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Abstract. We derive the eikonal equation of light wavefront in the presence of Lorentz invariance violation
(LIV) from the photon sector of the standard model extension (SME). The results obtained from the
equations of E andB fields respectively are the same. This guarantees the self-consistency of our derivation.
We adopt a simple case with only one non-zero LIV parameter as an illustration, from which we find two
points. One is that, in analogy with Hamilton-Jacobi equation, from the eikonal equation, we can derive
dispersion relations which are compatible with results obtained from other approaches. The other is that,
the wavefront velocity is the same as the group velocity, as well as the energy flow velocity. If further we
define the signal velocity vs as the front velocity, there always exists a mode with vs > 1, hence causality
is violated classically. Thus our method might be useful in the analysis of Lorentz violation in QED in
terms of classical causality .
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1 Introduction

The constant speed of light in vacuum is one of the basic assumptions of special relativity, and it serves as a crucial
ingredient of Lorentz symmetry, which is a cornerstone of modern physics. However, currently there is a revival of
interest in the possibility of varying speed of light, or in other words, a tiny deviation from exact Lorentz invariance,
in the search of so-called quantum gravitational phenomena.

As the typical quantum gravitational scale, i.e., the Planck scale EPlanck =
√

c~/Gc2, is practically unattainable
from conventional accelerator experiments, people turn to search for phenomenologically accessible effects from quan-
tum gravity [1] at relatively low energy scales. One of them is the possibility of Lorentz invariance violation (LIV).
The possibility that quantum gravity may leave a tiny imprint of LIV at relatively low energies was observed by many
authors from various approaches to quantum gravity. These include string field theory, where the tachyon field may
induce an instability to the naive Lorentz invariant vacuum and translate it into the potential of a tensor field. As a
consequence, the tensor field acquires a vacuum expectation value [2] and breaks Lorentz invariance. Later, by incorpo-
rating various LIV coefficients into the standard model, the theory was developed into an effective field theory (EFT),
called standard model extension (SME) [3]. Other approaches include spin network calculation in loop gravity [4], de-
formed special relativity [5], foamy structure of space-time [6], noncommutative field theory [7], emergent gravity [8],
and the recently suggested Horava-Lifschitz gravity [9]. All of them suggest that tiny LIV may be a signature of new
physics.

Fortunately, LIV not only resides in theoretical considerations, it also becomes experimentally testable, and has
already been tested to very high accuracy in various sectors of the standard model (for a review, see Ref. [10]). From
an experimental viewpoint, people have already been able to severely constrain the linear order LIV correction to the
photon group velocity, which is suppressed by the ratio of experimental energy E to a large mass scale, e.g., E/MPlanck

(see e.g. Refs. [11,12,13,14,15]).
From the EFT viewpoint, conventionally non-renormalizable operators can be naturally suppressed by a large mass

scale, where new physics might come in. So the mentioned tiny linear correction may come from dimension-5 opera-
tors [16]. However, if one assumes CPT symmetry and the anisotropic scaling between space and time [9] (also termed
weighted power counting [17]), or alternatively imposes CPT invariance and the supersymmetric constraints [18], one
can naturally expect that the leading order correction comes from dimension-6 operators, thus can evade current ex-
perimental constraints [19]. On the other side, there is no clear theoretical reason to pin down the values of dimension-3
and -4 LIV operators, though they have already been extensively studied and found to suffer severe constraints from
experiments [10,20]. Hence it is still valuable to consider them both theoretically and experimentally, and it inspires
us to revisit the renormalizable LIV operators [3]. In this paper, we mainly focus on the CPT-even part of the photon
sector in the framework of SME.

The paper is organized as follows. In section 2, we give a brief review on the renormalizable photon sector of SME.
With some ad hoc assumptions for simplification, we derive the modified Maxwell equations as our starting point.
In section 3, following the derivation provided by Fock [21], we obtain the eikonal equation of the modified Maxwell
equations implicitly. In section 4, by adopting a much simpler case with only one non-zero LIV parameter as an
illustration, we give the eikonal equation explicitly. From the derivation, we find it is self-consistent, because one can
obtain the same result from equations relevant to either an E or B field, respectively. It is also consistent with other
approaches, as the dispersion relations obtained from our procedure and those from others are the same. Meanwhile,
in this simple case, we find that the group velocity equals the wavefront velocity, as well as the energy flow velocity.
As the derivation of eikonal equation is obviously not restricted to the simple model, the method may be useful in the
classical causality analysis in LIV extension of quantum electrodynamics. Section 5 summarizes the results obtained
in this paper and gives a further discussion on LIV topics.

2 A brief review of the photon part of SME

SME, including in principle all possible LIV terms in the framework of EFT [3], is a well-motivated testable approach
to LIV physics, and it has been extensively tested in various sectors of the standard model [10]. Within SME, the
renormalizable photon sector is one of the most tested parts [20,22]. Its Lagrangian reads

Lphoton = −1

4
FµνF

µν − 1

4
(kF )κλµνF

κλFµν +
1

2
(kAF )κǫ

κλµνAλFµν , (1)

where the coefficients kF and kAF characterize the violation of Lorentz symmetry. From Eq. (1), the equation of
motion is deduced as

∂αFµα + (kF )µαβγ∂
αF βγ + (kAF )

αǫµαβγF
βγ = 0. (2)
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With the 3+1 decomposition, we define

(kDE)
jk ≡ −2(kF )

0j0k, (kHB)
il ≡ 1

2
(kF )

jkmnǫijkǫlmn,

(kDB)
jk ≡ −(kHE)

kj ≡ 1

2
(kF )

0jmnǫkmn, (3)

where the Latin indices run over the three spatial coordinates, from 1 to 3. After subtracting the trace part of the first
two matrices, we define further the following traceless matrices which are frequently used in this paper,

βE
ij = (kDE)

ij − αδij , βB
ij = (kHB)

ij + αδij , γij = (kDB)
ij = −(kHE)

ij , (4)

where

α =
1

3
tr(kDE) = −1

3
tr(kHB). (5)

Note that the (kF )µαβγ tensor has the same symmetry as the Riemann tensor, Rµαβγ [3,23]. Due to the double
tracelessness of kF and the Bianchi identities (kF )µ[νρσ] = 0, we can get Eq. (5) and tr[γ] = 0, respectively. The first

two matrices in Eq. (4) can be easily shown as symmetric, i.e., (βE)
T = βE and (βB)

