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Abstract

It is proposed by Chen et. al. to represent the gauge fields in the-

ories with local symmetries as a sum of ”physical” and ”pure gauge”

fields which to be treated separately. Here we show that after quanti-

zation this representation leads to a model which is non equivalent to

the initial one.
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1 Introduction

In a series of recent papers [1, 2] a decomposition of the gauge field in models
with local symmetry into a physical field and a pure gauge one is proposed.
The same scheme is applied later to the gravitational field as well [3]. The
proposed procedure has significant consequences, e.g. in Quantum Chromo-
dynamics, but also rise a lot of questions [4, 5, 6]. Here we want to consider
the problem from the viewpoint of Hamiltonian system with constraints and
to apply to it the Dirac procedure for quantization [7]. It is enough for our
purposes to investigate the simplest case of free Electromagnetic (U(1) gauge)
field, because the specificity of the treatment is same both for Abelian and
non Abelian gauge fields. The interaction with matter also does not change
the considerations.

2 Decomposition of the U(1) gauge field

The basic idea in Refs.[1, 2, 3] is to represent the gauge field A as a sum of
two fields — the ”physical” field Â and the ”pure gauge” field Ā

A = Â+ Ā. (1)

The conditions, which are proposed to distinguish the nature of these fields
in the case of U(1) local symmetry are

∂iÂi = 0, (2)

F̄µν ≡ ∂µĀν − ∂νĀµ = 0. (3)

Eq.(1) effectively doubles the gauge potential, while eqs.(2,3) are used to
decrease back the number of the degrees of freedom. In this sense, among
eqs.(1–3) the really important one is eq.(1). This is the reason to start our
analysis considering the consequences of eq.(1) itself, i.e., for a moment we
treat Â and Ā as independent fields.

The pure Electromagnetic Lagrangean is

L = −
1

4
FµνFµν , (4)

where Fµν = ∂µAν − ∂νAµ. Substituting eq.(1) into eq.(4) we obtain:

L = −
1

4
F̂µνF̂

µν −
1

4
F̄µνF̄

µν −
1

2
F̂µνF̄µν (5)
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(F̂µν = ∂µÂν − ∂νÂµ). The Lagrangean(5) possesses an enlarged gauge sym-
metry. It is not only U(1) invariant but is also invariant under the so called
Stuckelberg gauge symmetry:

δÂ = C

δĀ = −C. (6)

Here C is an arbitrary real 4−vector field. The existence of the gauge trans-
formation (6) allows us to prove that the models with Lagrangean (5) and
(4) are equivalent.

Proof:
Perform the following change of variables

A = Â+ Ā (7)

B =
1

2
(Â− Ā) (8)

The Jacobean of this transformation is 1 and the Lagrangean (5) does not
depend on B. Therefore, the continual integration over B field is trivial and
the transition amplitude for the model with Lagrangean (5) coincides with
the transition amplitude for the pure quantum Electromagnetic field.

A more canonical approach to the proof of the equivalence involves the
use of the gauge fixing

Bµ = 0. (9)

The Faddeev–Popov determinant which corresponds to eqs.(6,9) is 1. There-
fore, there are no ghosts, the gauge conditions (9) can be used to trivially
integrate over the B field and thus the equivalence is proved.

The above considerations demonstrate that the Lagrangean (5) is just an
uneconomic way to describe a well known model. Its potential advantage
compare to the Lagrangean (4) is if, eventually, we find a gauge in which the
fields Â and Ā are the physical and pure gauge part of the Electromagnetic
field. In other words, the question is whether eqs.(2,3) can be used as gauge
conditions for the Stuckelberg gauge transformation (6).

3 Hamiltonian analysis

Let p̂ and p̄ are the momenta conjugate to the fields Â and Ā. From the
Lagrangean (5) we obtain the following primary constraints:

p̂0 = 0 (10)

p̄0 = 0 (11)

p̂i − p̄i = 0 (12)
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and the following secondary constraints:

∂ip̂i = 0 (13)

∂ip̄i = 0. (14)

Constraints (10,11) indicates that the corresponding dynamically conjugated
variables Â0 and Ā0 are Lagrange multipliers. It is also clear that not all
constraints (12–14) are independent. So, we have to choose a subset of them
and we use the freedom in this choice to achieve our primary goal — to make
Â the physical part of the Electromagnetic field A, i.e., to make this field
U(1) gauge invariant. This can be done by dropping out the constraint (13).
Altogether the independent constraints we choose are:

∂ip̄i = 0 (15)

p̂i − p̄i = 0 (16)

Using eqs.(15,16) we can write a first order Lagrangean equivalent to the
initial one

L′ = ∂0Âip̂i + ∂0Āip̄i −
1

4
p̂2i −

1

4
p̄2i −

1

2
H2

i + A0∂ip̄i + Λi(p̂i − p̄i). (17)

Here, Â0, Ā0, and Λi are Lagrange multipliers and, as usual, Hi =
1

2
ǫijkFjk.

Certainly, the canonical Hamiltonian of the model is not uniquely determined
— H = 1

2
p̂2i −H2

i , H
′ = 1

2
p̄2i −H2

i and so on are equally good and are a matter
of redefinition of Λi.

