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It is well known that both the Dirac and Majorana quantum fields have Dirac spinors as their
expansion coefficients. In 2005 Ahluwalia and Grumiller introduced a complete set of eigenspinors
of the charge conjugation operator, and extended the notion of Majorana spinors to Elko. This
work not only shed new light on Majorana field and Majorana spinors, but revealed new physical
and mathematical contents resulting from the Elko extension. It is now known that Elko, and hence
Majorana spinors, have a built-in violation of the Lorentz symmetry and carry a well defined element
of non-locality. This has far reaching consequences for theories that rely on these spinors. All these
results apply in 3+1 dimensions. Here, we show that, in 1+1 dimensions, the Elko fields constructed
from Elko spinors are local and satisfy the symmetry of a subgroup of the Poincaré group. The
fields in 1+1 dimensions are of mass dimension one-half and have Dirac-like Lagrangians with
renormalisable self-coupling terms similar to those of the the Thirring model.

Introduction.— Elko is a spin-half fermionic field pro-
posed by Ahluwalia and Grumiller [1, 2]. The field in
3+1 dimensions has mass dimension one instead of three-
half so allows renormalisable self-interaction. In addition,
Elko has other properties that makes it a dark matter
candidate.
Recently, Elko has attracted interests from cosmolo-

gists and mathematical physicists. In cosmology, it was
shown by various authors that Elko has the properties
to generate inflation [3–15]. In mathematics, the prop-
erties of Elko have been studied in detail by da Rocha
et al. [16–19]. While in quantum field theory, Fabbri has
shown that Elko does not violate causality [20–22]. Wun-
derle and Dick have used Elko to construct supersymmet-
ric Lagrangians for fermionic fields with mass dimension
one [23].
Our primary focus in this letter is on the symmetry

of Elko. In Ref. [24, 25], it was shown that Elko is local
only when the momentum of the particle is aligned to
a particular axis. Therefore, Elko violates Lorentz sym-
metry. A possible solution was suggested by Ahluwalia
and Horvath [26] claiming that Elko satisfies the sym-
metry of Very Special Relativity (VSR) proposed by Co-
hen and Glashow [27]. It is worth noting that Sheikh-
Jabbari and Tureanu has pointed out the difficulties of
constructing quantum fields with VSR symmetry. They
have shown that these difficulties can be overcome via
Drinfel’d twist which resulted in non-commutative space-
time [28, 29]. Although Elko is not constructed under
non-commutative space-time, due to its possible VSR
connection, quantum field theory with non-commutative
space-time may provide additional insights on Elko [30].
In this letter, following the formalism developed by

Weinberg [31–33], we show that Elko, in 3+1 dimensions,
violates rotation symmetry. While this result in itself is
not new, its derivation within the quantum field theoretic
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context has not been attempted before. Subsequently, we
show that Elko in 1+1 dimensions is local and satisfy the
symmetry of a subgroup of the Poincaré group. Inciden-
tally, this group is also a subgroup of VSR (SIM(2)).
The propagator and field equation of Elko in 1+1 dimen-
sions are derived. The resulting Elko Lagrangians are
similar to the Dirac Lagrangian. The propagator shows
Elko is of mass dimension one-half, therefore, it allows
renormalisable self-coupling terms similar to the Thirring
model [34].
Elko.— In the (1/2, 0)⊕ (0, 1/2) representation space,

the Elko spinors are defined as

χ(p) =
√
m

(
ηΘφ∗(p)
φ(p)

)
(1)

where η is a phase and Θ is the Wigner spin-half time-
reversal operator,

Θ =

(
0 −1
1 0

)
. (2)

Here φ(0) is a left-handed Weyl spinor, under boost it
transforms as

φ(p) = exp
(
−σ

2
·ϕ

)
φ(0). (3)

The rapidity parameter ϕ = ϕp̂ is defined as

coshϕ = E/m, sinhϕ = p/m (4)

and m is the mass of the particle. Equation (3) gives an
explicit relation between rest spinors of 0momentum and
spinors of arbitrary momentum p. It can be shown that
ηΘφ∗(0) transforms as a right-handed Weyl spinor [2]