T = βB. Since the (kAF )µ term
may cause theoretical instabilities [3] and has suffered severe astrophysical constraints [24], we abandon it from now
on. Moreover, as γij mixes E and B fields and may cause further complications in calculation, we simply set γij = 0.
Further, we also set α = 0 as an ad hoc assumption. Under these simplifications, there are only 10 parameters left,
residing in the traceless symmetric matrices βE and βB. Finally, we can write down the Lagrangian in terms of E and
B as

Lphoton =
1

2
(E2 −B2) +

1

2

(

(βE)
jkEjEk − (βB)

jkBjBk
)

, (6)

where the electric field E and the magnetic field B are defined conventionally as

Bi = −1

2
ǫijkFjk, Ei = −∂tA

i − ▽iφ = F i0. (7)

From Eq. (6), we can deduce the modified Maxwell equations,

▽ ·E+ ∂i(βE)
ijEj = 0, − Ėi − (βE)

ijĖj + ǫijk∂jB
k + ǫijk∂j(βB)

klBl = 0, (8)

and the equations

▽ ·B = 0, ▽×E+ Ḃ = 0 (9)

come from the 3+1 decomposition of Bianchi identity ∂µ
∗Fµν = 0, where ∗Fµν = 1

2ǫ
µνβγFβγ . The above four equations

are our starting points of derivation in the next section.
Note that Eq. (8) has the analogy of electrodynamics in a homogeneous anisotropic media [3] if we regard (βB)

ij

as the inverse of magnetic permeability and (βE)
ij as the dielectric constant, i.e., as defined in Ref. [23], Di =

(δij + βE
ij)Ej, Hi = (δij + βB

ij)Bj. From this analogy, we expect that the differential equation satisfied by the light
wavefront in LIV vacuo should have a similar form as the eikonal equation in an anisotropic medium. Actually, we
will see that this is indeed the case in section 4.

Now we turn to the discussion of the energy-momentum tensor, which is useful for the discussion of causality
in section 4. The conventional procedure to obtain a symmetric energy-momentum tensor is through the so-called
Belinfante tensor [25]

Θµν = T µν − i
1

2
∂κ[

∂L
∂(∂κΨl)

(J µν) m
l Ψm − ∂L

∂(∂µΨl)
(J κν) m

l Ψm − ∂L
∂(∂νΨl)

(J κµ) m
l Ψm], (10)

where

T µν =
∂L

∂(∂µΨl)
∂νΨl − ηµνL. (11)

However, this does not work in the presence of LIV, as pointed out by Colladay and Kostelecky [3].
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In fact, from Eq. (10), we can get the energy-momentum tensor corresponding to the Lagrangian in Eq. (1) without
the CPT odd term,

Θµν = −[FµαF ν
α + (kF )

αβµδF ν
δFαβ ]− ηµνL

= −[FµαF ν
α + (kF )

αβµδF ν
δFαβ ] +

1

4
ηµν [(kF )αβγδF

αβF γδ + FαβFαβ ]. (12)

In the above derivation, we have used the matrix representation of the homogeneous Lorentz algebra for a covariant
vector field,

(J µν) σ
ρ = i(δµρη

νσ − δνρη
µσ). (13)

We find that due to the presence of the second asymmetric term, −(kF )
αβµδF ν

δFαβ , one can no longer obtain a
symmetric energy-momentum tensor. This may be one feature of LIV theories. One consequence is that the definition
of the conserved 4-momentum density is Θ0µ, instead of Θµ0. Actually, with direct calculation it is easily checked that
∂ρΘ

ρµ = 0, hence d(
∫

d3xΘ0µ)/dt = 0 (for details, see Appendix A). In contrast, this is not valid for Θµ0. The spatial
part of the latter is defined as the generalized Poynting vector [3]. For the convenience of our discussions in section 4,
we give those components of the energy-momentum tensor explicitly in terms of E, B fields,

Θ00 =
1

2
(E2 +B2)− (kF )

0j0kEjEk +
1

4
(kF )

ijklǫijmǫklnBmBn

=
1

2
(E2 +B2 + Ej(βE)

jkEk +Bm(βB)
mnBn), (14)

Θ0i = −F 0jF i
j − 2(kF )

0j0kF i jF0k − (kF )
0jklF i

jFkl

= ǫijkEjBk + ǫijk(βE)
jlElBk, (15)

Θi0 = −F ijF 0
j − (kF )

ijklF 0
jFkl − 2(kF )

ij0lF 0
jF0l

= ǫijkEjBk + ǫijkEj(βB)
klBl, (16)

where we have used the reparametrization of Eqs. (3) and (4), and the simplifications corresponding to the Lagrangian
in Eq. (6). From Eqs. (15) and (16), it is apparent that due to the loss of Lorentz invariance, characterized by βE and
βB, generally the energy-momentum tensor is not symmetric, i.e., Θµν −Θνµ = [(kF )

αβµδF ν
δ − (kF )

αβνδFµ
δ]Fαβ 6= 0.

It has been well known that, in the Lorentz invariant theory, the energy-momentum tensor should be symmetric
due to the following reasons [26]:

(1) When it couples with gravity in curved space-time, the symmetrical Einstein tensor Gµν and metric tensor gµν
automatically imply a symmetric Θµν due to the Einstein equation;

(2) The current conservation of Mρµν = 1
2 (x

νΘρµ − xµΘρν ) of the angular momentum tensor Σµν =
∫

d3xM0µν also
requires a symmetric Θµν .

However, in our case, LIV undermines these two reasons;

(1) It is necessary to take LIV effects into account in gravity side for a consistent theory, however in this case, it is
the local Lorentz invariance involved. Moreover, when coupled with gravity, LIV parameters should be promoted
to dynamical fields instead of being constants [27], and the compatible framework to incorporate LIV in general
relativity is the Riemann-Cartan geometry [28], where the extended Einstein tensor is no longer symmetric. The
antisymmetric part of the Einstein tensor and the energy-momentum tensor is consistently linked through field
equations [28]. Thus no inconsistency arises when an asymmetric Θµν couples with gravity in a spontaneous LIV
theory [28].