Eq.(15) is the generator of the U(1) gauge transformation of the field Ā,
and eqs.(16) generate the Stuckelberg symmetry. We want to preserve the
U(1) symmetry but rid off from the Stuckelberg one. Therefore, we have to
apply a particular gauge fixing. (Note that Â0 and Ā0 participate in (17) only
through their combination A0 = Â0+Ā0. This is a consequence of the already
discussed fact that not all constraints are independent. Thus the combination
of Lagrange multipliers 1

2
(Â0 + Ā0) decouple from all other fields and the

functional integration over it is trivial.) We want to interpret the conditions
(2,3) proposed in Refs.[2, 3] as gauge fixing conditions for the Stuckelberg
symmetry. Consider first eqs.(3) (F̄ = 0). In general an antisymmetric rank 2
tensor (which transforms in (0, 1)⊕(1, 0) representation of the Lorentz group)
has six independent components and same is the number of independent
conditions in eqs.(3). But we have only three gauge generators and so, the
closest to the conditions in eqs.(3) we can use is

F̄jk = 0 ∀i, j (18)
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or, equivalently
H̄i = 0. (19)

(It worth to be mentioned that eqs.(18) are the conditions used in the earliest
work [1] but thrown away in later works in favor of eqs.(3).)

The great advantage of the gauge (19) is that it does not fix the U(1)
freedom of the Ā field (because the corresponding Poisson brackets with the
U(1) constraint (15) are 0). However, eqs.(19) do not fix the Stuckelberg
gauge freedom either — the determinant of the matrix of Poisson brackets
between constraints (16) and gauge fixing conditions (19) is 0. A way out is
to add a new gauge fixing condition and we have a candidate ready for it —
eq.(2). It is easy to check that all third order minors of the rectangular matrix
of Poisson brackets between constraints (16) and gauge fixing conditions (2,
19) are with non zero (proportional to ∆) determinant and thus we indeed
have a gauge fixing.

The problem is that the gauge conditions are more than the constraints
and therefore one of them have to be dropped. It is not possible this to
be eq.(2), so it must be one of the eqs.(19). But all of these conditions are
independent which leads us to the conclusion that the model in which we
simultaneously fulfill eqs.(2,18) is not equivalent to the QED. The situation
is even worse when we try to use eqs.(3) as gauge fixing. In this case we have
seven independent gauge condition and only three gauge generators.

4 The Electromagnetic field momentum

Finally, some remarks on the definition of the conserved quantity momentum
in QED which is in the heart of the discussion in Refs.[1, 2].

The bare kinetic operator corresponding to the Lagrangean (4) (after
Fourier transformation) is

K = k2ηµν − kµkν . (20)

Obviously it is non invertible, and therefore it is not possible to make any
perturbative calculations in this theory. The cure of the problem is to add
into the Lagrangean a term proportional to ∂µA

µ, e.g.

δL = −
α

2
(∂µA

µ)2. (21)

This is the so called α gauge term1. The kinetic operator now is K =
k2ηµν − (1 − α)kµkν , its inverse is well defined, and so is the perturbation

1 The usage of other Lorentz invariant gauge fixing terms requires generalization of the

Noether theorem to Lagrangeans with higher derivatives.
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theory. So, we have to use not the Lagrangean L from eq.(4) but L+δL when
we define the Noether currents in the quantized theory. The choice α = 1
corresponds to the diagonal (Feynman - ’t Hooht) gauge. In this gauge
the components of the gauge potential and the corresponding asymptotic
states are solutions of the massless Klein–Gordon equation. This feature
together with the requirement the operator ∂µA

µ between physical states
to give 0 solve the energy positiveness problem for the second quantized
Electromagnetic field [8]. When α 6= 1 the kinetic operator is non diagonal
but all its eigenvalues are proportional to k2 — three of the them are k2 and
one is αk2 (the last eigenvalue corresponds to pure gauge degree of freedom).
The important point here is that for any α 6= 0 the asymptotic states admit
free particle interpretation. However, the situation is completely different if
there is no gauge fixing (α = 0) in which case the energy positiveness can
not be proved.

The proposed in Refs.[1, 2, 3] representation of the Electromagnetic po-
tential as sum of physical and pure gauge parts does not solve the problem
with the kinetic operator kernel listed above. The kinetic operators both for
Â and Ā fields have zero modes and some well chosen terms have to be added
into the Lagrangean to improve the situation. The only possible term involv-
ing Â field is δL′ = f(∂iÂi) where f is some function. Unfortunately, this
term is not Lorentz invariant and plugging it into the Lagrangean results in a
non Lorentz invariant theory. This means no plane wave external states and
break down of the explicit Lorentz invariance in all orders of the perturbation
theory. In other words — a lot of problems. Everything must be done from
the scratch. Probably, it is possible to be handled, as it is possible to deal
with non invariant regularization, but the cleaver idea is to keep the manifest
Lorentz invariance throughout the calculations and fix the coordinate system
at the final (the Coulomb gauge is equivalent to the Lorenz one plus fixation
of the coordinate frame). See Refs.[5, 6] for more arguments on this point.

5 Conclusions

The performed analysis shows that the proposed decomposition of the Elec-
tromagnetic field into physical and pure gauge parts leads to a model which
is not equivalent to the free Quantum Electrodynamics. The Stuckelberg
gauge symmetry which emerges in this decomposition is an Abelian symme-
try and it acts only on the gauge field components. Its generators are given
by eqs.(16) and their form do not depend neither on the type of the gauge
model in consideration (Abelian or non Abelian) nor on the interaction with
additional matter fields. Therefore, our analysis can be applied en bloc to
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any gauge system — Abelian, non Abelian, without or with matter and the
conclusion will be the same.
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