ηΘφ∗(p) = exp
(
σ

2
· ϕ

)
ηΘφ∗(0). (5)

Elko spinors of arbitrary momenta are then given by

χ(p) = κ(p)χ(0) (6)
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where

κ(p) =

(
exp

(
σ
2 · ϕ

)
0

0 exp
(
−σ

2 · ϕ
)
)
. (7)

One can also verify that the Elko spinors transform cor-
rectly under rotation.
The phase η is determined so that χ(p) is an eigen-

spinor of the finite-dimensional charge-conjugation oper-
ator C,

C =

(
0 iΘ

−iΘ 0

)
K (8)

where K complex conjugates everything on its right.
Therefore, we get

Cχ(p)|η=±i = ±χ(p)|η=±i. (9)

This holds for all momentum since [C, κ(p)] = 0.
In 3+1 dimensions, the Elko field Λ(x) takes the form

Λ(x) = (2π)−3/2

∫
d3p√
2E

∑

σ

[
e−ip·xξ(p, σ)c(p, σ) (10)

+eip·xζ(p, σ)d†(p, σ)
]

where c(p, σ) and d(p, σ) are the annihilation operators
for the particles and anti-particles respectively. They sat-
isfy the standard anti-commutation relations

{c(p, σ), c†(p′, σ′)} = {d(p, σ), d†(p′, σ′)} (11)

= δσσ′δ3(p− p′)

while all other anti-commutators identically vanish.
Analogous to the Majorana fermions [35], we can con-
struct another Elko field λ(x),

λ(x) = Λ(x)
∣∣
d†=c†

(12)

where the particles are identical to the antiparticles. The
coefficients ξ(p, σ) and ζ(p, σ) are Elko spinors, so they
take the form of Eq.(1).
We note that in most literature, only two of the Elko

spinors with phase η = i are noted, these spinors are
called the Majorana spinors. However, for massive par-
ticles, this is not consistent with Lorentz symmetry.
A massive spin-half field, by Lorentz symmetry, must
have four degrees of freedom equally shared between
particles and anti-particles distinguished by the spin-
projection [37]. Constructing a field theory with only
Majorana spinors (two Elko spinors) would be akin to
projecting out the anti-particle spinors of the Dirac field.
Hence we are forced to introduce ξ(p, σ) and ζ(p, σ). It
is important to note that here we do not treat the Elko
spinors as Grassmann (anti-commuting) numbers. The
fermionic properties of the particles are encoded in the
standard anti-commutation relations in Eq.(11).
While the Elko spinors transform correctly under the

(1/2, 0) ⊕ (0, 1/2) representation of the Lorentz group,
this does not imply the fields Λ(x) and λ(x) satisfy

Lorentz symmetry. The work of Weinberg [31–33] shows
that given a representation of the Lorentz group, the ex-
pansion coefficients of a quantum field can be determined
by the demand of Lorentz symmetry up to a few caveats
(Wigner type degeneracy [36]). The field equation can
then be derived from the properties of the associated ex-
pansion coefficients and the propagator.

If the Elko fields satisfy Lorentz symmetry, then we
should be able to determine their expansions coefficients
ξ(p, σ) and ζ(p, σ). However, in 3+1 dimensions, this
is not possible. To see this, let Ψ(x) be a general spin-
half quantum field in the (1/2, 0)⊕(0, 1/2) representation
space

Ψ(x) = (2π)−3/2

∫
d3p√
2E(p)

∑

σ

[
e−ip·xu(p, σ)a(p, σ)

+eip·xv(p, σ)b†(p, σ)
]
.