(2) Due to the breaking of Lorentz invariance, the generator of the Lorentz group, i.e., the angular momentum tensor,
is no longer conserved in general, thus no constraints are imposed here. If one assumes that only boost invariance
is broken, i.e., rotational invariance is still preserved. It means that only α and k0AF are non-zero in Eq. (1). Then
in this case, one can prove Θij = Θji, which is required by the conservation of the spatial part of the angular
momentum tensor, i.e., dΣij/dt = 0. However, in the presence of LIV, it is only valid in a particular reference
frames, e.g., CMB reference, as the transformation from one inertial frame, in which the LIV photon equation is
isotropic, cannot remain isotropic in other inertial frames [29]. Here we present the proof in Appendix A.

3 A derivation of eikonal equation

In order to derive the eikonal equation of the modified electrodynamics, it is necessary to review how this is achieved
in Lorentz invariant Maxwell theory. We follow the derivation of Fock [21]. The basic principle is that the fields on the
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wavefront, which is a space-like 2-dimension surface, must be noncontinuous in the normal direction of the surface.
The reason is that the surface is an interface of two regions, one already influenced by the field perturbation and the
other remaining intact. Thus the time derivatives of the fields on the wavefront should be singular.

Taking a right-moving plane wave as an example, the wavefront is an infinite plane perpendicular to its constant
wavevector k at any instant. The left region of the plane is a region with non-vanishing electromagnetic fields, while
the right side is a region with vanishing fields. This conveys the fact that light propagates with a finite speed, thus
at any instant it cannot propagate further to the right of the wavefront plane. Since an electromagnetic field evolves
dynamically, it is more helpful to analyze from a 4-dimensional point of view, rather than from the view at some fixed
instant in 3-spatial dimensions.

For any instant t, the wavefront in the 3-spatial dimension can be written as

t = f(x, y, z). (17)

This can also be viewed in a dynamical way as an evolving 2-dimensional space-like surface f(x, y, z)− t = 0. When
we write Eq. (17) in an implicit form,

w(t;x, y, z) = 0, (18)

the wavefront becomes a slice of 3-dimensional hyper-surface in flat space-time in the 4-dimensional point of view.
So the 2-dimensional space-like wavefront is just a time slice of the null-surface (light-cone), and the non-continuity
of fields on the wavefront is nothing more than the (classical) causality requirement. To be more specific, the fields
inside the light-cone must be continuous since they are causally connected. Using Maxwell equations, one can obtain
from the fields on any given surface in 3-spatial dimensions inside the light-cone, the fields on an infinitesimally close
surface. However, this cannot be done for fields lying on the surface outside the light-cone. So the instant time slice of
the hyper-surface w(t;x, y, z) = 0 becomes an interface between causally connected and non-connected regions, hence
the derivatives of fields on the interface become singular. We use the above principle to derive the so-called eikonal
equation with the same logic as that in the Lorentz invariant theory.

The Lorentz invariant eikonal equation reads

(▽f(x, y, z))2 = n2, (19)

where in vacuum, n equals 1 in our unit (i.e. c = 1). In a more explicit Lorentz invariant form, it reads

(
∂w

∂t
)2 − (▽w)2 = 0. (20)

We show in Appendix B how to get Eq. (20) from Eq. (19).
Now we turn to derive eikonal equation in the presence of LIV. Any field u(x, y, z, t) on a 3-dimensional hyper-

surface in the 4-dimensional Minkowski space is

u(t, x, y, z) = u(f(x, y, z);x, y, z) ≡ u0(x, y, z). (21)

Therefore, we have
∂u0

∂xi
=

∂u

∂xi
+

∂u

∂t

∂f

∂xi
, (22)

where xi with Latin index i running over 1 to 3, represents x, y, z respectively. Thus the spatial derivatives of the
electric and magnetic fields on the hyper-surface are

∂Ei
0

∂xj
=

∂Ei

∂xj
+ ∂jfĖ

i,
∂Bi

0

∂xj
=

∂Bi

∂xj
+ ∂jfḂ

i. (23)

From the linearity of Eq. (23), we have

▽×E0 = ▽×E+ ▽f × Ė. (24)

Then by using the second equation of the Bianchi identity (9), we get

▽×E0 = −Ḃ+ ▽f × Ė. (25)

Similarly, one can obtain from Maxwell Eqs. (8) and (9) the set of equations below

▽ · ((1 + βE) ·E0) = ▽f · ((1+ βE) · Ė), ▽×E0 = −Ḃ+ ▽f × Ė; (26)

▽ ·B0 = ▽f · Ḃ, ▽× ((1+ βB) ·B0) = ((1+ βE) · Ė) + ▽f × ((1+ βB) · Ḃ). (27)
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Then by multiplying the second equations of (26) and (27) respectively with ▽f , we have

▽f · ▽×E0 = −▽f · Ḃ, (28)

▽f · ▽× ((1 + βB) ·B0) = ▽f · ((1+ βE) · Ė). (29)

Comparing the equations above with the first equations of (26) and (27), we find the following relations

▽f · ▽×E0 + ▽ ·B0 = 0, (30)

▽f · ▽× ((1 + βB) ·B0 − ▽ · ((1+ βE) ·E0) = 0. (31)

When f(x, y, z) is a constant, i.e., by specifying a particular instant, Eqs. (30) and (31) become the first equations
of the original field equations (8) and (9) respectively. This means that we need to specify proper initial conditions.

