: we
will use the method of canonical forms [39]. We decompose the product of tree amplitudes appearing
in a two-particle cut in terms of canonical forms Fi,

∑

M tree(−ℓ1, · · · , ℓ2)×M tree(−ℓ2, · · · , ℓ1) =
∑

i

ciFi(ℓj), (A.2)

where the ci are coefficients independent of ℓj. We then use substitution rules to replace the Fi(ℓj)
by the evaluated forms Fi(P ) and obtain a bubble coefficient

∑

i

ciFi(P ) (A.3)

For example, the simplest canonical form we use is

H1(A;B; ℓ) ≡
〈ℓB〉

〈ℓA〉
(A.4)

8



which, for ℓ = ℓ1 or ℓ2, evaluates to a contribution to the bubble coefficient of

H1[A;B;P ] =
[A|P |B〉

[A|P |A〉
. (A.5)

It is convenient to define extensions,

Hn(Ai;Bj ; ℓ) =

∏n
j=1 〈Bj ℓ〉

∏n
i=1 〈Ai ℓ〉

−→ Hn[Ai;Bj ;P ] =
∑

i

∏n
j=2 〈Bj Ai〉

∏

j 6=i 〈Aj Ai〉

〈B1|P |Ai]

〈Ai|P |Ai]
, 〈AiAj〉 6= 0.

(A.6)
We will also need the special cases where A1 = A2 = A,

Hx
2(A,A;B1, B2; ℓi) =

〈B1 ℓ1〉 〈B2 ℓ2〉

〈Aℓ1〉 〈Aℓ2〉
−→ Hx

2 [A,A;B1, B2;P ] =
[A|P |B1〉[A|P |B2〉

[A|P |A〉2
. (A.7)

and

Hx
2,1 =

〈B1 ℓ1〉 〈B2 ℓ2〉 〈B3 ℓ2〉

〈Aℓ1〉 〈Aℓ2〉 〈A3 ℓ2〉
−→

(

〈B3A〉

〈A3 A〉
Hx

2 [A,A;B1, B2;P ] +
〈B3 A3〉

〈AA3〉
H2[A,A3;B1, B2;P ]

)

(A.8)
We now return to the cut Ca···b. To be non-zero the set a · · · b must contain exactly one

negative helicity graviton and at least one positive helicity graviton, i.e. must be of the form
{a+1 , a

+
2 , · · · , a

+
nL

,m−
1 } and the legs on the other side must be {b+1 , b

+
2 , · · · , b

+
nR

,m−
2 }. The product

of tree amplitudes is then just a product of the two MHV trees.
When summing over the states in the multiplet, each tree amplitude is proportional to the tree

amplitude with two scalars up to a simple factor. Summing over the tree amplitudes then yields

∑

h

[

Mtree(−ℓh1 , a
+
1 , a

+
2 , · · · a

+
nL

,m−
1 , ℓ

−h
2 )×Mtree(−ℓh2 , b

+
1 , b

+
2 , · · · b

+
nR

,m−
2 , ℓ

−h
1 )

= Mtree(−ℓs1, a
+
1 , a

+
2 , · · · a

+
nL

,m−
1 , ℓ

s
2)×Mtree(−ℓs2, b

+
1 , b

+
2 , · · · b

+
nR

,m−
2 , ℓ

s
1)]× ρ

(A.9)

Where the ρ-factor is

ρ =

(

〈m1m2〉
2 〈l1 l2〉

2

〈m1 l1〉 〈m1 l2〉 〈m2 l1〉 〈m2 l2〉

)A

(A.10)

where A = 2 for N = 4 and A = 3 for N = 6 (A = 1 for a N = 1 matter multiplet).
Next, we rewrite the standard form of the MHV tree amplitude [36] so that the permutation is

on the positive helicity gravitons,

M tree
n (1s, 2+, 3+, · · · , (n− 2)+, (n − 1)−, ns) = −i 〈1n− 1〉4 〈nn− 1〉4 ×
[

[1 2] [n− 2n − 1]

〈1n− 1〉N(n)

(

n−3
∏

i=1

n−1
∏

j=i+2

〈i j〉
)

n−3
∏

p=3

(−[p|Kp+1···n−1|n〉) + P(2, 3, · · · , n− 2)

]

,
(A.11)

where N(n) =
∏

i<j 〈i j〉. Labelling the negative helicity leg n − 1 as m and legs 2 to n − 2 as
a1 · · · an′ and identifying legs 1 and n with ℓ1 and ℓ2 gives

M tree
n (ls1, a

+
1 , a

+
2 , · · · , a

+
n′ ,m

−, ls2) = −i 〈l1m〉4 〈l2 m〉4
[

[l1 a1] [an′ m] 〈l1 m〉

〈l1 m〉2 〈l2 m〉Nn′(
∏

i 〈l1 ai〉 〈l2 ai〉 〈aim〉 〈l1 l2〉

×





n′
∏

j=2

〈l1 aj〉









n′−1
∏

j=1

〈aj m〉









n′−1
∏

i=1

n′
∏

j=i+2

〈ai aj〉





n′−1
∏

p=2

(−[ap|K̃p|l2〉) + P(a1, a2, · · · , an′)

]

= −i 〈l1 m〉3 〈l2 m〉3
[

[an′ m] [l1 a1] (
∏n′−1

i=1

∏n′

j=i+2 〈ai aj〉)
∏n′−1

p=2 (−[ap|K̃p+1|l2〉

Nn′ 〈an′ m〉 〈l1 l2〉 〈l1 a1〉 (
∏n′

i=1 〈l2 ai〉)
+ P(a1, a2, · · · , an′)

]

(A.12)
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where K̃p = kap + · · · kan′ + km and Nn′ =
∏

i<j 〈ai aj〉.