Taking the Pauli matrices σ/2 to be the rotation gener-
ator for the (1/2, 0) and (0, 1/2) representation spaces,
rotation symmetry requires the spinors at rest to satisfy
the following equations [33]

∑

σ̄

σσσ̄uℓ(0, σ̄) =
∑

ℓ̄

Jℓℓ̄ uℓ̄(0, σ),

∑

σ̄

σ
∗
σσ̄vℓ(0, σ̄) = −

∑

ℓ̄

Jℓℓ̄ vℓ̄(0, σ) (13)

where ℓ = 1, · · · 4 denote the components of the spinors
and J is a 4 × 4 matrix that furnishes a representation
of the Lorentz group under rotation. Without the loss of
generality taking J = 1/2(σ ⊕ σ), we see that the Elko
spinors cannot satisfy Eq.(13). Therefore, Elko violates
rotation symmetry.

One should note, Lorentz violations for Elko in 3+1
dimensions are expected, since it was noted that the
Elko spin-sums contain a preferred direction and the Elko
spinors do not satisfy the Dirac equation in momentum
space [1, 2, 24, 25]. Therefore, Elko inevitably violates
Lorentz symmetry in 3+1 dimensions.

Elko in 1+1 dimensions.— The violation of rotation
symmetry for Λ(x) and λ(x) can be resolved if we re-
strict the fields to 1+1 dimensions. The fields are then
only subjected to the symmetries of a subgroup of the
Poincaré group in 1+1 dimensions.

In 1+1 dimensions, the sub-algebra consists of a rota-
tion, a boost, a translation generator along the spatial
axis, and the time translation generator. Since there are
no preferred axis, for our purpose, we choose the spatial
axis to be the y-axis. The sub-algebra reads

[J2,K2] = [J2, P2] = [P2, P0] = [J2, P0] = 0, (14a)

[P2,K2] = iP0, [P0,K2] = iP2. (14b)
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where J2, K2, P2 are the rotation, boost, translation gen-
erator respectively and P0 is the time translation gener-
ator. In this case, the Elko field takes the form

Λ(x) = (2π)−1/2

∫
dp√
2E

∑

σ

[
e−ip·xξ(p, σ)c(p, σ) (15)

+eip·xζ(p, σ)d†(p, σ)
]

and Eq.(13) becomes

∑

σ̄

(σ2)σσ̄ξℓ(0, σ̄) =
∑

ℓ̄

(J2)ℓℓ̄ ξℓ̄(0, σ),

∑

σ̄

(σ2)σσ̄ζℓ(0, σ̄) =
∑

ℓ̄

(J2)ℓℓ̄ ζℓ̄(0, σ). (16)

One can verify that both the ξ(0, σ) and ζ(0, σ) Elko
spinors are consistent with Eq.(16). We note that in 1+1
dimensions, the Elko spinors are not the unique solu-
tions. They are special cases to a wider class of possible
solutions of Eq.(16) that need to be studied.
Substituting the Elko spinors into Eq.(16), we are

able to determine them up to some proportionality con-
stants. The demand of locality and CPT invariance on
the fields along with orthonormality and completeness
on the spinors determines the proportionality constants
giving us the following solutions

ξ(0, 1/2) =
√
m




0
i
1
0


 , ξ(0,−1/2) =

√
m




−i
0
0
1


 ,

ζ(0, 1/2) =
√
m




i
0
0
1


 , ζ(0,−1/2) =

√
m




0
i
−1
0


 .

(17)
The phases η in Eq.(1) for ξ(p, σ) and ζ(p, σ) are de-
termined to be η = i and η = −i respectively. The
orthonormality and completeness relations obtained here
are different to those associated with the Dirac spinors
since the norms of the Elko spinors computed using the
Dirac dual identically vanishes

ξ̄(p, σ)ξ(p, σ′) = ζ̄(p, σ)ζ(p, σ′) = 0 (18)

where ξ̄(p, σ) = ξ†γ0 and

γ0 =

(
0 I

I 0

)
. (19)

Instead, we use the Elko dual introduced in [1, 2] and
justified in [24, 25]

¬

ξ (0,±1/2) ≡ ∓iξ̄(0,∓1/2),

¬

ζ (0,±1/2) ≡ ∓iζ̄(0,∓1/2) (20)

which gives the standard orthonormality and complete-
ness relations

¬

ξ (0, σ)ξ(0, σ′) = −
¬

ζ (0, σ)ζ(0, σ′) = 2mδσσ′

1

2m

∑

σ

[
ξ(p, σ)

¬

ξ (p, σ)− ζ(p, σ)
¬

ζ (p, σ)
]
= I.