In order to extract more information, we multiply the curl of E0 by the tensor (1 + βB), then calculate its cross
product with ▽f . By utilizing the second equations of (26) and (27) successively, we get

▽f × [(1 + βB) · ▽×E0] = ▽f × [(1+ βB) · (▽f × Ė− Ḃ)]

= (1 + βE) · Ė− ▽× [(1+ βB) ·B0] + ▽f × [(1+ βB) · (▽f × Ė)]. (32)

After arranging it in such a way that all time derivatives of E are on one side, and E0 and B0 on the other side, we
have

(1 + βE) · Ė+ ▽f × [(1+ βB) · (▽f × Ė)] = ▽f × [(1+ βB) · ▽×E0] + ▽× [(1+ βB) ·B0]. (33)

Now it is apparent that the right-hand side of (33) includes the wavefront function f and the electromagnetic fields

E0 and B0 with values on the wavefront, while the left-hand side includes only Ė and f . With given wavefront function
f and the fields E0 and B0, Ė on the interface must be singular, as we have already argued. Otherwise one can obtain
the fields on an infinitesimal close surface outside the light-cone from field equations, which obviously violates the
causality requirements. Thus, if we view the left-hand side of Eq. (33) as a matrix equation,

Me · Ė ≡ (1+ βE) · Ė+ ▽f × [(1+ βB) · (▽f × Ė)], (34)

where Me is a tensor/matrix, then the determinant of Me must be zero, i.e., Det(Me) = 0. Otherwise, in principle,

one would get a non-singular Ė by solving Eq. (33).
Similarly, we can obtain the corresponding equation of the B field,

Ḃ+ ▽f × [(1+ βE)
−1 · {▽f ×

(

(1+ βB) · Ḃ
)

}] = ▽f × {(1+ βE)
−1 · (▽f × [(1+ βB) ·B0])} − ▽×E0, (35)

where we have presumed the existence of the inverse of (1 + βE), due to the fact that all of the 10 parameters, (βE)
ij

and (βB)
ij , must be very tiny compared to 1 to meet the stringent experimental constraints.

One can also define

Mb · Ḃ ≡ Ḃ+ ▽f ×
{

(1+ βE)
−1 ·

(

▽f × [(1+ βB) · Ḃ]
)}

. (36)

And for the same reason, Det(Mb) = 0. Actually, we find that generally Det(Mb) ∝ Det(Me), hence the two equations,
Det(Mb) = 0 and Det(Me) = 0, give the same differential equations of f(x, y, z). The former proportionality (in some
cases, it even becomes an equality) holds as expected, as the differential equation of f should be unique. This will be
shown in detail in Appendix C. In the presence of LIV, Det(Me) = 0 actually gives the eikonal equation implicitly.
We will show it explicitly in a simple case in the following section.

4 A case study and discussions

In this section, we give explicitly the eikonal equation for a simple case, together with more detailed discussions. For
this purpose, Eqs. (34) and (36) are our starting points.

First we try to extract the tensors/matrices Me and Mb from Eqs. (34) and (36) respectively. By rewriting Eq. (34)
in component form,

(Me)
ijĖj = (1+ βE)

ijĖj + ǫijkfj(1+ βB)
klǫlmnfmĖn, (37)
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where fi ≡ ∂f/∂xi, one can read

(Me)
ij = [1− (▽f)2]δij + fifj + (βE)

ij − ǫinkǫjmlfnfm(βB)
kl. (38)

Similarly, from Eq. (36), one can obtain

(Mb)
ij = δij − ǫinkǫjmlfnfmW kl − ǫiskǫnmlfsfmW kl(βB)

nj , (39)

where W ij = [(1 + βE)
−1]ij . Our task now is to calculate the determinants of Me and Mb, then one can obtain the

eikonal equation satisfied by f(x, y, z).
As E, B fields are simply the 3+1 decomposition of the electromagnetic field strength Fµν , and our working

hypothesis relies only on the analysis of causality, we can reasonably expect that the eikonal equations obtained from
the equations of E and B should be the same.

The explicit expressions of Me and Mb in the matrix form are rather tedious, not to mention the calculation of
their determinants. As an illustration, we need not to consider the full expression with all 10 parameters non-zero. We
place the discussions of the full expression in Appendix C, where we show that the eikonal equations obtained from
Eq. (38) and Eq. (39) are indeed the same. Instead, we assume here that only (βB)

12 = (βB)
21 = σ 6= 0 to simplify

our discussions on Me and Mb. By virtue of this simplification, we can subsequently get and solve the eikonal equation
explicitly.

However, here we derive it by restarting derivations from the simplified field equations,

▽ ·E = 0, ǫijk∂jB
k + ǫijk∂j(βB)

klBl − Ėi = 0, (40)

▽ ·B = 0, ǫijk∂jE
k + Ḃi = 0, (41)

where (βB)
kl = σ(δk1δ

l
2 + δk2δ

l
1). Now the equations corresponding to Eqs. (35) and (33) are

Ḃ− (▽f)2[(1+ βB) · Ḃ] + ▽f [▽f · (βB · Ḃ)] = ▽f × {▽× [(1+ βB) ·B0]} − ▽×E0 − ▽f(▽ ·B0), (42)

[1− (▽f)2]Ė+ ▽f × [βB · (▽f × Ė)] = ▽f × [(1+ βB) · (▽f ×E0)] + ▽× [(1+ βB) ·B0]− (▽ · E0)▽f . (43)

From (43) we obtain

(Me) = [1− (▽f)2]





1 0 0
0 1 0
0 0 1



+ σ





0 f2
3 −f2f3

f2
3 0 −f1f3

−f2f3 −f1f3 0



 . (44)

By direct calculation, we have

Det(Me) = [1− (▽f)2]
{

[1− (▽f)2]2 + 2f1f2σ[1 − (▽f)2]− f2
3σ

2(▽f)2
}

. (45)

Similarly for the B field, from (42) we have

(Mb) = [1− (▽f)2]





1 0 0
0 1 0
0 0 1



+ σ





f1f2 f2
1 − (▽f)2 0

f2
2 − (▽f)2 f1f2 0
f2f3 f2f3 0



 , (46)

and

Det(Mb) = [1− (▽f)2]{[1− (▽f)2 + σf1f2]
2 − (f2

1 + f2
3 )(f

2
2 + f2

3 )σ
2}. (47)

One can easily verify that Det(Me) = Det(Mb). Generally, the equation Det(Me) = 0 has three solutions. One is the
conventional (▽f)2 = 1, and if written in terms of w(x, y, z; t), it is Eq. (20). We will see below that this corresponds
to the conventional dispersion relation p2 = 0, which accompanies modified Lorentz-violating dispersion relations in
many models, see e.g., Ref. [12]. The other two solutions,

1− (▽f)2 + σf1f2 ± σ
√

(f2
1 + f2

3 )(f
2
2 + f2

3 ) = 0, (48)

manifest LIV explicitly, which is characterized by the non-zero LIV parameter σ. Treating space and time on the same
footing, i.e., rewriting Eq. (48) in terms of function w(t, x, y, z), we can get