Counting each factor of the form 〈A li〉 or [A li] as having a loop-momentum weight of +1
2 , the

power count on the cut momenta of a tree amplitude is of order +2. For the N = 6 multiplet, the
ρ factor contributes −6 so the cut is of order ℓ−2

i and thus [39] gives a bubble coefficient of zero.
For the N = 4 matter multiplet, the cut is

∑

h

Mtree(−ℓh1 , . . . , , ℓ
−h
2 )×Mtree(−ℓh2 , . . . , ℓ

−h
1 ) = 〈m1 m2〉

4
∑

Pl(ai)

∑

Pr(bi)

T(Pl;Pr) (A.13)

where

T(Pl;Pr) = CPl
CPr

〈l1 l2〉
2 [l1 a1] [l1 b1] 〈m1 l1〉 〈m1 l2〉 〈m2 l1〉 〈m2 l2〉

∏nL−1
l=2 〈Al l2〉

∏nR−1
r=2 〈Br l2〉

〈l1 a1〉 〈l1 b1〉
∏

x∈{ai,bj}
〈x l2〉

= CPl
CPr

〈m1 l1〉 〈m2 l1〉 [a1|P |l2〉[b1|P |l2〉 〈m1 l2〉 〈m2 l2〉
∏nL−1

l=2 〈Al l2〉
∏nR−1

r=2 〈Br l2〉

〈l1 a1〉 〈l1 a2〉
∏

x∈{ai,bj}
〈x l2〉

= CPl
CPr

〈m1 l1〉 〈m2 l1〉
∏nL

i=1 〈Ai l2〉
∏nR

j=1 〈Bj l2〉

〈l1 a1〉 〈l1 b1〉
∏

x∈{ai,bj}
〈x l2〉

(A.14)
and

|Ai〉 =

{

K̃i|ai] i ≤ nL − 1
|m1〉 i = nL

|Bj〉 =

{

K̃ ′
j|bj ] j ≤ nR − 1

|m2〉 j = nR
(A.15)

CPL
=

(
∏nL−1

i=1

∏nL

j=i+2 〈ai aj〉)

N(nL) 〈nLm1〉
=

1

〈nLm1〉
∏nL−1

i=1 〈ai ai+1〉
(A.16)

We can rearrange the ℓ2 dependant part,

〈m1 l1〉 〈m2 l1〉
∏nL

i=1 〈Ai l2〉
∏nR

j=1 〈Bj l2〉

〈l1 a1〉 〈l1 b1〉
∏

x∈{ai,bj}
〈x l2〉

=
∑

x∈{ai,bj}

Dx
〈m1 l1〉 〈m2 l1〉 〈m1 l2〉

〈l1 a1〉 〈l1 b1〉 〈x l2〉
(A.17)

with

Dx =
〈m2 x〉

∏nL−1
l=1 [al|K̃l+1|x〉

∏nR−1
k=1 [bk|K̃

′
k+1|x〉

∏

y 6=x 〈x y〉
=

∏nL−1
l=1 [al|K̃l+1|x〉

∏nR

k=1[bk|K̃
′
k+1|x〉

[bnR
m2]

∏

y 6=x 〈x y〉
(A.18)

Now for x 6= a1, b1 the term in eq. (A.17) just gives H3 canonical forms. For x = a1 or b1 we get
Hx

2,1 terms, Putting the pieces together, we have a bubble coefficient of

c(m1, {ai};m2, {bi}) = 〈m1 m2〉
4
∑

PL,PR

CPL
CPR

(

∑

x 6=a1,b1

DxH3(x, a1, b1;m1,m2,m1;P )

+Da1H
x
2,1(a1, a1, b1;m1,m2,m1;P ) +Db1H

x
2,1(b1, b1, a1;m1,m2,m1;P )

)

(A.19)
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Appendix B. Kinematic Point

We use a kinematic point defined in terms of the following spinors:

λ(1)
α = µ2

(

46 + i
14 + 18i

)

,

λ(2)
α = µ2

(

54 + 39i
39 + 53i

)

,

λ(3)
α = µ2

(

9 + 46i
16 + 13i

)

,

λ(4)
α = µ2

√

42 331

4 181 993

(

540 + 480i
200 + 170i

)

,

λ(5)
α = µ2





√

14 499 838 743
4 181 993

(5 099 005 787 + 2200 443 816i)
√

3
20 212 741 374 784 933



 ,

and the conjugate spinors λ̃(i) are given by

λ̃
(i)
α̇ =

{

(λ
(i)
α )∗ for i = 1, 2, 3,

−(λ
(i)
α )∗ for i = 4, 5.

The numerical complexity of this point comes from the requirements that it is real in Minkowski
space and free from any coplanarities. Momenta 4 and 5 have negative energy. Additionally, we set
the renormalisation scale µ2 = 10−2.
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