It is this sense, that Elko spinors are referred to as the
complete set of Majorana spinors. A detailed account
on the similarities and differences between the two can
be found in Sec.5.1 of [26]. The dual Elko field is then
defined as

¬

Λ (x) = (2π)−1/2

∫
dp√
2E

∑

σ

[
eip·x

¬

ξ (p, σ)c†(p, σ) (21)

+e−ip·x
¬

ζ (p, σ)d(p, σ)
]
.

We derive the field equation for Elko by computing the
propagator as vacuum-expectation value of the fermionic
time-ordered product

S(y, t′;x, t) = 〈 |T [Λ(y)
¬

Λ (x)]| 〉

= i

∫
d2q

(2π)2
eiq·(y−x) Γµqµ +mI

q2 −m2 + iǫ
. (22)

Here the Γ-matrices are defined as

Γ0 =

(
0 σ2

σ2 0

)
, Γ2 =

(
0 −I

I 0

)
(23)

and they satisfy the Clifford algebra {Γµ,Γν} = 2ηµν in
1+1 dimensions. The propagator is a Green’s function to
the operator (iΓµ∂µ −mI) with ∂µ = ∂/∂xµ. Therefore,
field equation for Λ(x) is

(iΓµ∂µ −mI)Λ(x) = 0. (24)

This can be verified explicitly by acting the operator on
the field. The propagator and the field equation suggest
the following Lagrangian densities for Λ(x) and λ(x)

L
Λ(x) =

¬

Λ (x)(iΓµ∂µ −mI)Λ(x),

L
λ(x) = L

λ(x)
∣∣
Λ→λ

. (25)

Using the Lagrangian densities, the fields Λ(x) and
λ(x) are local, satisfying the following equal-time anti-
commutation relations

{Λ(x, t),Π(y, t)} = {λ(x, t), π(y, t)} = iδ(x− y),

{Λ(x, t),Λ(y, t)} = 0, {λ(x, t), λ(y, t)} = iγ0δ(x− y),

{Π(x, t),Π(y, t)} = 0, {π(x, t), π(y, t)} = −iγ0δ(x− y).



4

where Π(x, t) and π(x, t) are the conjugate momenta
of Λ(x) and λ(x) respectively. The resulting normal-
ordered Hamiltonians for Λ(x) and λ(x) are bounded
from below, in agreement with the standard Hamiltonian
for a free field theory.

While Elko in 1+1 dimensions share many similar fea-
tures to the Dirac field, they are not the same since
they violate Lorentz symmetry and do not satisfy the
Dirac equation in 3+1 dimensions. Instead, their sym-
metry group is a subgroup of the Poincaré group given
by Eqs.(14a,14b) in 1+1 dimensions. Since there is no
preferred direction, Elko in 1+1 dimensions are special
cases to the class of physically equivalent fields whose
symmetry differs only by the chosen axis.

One important feature of the theory must be noted
here. In 1+1 dimensions, the propagator in Eq.(22)
shows that Elko is of mass dimension one-half. Therefore,
it allows renormalisable self-coupling terms of the form

g(
¬

Λ Λ)2 and g(
¬

Λ ΓµΛ)(
¬

Λ ΓµΛ) similar to the Thirring
model [34].

Conclusions.—We have shown that the Elko fields sat-
isfy the symmetry of a subgroup of the Poincaré group
in 1+1 dimensions. The Lagrangians of Elko in 1+1 di-
mensions are consistent with the propagators and yield
Lorentz invariant field equations. The fields have mass
dimension one-half, so it allow self-interactions similar to
the Thirring model.