(
∂w

∂t
)2 − (▽w)2 + σ(w1w2 ±

√

(w2
1 + w2

3)(w
2
2 + w2

3)) = 0, (49)
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where wi ≡ ∂w/∂xi. When σ = 0, Eq. (49) reduces to the Lorentz invariant case, i.e., Eq. (20).
In order to solve the eikonal equation, we use the Lorentz invariant case (20) as an illustration. Choosing the

positive sign for convenience, we obtain a first order partial differential equation,

∂w

∂t
+
√

(▽w)2 = 0. (50)

Then from the well-known analogy between Hamilton-Jacobi equation and geometric optics [21], one can identify

w(x, y, z; t) as the Hamilton action S(q, P ; t),
√

(▽w)2 =
√

∑3
i=1 w

2
i as the Hamiltonian H(q, ∂S

∂q
; t), and wi as the

momentum Pi = ∂S/∂qi. So the question is transformed into solving the Hamilton equation,

ẋi = {xi, H} =
∂
√

∑3
i=1 w

2
i

∂wi

=
wi

√

∑3
i=1 w

2
i

. (51)

We note that
∑3

i=1(ẋ
i)2 = 1, which can be written in an appropriate form, dτ2 = dt2 − (dxi)2 = 0, characterizing

the null geodesic of photons. If Eq. (50) is solved in the momentum space, we get the well-known dispersion relation
p2 = 0 for massless particles.

Next we use the same analogy to solve Eq. (49). In the presence of LIV, the formal Hamilton-Jacobi equation now
reads

∂w

∂t
+

√

(▽w)2 − σ(w1w2 ±
√

(w2
1 + w2

3)(w
2
2 + w2

3)) = 0, (52)

with

H(wi) =

√

(▽w)2 − σ(w1w2 ±
√

(w2
1 + w2

3)(w
2
2 + w2

3)). (53)

Since H does not contain the canonical variables which conjugate to momentum wi, it automatically implies that the
momentum ki = wi is conserved. From the absence of explicit dependence on time, we have ∂S/∂t = ∂w/∂t = −E =
−k0. Then based on the above observations, we can quickly read the dispersion relation

k0
2
= k2 − σ(k1k2 ±

√

(k12 + k32)(k22 + k32)), (54)

which can also be confirmed by solving field equation (2) (for details, see Appendix D).
Note that the “±” signs in Eq. (54) imply that the photon dispersion relation depends on polarization, hence can

lead to the so-called vacuum birefringence effect [3,24], which has already been used to place severe constraints on
LIV parameters from astrophysical observations, like CMB [31], radio galaxies [32] and GRB [30,19].

Back to the Hamilton-Jacobi equation (52), by using the observer rotational invariance, we can rotate the observer
frame to a particular one with w1 = w2 = ρ. This simplifies Eq. (52) to

∂w

∂t
+
√

(▽w)2 − σ(ρ2 ± (ρ2 + w2
3)) = 0. (55)

For the positive sign in (55), we can solve

ẋ1 = ẋ2 =
1

2

∂H

∂ρ
=

ρ
√
1− σ

√

2ρ2 + w2
3

, ẋ3 =
∂H

∂w3
=

w3

√
1− σ

√

2ρ2 + w2
3

, (56)

where the factor 1/2 comes from the symmetry w1 = w2 = ρ. We can read the group velocity from Eq. (56) as

vg =
√

∑3
i=1 ẋ

2
i =

√
1− σ, or equivalently dτ2 = (1 − σ)dt2 − dx2 = 0. Accidentally, the phase velocity equals the

group velocity, i.e., vp = H/|▽w| =
√
1− σ = vg.

For the negative sign, we have

ẋ1 = ẋ2 =
1

2

∂H

∂ρ
=

ρ
√

2ρ2 + (1 + σ)w2
3

, ẋ3 =
∂H

∂w3
=

w3(1 + σ)
√

2ρ2 + (1 + σ)w2
3

. (57)
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Thus dτ2 = dt2 − [dx1
2 + dx2

2 + dx3
2/(1 + σ)] = 0, and the group velocity reads

vg =

√

2ρ2 + (1 + σ)2w2
3

2ρ2 + (1 + σ)w2
3

=

√

1 +
σ(1 + σ)w2

3

2ρ2 + (1 + σ)w2
3

⋍ 1 +
σw2

3

2|▽w|2 ,

where in the last step we have approximated it to the first order of σ. Similarly, the phase velocity is

vp =
H

|▽w| =
√

1 +
σw2

3

2ρ2 + w2
3

⋍ 1 +
σw2

3

2|▽w|2 .

We see that only in the first order approximation of σ, vp = vg, while considering higher orders, vp 6= vg, contrary to
the case of positive sign. So in general vp 6= vg in the presence of LIV, and this is easy to understand. As the presence
of the background tensor kF breaks the Lorentz invariant vacuum, the vacuum is no longer an isotropic and dispersion
free medium. In this case, just like the behavior of the electromagnetic wave in the conventional dispersive medium,
generally vp depends on the photon momentum k, i.e., ∂vp/∂k 6= 0. Consequently, vg = ∂k0/∂k = vp+k ∂vp/∂k 6= vp,
where k = |k|.

In this case, it is interesting to define an effective refractive index from the comparison of Eq. (48) with Eq. (19),

n2
eff = 1 + σ(f1f2 ±

√

(f2
1 + f2

3 )(f
2
2 + f2

3 )). (58)

Similarly, it is instructive to define an effective mass

m2
eff = −σ(k1k2 ±

√

(k12 + k32)(k22 + k32)), (59)

by comparing Eq. (54) with that of the conventional massive particles.
Then from Eqs. (58) and (59), we see that, for σ > 0, the “+” sign gives n2

eff > 1 and m2
eff < 0. The analogy with

optical media tells us that vp < 1, which is confirmed in our special case where vp =
√
1− σ. However, the analogy

with massive particles by means of introducing an effective mass squared m2
eff breaks down. In the conventional case,

when we have a negative mass squared, it means that we have expanded the theory at an unappropriate point, a
point which is not a true vacuum. When we quantize the theory around this unstable vacuum, we get a tachyon
with v > 1 and hence violate causality. But this analogy breaks down here, as the underlying physical mechanism is
completely different from that of the false vacuum in a Lorentz invariant theory. For the “−” sign, we have n2

eff < 1
and m2

eff > 0. From the analogy with optical media, we expect v > 1, while naive analogy with conventional massive
particles indicates v < 1. We see from the special case above that vp = vg ⋍ 1 + σw2

3 |▽w|−2/2 > 1, which is again
consistent with the optical media analogy. For σ < 0, one can obtain similar results. Thus we conclude that the analogy
between LIV vacua with optical medium is more reasonable and helpful.