It is important to note that in this letter, we did not
construct the Elko fields in 1+1 dimensions. Instead,
what we have shown is that the fields are local when
confined to 1+1 dimensions and its expansion coefficients
are consistent with Eq.(16). It is in this sense Elko sat-
isfies the symmetry given by Eqs.(14a,14b). One of the
pressing issue is then to find the symmetry group of Elko.
Towards this end, recent results obtained by Ahluwalia
and Horvath suggest the symmetry group to be SIM(2)
given by VSR [26].

If one takes the view that the underlying space-time
symmetry is a reflection of the properties of the matter
and gauge fields [38], then it is possible that the symme-
try of the dark matter sector may not be dictated by the
Poincaré group since they do not interact with the Stan-
dard Model particles [39]. Although the entire structure
of Elko remains to be fully understood, results obtained
from various fields ranging from astro-particle physics,
cosmology, mathematical physics and quantum field the-
ory suggest that Elko is an example in support of this
paradigm.

Acknowledgement.—I thank to D. V. Ahluwalia and
S. P. Horvath for discussions on the subject. I am also
grateful to D.V. Ahluwalia for the critical remarks and
suggestions on this letter. This work is supported by the
UC Doctoral Scholarship.

———————————————————————
—————–

[1] D. V. Ahluwalia and D. Grumiller, JCAP 0507, 012
(2005) [arXiv:hep-th/0412080].

[2] D. V. Ahluwalia and D. Grumiller, Phys. Rev. D 72

(2005) 067701 [arXiv:hep-th/0410192].
[3] C. G. Boehmer, J. Burnett, D. F. Mota and D. J. Shaw,

JHEP 1007, 053 (2010) [arXiv:1003.3858 [hep-th]].
[4] C. G. Boehmer and J. Burnett, arXiv:1001.1141 [gr-qc].
[5] C. G. Boehmer and J. Burnett, Mod. Phys. Lett. A 25,

101 (2010) [arXiv:0906.1351 [gr-qc]].
[6] C. G. Boehmer and J. Burnett, Phys. Rev. D 78, 104001

(2008) [arXiv:0809.0469 [gr-qc]].
[7] C. G. Boehmer, Phys. Rev. D 77, 123535 (2008)

[arXiv:0804.0616 [astro-ph]].
[8] C. G. Boehmer and D. F. Mota, Phys. Lett. B 663, 168

(2008) [arXiv:0710.2003 [astro-ph]].
[9] C. G. Boehmer, Annalen Phys. 16, 325 (2007)

[arXiv:gr-qc/0701087].
[10] C. G. Boehmer, Annalen Phys. 16, 38 (2007)

[arXiv:gr-qc/0607088].
[11] G. Chee, arXiv:1007.0554 [gr-qc].
[12] H. Wei, arXiv:1002.4230 [gr-qc].
[13] S. Shankaranarayanan, arXiv:1002.1128 [astro-ph.CO].
[14] S. Shankaranarayanan, Int. J. Mod. Phys. D 18, 2173

(2009) [arXiv:0905.2573 [astro-ph.CO]].
[15] D. Gredat and S. Shankaranarayanan, JCAP 1001, 008

(2010) [arXiv:0807.3336 [astro-ph]].
[16] J. M. Hoff da Silva and R. da Rocha, Int. J. Mod. Phys.

A 24, 3227 (2009) [arXiv:0903.2815 [math-ph]].
[17] R. da Rocha and J. M. Hoff da Silva, arXiv:0811.2717

[math-ph].
[18] R. da Rocha and J. M. Hoff da Silva, J. Math. Phys. 48,

123517 (2007) [arXiv:0711.1103 [math-ph]].
[19] R. da Rocha and W. A. J. Rodrigues, Mod. Phys. Lett.

A 21, 65 (2006) [arXiv:math-ph/0506075].
[20] L. Fabbri, arXiv:1008.0334 [gr-qc].
[21] L. Fabbri, Mod. Phys. Lett. A 25, 2483 (2010)

[arXiv:0911.5304 [gr-qc]].
[22] L. Fabbri, Mod. Phys. Lett. A 25, 151 (2010) [Erratum-

ibid. A 25, 1295 (2010)] [Mod. Phys. Lett. A 25, 1295
(2010)] [arXiv:0911.2622 [gr-qc]].

[23] K. E. Wunderle and R. Dick, arXiv:1010.0963 [hep-th].
[24] D. V. Ahluwalia, C. Y. Lee, D. Schritt and T. F. Watson,

Phys. Lett. B 687 (2010) 248 [arXiv:0804.1854 [hep-th]].
[25] D. V. Ahluwalia, C. Y. Lee and D. Schritt,

arXiv:0911.2947 [hep-ph].
[26] D. V. Ahluwalia and S. P. Horvath, JEHP 11, 078 (2010)

[arXiv:1008.0436 [hep-ph]].
[27] A. G. Cohen and S. L. Glashow, Phys. Rev. Lett. 97,

021601 (2006) [arXiv:hep-ph/0601236].
[28] M. M. Sheikh-Jabbari, A. Tureanu, Phys. Atom. Nucl.

73, 230-236 (2010). [arXiv:0811.3670 [hep-ph]].
[29] M. M. Sheikh-Jabbari, A. Tureanu, Phys. Rev. Lett. 101,

261601 (2008). [arXiv:0806.3699 [hep-th]].
[30] I am grateful to D.V. Ahluwalia for bringing my attention

to this work.
[31] S. Weinberg, Phys. Rev. 133, B1318 (1964).
[32] S. Weinberg, Phys. Rev. 134, B882 (1964).
[33] S. Weinberg, Cambridge, UK: Univ. Pr. (1995) 609 p.
[34] W. E. Thirring, Annals Phys. 3 (1958) 91.
[35] E. Majorana, Nuovo Cim. 14, 171 (1937).
[36] E. P. Wigner, Annals Math. 40, 149 (1939) [Nucl. Phys.

Proc. Suppl. 6, 9 (1989)].

http://arxiv.org/abs/hep-th/0412080
http://arxiv.org/abs/hep-th/0410192
http://arxiv.org/abs/1003.3858
http://arxiv.org/abs/1001.1141
http://arxiv.org/abs/0906.1351
http://arxiv.org/abs/0809.0469
http://arxiv.org/abs/0804.0616
http://arxiv.org/abs/0710.2003
http://arxiv.org/abs/gr-qc/0701087
http://arxiv.org/abs/gr-qc/0607088
http://arxiv.org/abs/1007.0554
http://arxiv.org/abs/1002.4230
http://arxiv.org/abs/1002.1128
http://arxiv.org/abs/0905.2573
http://arxiv.org/abs/0807.3336
http://arxiv.org/abs/0903.2815
http://arxiv.org/abs/0811.2717
http://arxiv.org/abs/0711.1103
http://arxiv.org/abs/math-ph/0506075
http://arxiv.org/abs/1008.0334
http://arxiv.org/abs/0911.5304
http://arxiv.org/abs/0911.2622
http://arxiv.org/abs/1010.0963
http://arxiv.org/abs/0804.1854
http://arxiv.org/abs/0911.2947
http://arxiv.org/abs/1008.0436
http://arxiv.org/abs/hep-ph/0601236
http://arxiv.org/abs/0811.3670
http://arxiv.org/abs/0806.3699


5

[37] D. V. Ahluwalia, Int. J. Mod. Phys. A 11, 1855 (1996)
[arXiv:hep-th/9409134].

[38] H. R. Brown, “Physical Relativity: Space-time structure
from a dynamical perspective,” Oxford, UK: Univ. Pr.

(2005) 225 p.
[39] D. V. Ahluwalia, Int. J. Mod. Phys. D18, 2311-2316

(2009). [arXiv:0904.0066 [gr-qc]].

http://arxiv.org/abs/hep-th/9409134
http://arxiv.org/abs/0904.0066