In fact, our derivation of the eikonal equation is inspired by and starts from the analogy between the electromagnetic
wave propagating in LIV vacuo and in anisotropic media. As the definition n2

eff is along the same line of the analogy,
it is natural to expect that the qualitative results (of velocity) are consistent with direct calculations. However, this is
not true for the analogy with conventional massive particles. The reason is that here the effective mass squared is no
longer a free parameter in Lagrangian; instead, it is momentum-dependent. More importantly, now Lorentz invariance
is broken, thus it is not necessary for the maximum attainable velocity of the effective massive particle to be c = 1.

Moreover, we see that, just as what happened in the conventional dispersive medium [34], in our case, the definition
of light velocity is more involved than that in the conventional Lorentz invariant vacuo. Perhaps it is more complicated,
for now it is the vacuum itself becoming anisotropic. Though in the dispersive medium, there already exist cases with
vp > c or vg > c [34], they do not conflict with the requirement of causality. Since in practice, we can only measure
directly the velocity of light signals, denoted as vs. The only difficulty in that case is a proper definition of signal
velocity. Once we have an appropriate definition of vs, it can be shown that vs < 1 [33]. Thus no causal problem
arises there. Since in that case, our starting point, the wave equation, does indeed obey Lorentz invariance. Only the
medium in which light propagates, is no longer the Lorentz invariant vacuum, but crystal or nontrivial QED vacuum.
The medium then singles out a preferred direction, which leads to the so-called soft breaking of Lorentz invariance [35],
with a superluminous phase/group velocity.

However, this is not the situation here. Now it is the basic wave equation, Maxwell equation, which is no longer
Lorentz invariant. Hence there might be more difficulties in the proper definition of signal velocity and it may cause
causal problems. For the simple case above, we can define vs as the wavefront velocity vf . Then since our calculation
deals directly with electromagnetic wavefront, we find vg = vf . Alternatively, we can also define energy transport
velocity vi

e = Θi0/Θ00 as the signal velocity. Then by choosing the appropriate ansatz A1(t, r)± = W±cos[w(t − s ·
r/vp±)] (where “±” sign refers to the two modes in Eq. (54), respectively) and the Coulomb gauge ▽ ·A = 0, we can
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prove |ve| = vg for both “+” and “−” modes in Eq. (54) (for details of this issue, see Appendix D). Thus for the simple
cases corresponding to Eqs. (56) and (57), and for either sign of σ, we see that there always exists one mode with
vs > 1, which indeed violates causality. However, note that all the treatments above are purely classical. Since LIV is
believed to be a quantum gravitational phenomenon, the best way to treat the corresponding causality problem is to
use quantum field theory. Hence it is more appropriate to discuss the microcausality from the calculation of 2-point
correlation functions of observables at space-like separations. However, this is beyond the scope of the present paper.

5 Conclusion

Inspired by the analogy between the behavior of LIV electrodynamics and electrodynamics in macroscopic anisotropic
medium, we derived the eikonal equation for Lorentz non-invariant vacuum from the modified Maxwell equations of
SME. The results obtained from the equations of both E and B fields are the same, and the general case is given in
Appendix C. This implies that the derivation is self-consistent. Then we use the well-known analogy between geometric
optics and the Hamilton-Jacobi equation, and find that the solution of the eikonal equation (48) in the momentum
space, i.e., Eq. (54), turns out to be the modified dispersion relation of photons, which is the same as those obtained
from other approaches. This fact confirms the consistency of our approach further.

With the definition of an effective refractive index neff , we find that the dependence of the velocity on the LIV
parameter is consistent with the velocity dependence on the refractive index n of ordinary refractive medium. As our
calculation deals directly with wavefront, the results show that the front velocity equals the group velocity for each
LIV mode. From the analogy of the LIV vacuum with macroscopic anisotropic medium, we find that the presence
of LIV makes the proper definition of signal velocity more complicated, especially when considering the existence of
multi-definition of velocity. Therefore, the treatment of causality becomes much subtle. However, if we define the signal
velocity as the wavefront velocity, i.e., vs = vf , naive analysis shows that, for either sign of σ, causality is violated
classically at least for one mode. Of course, to see whether or not tiny LIV might threaten microcausality, one should
turn to the more trustable and rigorous treatment of quantum field theory to calculate the correlation functions at
space-like separations. Actually, this was done for the Chern-Simons-like term [37] and it has caused extensive debates
in the literature (see e.g., Ref. [37]). Complete treatment of microcausality was also achieved for the massive fermion
sector of SME [3,36], and it was shown that no crucial problems arise for a spontaneous Lorentz invariance breaking
theory. If Lorentz violation happens intrinsically at high energies rather than spontaneously, as suggested in the so-
called weighted dimensional model, Anselmi pointed out that it is Bogoliubov’s criterion of causality, rather than the
value of correlation functions, that makes sense [38].

As a by-product of this work, we find that the asymmetric energy-momentum tensor Θµν causes no inconsistency
in principle. By assuming rotational invariance, the conservation of Noether charge, i.e., dΣij/dt = 0, requires that
the spatial components of Θµν must be symmetric. Through inspection of the corresponding LIV parameters in the
presence of rotational symmetry, we find that indeed Θij = Θji, though this is valid only in a particular reference
frames, as already mentioned. While from the definitions of Θµν and the velocity of energy transport, in our simple case,
explicit calculation shows that the group velocity also equals the energy transport velocity for each mode. Together
with vg = vf , it makes the definition of signal velocity as wavefront velocity more reliable in the classical discussion of
causality. The last point we would like to stress is that the derivation of the eikonal equation is not restricted to the
simple model here. In fact, at least for gauge invariant Maxwell equations without E, B mixing terms, it should work
as well. Thus the method might be helpful in the causality and phenomenological analysis of various LIV extensions
of Maxwell equations.

Acknowledgments

We thank Liang Zhang, Zhi-bo Xu for helpful discussions. This work is partially supported by National Natural Science
Foundation of China (11005018, 10721063, 10975003, 11035003), by the Key Grant Project of Chinese Ministry of
Education (No. 305001), and by the Research Fund for the Doctoral Program of Higher Education (China). It is also
supported by National Fund for Fostering Talents of Basic Science (Nos. J0630311, J0730316) and Hui-Chun Chin
and Tsung-Dao Lee Chinese Undergraduate Research Endowment (Chun-Tsung Endowment) at Peking University.

Appendix A

This appendix gives the proof that, even for a generic asymmetric energy-momentum tensor, the requirement of
rotational invariance implies the symmetric relation Θij = Θji, which ensures the consistency with the corresponding
Noether current. Here, the conserved charge corresponding to the Noether current is the angular momentum.
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For a Lorentz invariant theory, the conservation of generators of Lorenz group is manifested through the Noether
current,

Mρ
µν =

1

2
(Θρ

νxµ − Θρ
µxν). (60)

One can construct the corresponding generators of Lorentz group as

Σµν =

∫

d3xM0
µν . (61)

Then from the current conservation,
∂ρM

ρ
µν = 0, (62)

it is easy to show that dΣµν/dt = 0. Hence the six generators of Lorentz group are conserved. Meanwhile, combined
with the conservation of energy-momentum tensor, i.e., ∂ρΘ

ρµ = 0, the current conservation implies that,

0 = ∂ρM
ρµν =

1

2
[xµ∂ρΘ

ρν − xν∂ρΘ
ρµ + (Θρνδµρ −Θρµδνρ )]

=
1

2
(Θµν −Θνµ), (63)

i.e., the energy-momentum tensor is symmetric. However, as mentioned in the main text, generally this is not valid
in the presence of LIV.

Here we note that the same reasoning above can also be applied to the rotational symmetry. If we only break boost
invariance, then the infinitesimal symmetry transformation

Ψ l(x) → Ψ l(x)− i

2
wµν(Jµν)

l
mΨm(x) (64)

under Lorentz invariance is replaced with

Ψ l(x) → Ψ l(x)− i

2
wij(Jij)

l
mΨm(x) (65)

under rotational invariance. It is nearly the same as (64) except that wµν is replaced by wij (where as before, Latin
indices i, j run over the three spatial coordinate labels, usually taken as 1, 2, 3; and Greek indices µ, ν run over the
four space-time coordinate labels, 1, 2, 3, 0).

With the above observation, it is apparent that from the Noether theorem, we can obtain the corresponding Noether
current Mρ

ij and Noether charge Σij . With the same reasoning, ∂ρM
ρij = 0 also implies Θij = Θji.

The symmetrizability of Θij is valid for a generic LIV theory with rotational symmetry SO(3) unbroken, like the
photon Lagrangian with an anisotropic scaling in Ref. [12]. However, we stress again that this symmetric property and
SO(3) invariance is valid only in a specific inertial reference frames, because LIV implies the existence of a preferred
direction. While for a specific Lagrangian (1) without CPT odd terms, we have

Θµν = −[FµαF ν
α + (kF )

αβµδF ν
δFαβ ]− ηµνL, (66)

so

Θµν −Θνµ = −[(kF )
αβµδF ν

δ − (kF )
αβνδFµ

δ]Fαβ (67)

and

Θ[ij] =
1

2
(Θij −Θji)

=
1

2
Fαβ [(kF )

αβjδF i
δ − (kF )

αβiδF j
δ]

=
1

2
Fkl[((kF )

kljmF i
m − (kF )

klimF j
m) + ((kF )

klj0F i
0 − (kF )

kli0F j
0)]

+Fk0[((kF )
k0jlF i

l − (kF )
k0ilF j

l) + ((kF )
k0j0F i

0 − (kF )
k0i0F j

0)]. (68)

Since rotational invariance requires only α 6= 0, from (3) and (4), we have

(kF )
kljm =

α

2
(δkjδlm − δkmδlj), (kF )

kli0 = 0, (kF )
k0i0 = −α

2
δki. (69)



12 Zhi Xiao, Lijing Shao, Bo-Qiang Ma: Eikonal equation of the Lorentz-violating Maxwell theory

Substituting (69) into (68), one can easily find that

Θ[ij] =
α

2
[(FimF j

m − FjmF i
m) + (Fi0F

j
0 − Fj0F

i
0)] = 0, (70)

which is consistent with the requirement of rotational invariance. The same property of Θij can also be checked for
more general theories with rotational invariance, e.g., the Horava-Lifschitz theory.

Appendix B

This appendix shows how to get (20) from (19).
From (17), we have

dt = fidx
i ⇒ ∂t

∂xi
= fi. (71)

While from (18), we get

0 ≡ dw = widx
i + wtdt ⇒ ∂t

∂xi
= −wi

wt

, (72)

where wi ≡ ∂w/∂xi and wt ≡ ∂w/∂t. Then from (71) and (72), one can easily obtain ▽if = −wi/wt. So we have

1 = (▽f)2 =

3
∑

i=1

(wi/wt)
2 = (▽w)2/(wt)

2. (73)

Appendix C

In this appendix we show that the eikonal equations we got from (38) and (39) are the same, and hence are consistent
with the general arguments in the main text: as the derivation roots in the classical causality analysis, and E, B
fields are components of the 3+ 1 decomposition of Fµν , hence being connected with each other through the Maxwell
equations, the eikonal equations derived from the equations of E and B must be the same.

First, let us focus on the case (βE)
ij = 0. The consistent check of this simpler case will be a little different from the

case (βE)
ij 6= 0 . For (βE)

ij = 0, we denote the corresponding matrices of (38) and (39) as MeB and MbB respectively,
i.e.,

(MeB)
ij = [1− (▽f)2]δij − ǫinkǫjmlfnfm(βB)

kl, (74)

(MbB)
ij = [1− (▽f)2]δij − (▽f)2(βB)

ij − fifk(βB)
kj . (75)

If we assign

βB =





b4 b1 b2
b1 b5 b3
b2 b3 −(b4 + b5)



 , (76)

the matrices above take the explicit matrix forms as below

(MeB ) =







[1 − (▽f)2] + f2
2 (b4 + b5) − f2

3 b5 + 2f2f3b3 f2
3 b1 − f2f1(b4 + b5) − f3(b3f1 + b2f2) f1f3b5 + b2f2

2 − f2(b3f1 + b1f3)

f2
3 b1 − f2f1(b4 + b5) − f3(b3f1 + b2f2) [1 − (▽f)2] + f2

1 (b4 + b5) − f2
3 b4 + 2f1f3b2 f2f3b4 + b3f2

1 − f1(b2f2 + b1f3)

f1f3b5 + b2f2
2 − f2(b3f1 + b1f3) f2f3b4 + b3f2

1 − f1(b2f2 + b1f3) [1 − (▽f)2] − (f2
2 b4 + b5f2

1 ) + 2f2f1b1







(MbB ) =







[1 − (1 + b4)(▽f)2] + f1(b4f1 + b1f2 + b2f3) f1(b1f1 + b5f2 + b3f3) − b1(▽f)2 f1(b2f1 + b3f2 − (b4 + b5)f3) − b2(▽f)2

f2(b4f1 + b1f2 + b2f3) − b1(▽f)2 [1 − (1 + b5)(▽f)2] + f2(b1f1 + b5f2 + b3f3) f2(b2f1 + b3f2 − (b4 + b5)f3) − b3(▽f)2

f3(b4f1 + b1f2 + b2f3) − b2(▽f)2 f3(b1f1 + b5f2 + b3f3) − b3(▽f)2 [1 − (1 − b4 − b5)(▽f)2 ] + f3(b2f1 + b3f2 − (b4 + b5)f3)






.

Note that (MeB)
T = MeB, i.e., MeB is a symmetric matrix, while MbB is not. So it is not a trivial check that

Det[MeB] = Det[MbB] by direct calculation. Imposing the requirements that their determinants be equal to zero, one
can obtain the same equations, as expected. Since the results are tedious, we do not present them here. On the other
hand, if we allow only (βB)

21 = (βB)
12 6= 0, one can easily get back to (45) and (47). This can be regarded as another

consistent check.
For the case (βE)

ij 6= 0, as the calculation involves the inverse of (1 + βE)
ij , i.e., W ij = [(1+ βE)

−1]ij , the results
will be more tedious than the previous ones. So we also do not present the details here. We just make two remarks.
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(1) As the calculation of (39) involves the matrix W ij , while that of (38) does not, the determinants of (38) and (39)
are indeed not the same, contrary to the previous case. However, note that the requirement of the same eikonal
equations is derived from the vanishing of the determinants of matrices (38) and (39). This requires only that the
determinants of these two matrices are proportional to each other, not necessarily being the same. In fact, one can
show that they differ only by a constant, i.e.,

Det[Me] = Det[Mb] ·Det[1 + βE ]. (77)

So as long as Det[1 + βE ] 6= 0, the differential equations obtained from Det[Me] = 0 and Det[Mb] = 0 must be the
same.

(2) By taking βE = 0, the solution reduces to those obtained from (74) or (75), except for a missing factor 1− (▽f)2.
This can be traced back to solving field equations, and our calculation is implicitly equivalent to that procedure.
In solving Maxwell equations, in order to obtain the independent equations of the two physical degrees of freedom,
we need to choose a gauge, e.g., Coulomb gauge, to eliminate the gauge degrees of freedom (see Appendix D).
In this process, we eliminate one polarization and leave a constraint, which in turn gives an identity. Eventually,
we are left with only two independent equations, corresponding to the two physical polarizations. The eliminated
identity in this process then corresponds to the lacking factor in our method. In our derivation, it is the fifj factor
in (38) (or the −ǫinkǫjmlfnfmW kl factor in (39)) playing the role of gauge constraints to remove 1− (▽f)2 in (77).

In conclusion, we see that, as expected, the calculation from either (38) or (39) indeed leads to the same eikonal
equations, and the derivation is also consistent with solving field equations. Thus it is natural to get from the eikonal
equations two independent dispersion relations, corresponding to two physical polarizations, see e.g., (54).

Appendix D

In this appendix we give an explicit calculation of the energy-momentum flow velocity vi
e = Θi0/Θ00.

Using the ansatz Aµ(x) = ǫµ(p)exp[−i(p0t− p · x)] and choosing the Coulomb gauge ▽ ·A = 0, we get φ = 0 as a
special solution from ▽ ·E = 0 (i.e., the first equation of (40)). Then by substituting Eq. (7) into Eqs. (40) and (41),
we find that (41) is satisfied automatically. Then from the left equation of (40), we get

−p2A1 + σp3(p2A3 − p3A2) = 0,

−p2A2 + σp3(p1A3 − p3A1) = 0,

−(p2 + 2σp1p2)A3 + σ(p1A2 + p2A1)p3 = 0. (78)

By imposing the Coulomb gauge piAi = 0, the equations above can be reduced to

(

p2 + σp1p2 σ(p23 + p22)
σ(p23 + p21) p2 + σp1p2

)

{A1

A2
} = 0. (79)

Note that, in this appendix, we do not distinguish the upper and lower indices, e.g., A1 = A1. From the existence
of non-zero solutions of (79), one can easily get the dispersion relation (54). To calculate the energy-momentum flux
velocity, we use the real component of our previous ansatz instead, i.e., A1(t, r)± = W±cos[w(t− s · r/vp±)], where s
denotes the unit vector pointing to the direction of propagation and vp± denote the two independent phase velocities
of the two modes in (54). With the help of (79), one can express A in terms of A1, i.e.,

A2 = −p2 + σp1p2
σ(p23 + p22)

A1, A3 = − (p2A2 + p1A1)

p3
. (80)

Substituting these back to (7), we can obtain the explicit forms of E and B, where we have assigned

s = (
1√
2
cos[θ],

1√
2
cos[θ], sin[θ]). (81)

Then by substituting the explicit forms of E and B into (16) and (14), we find that indeed |vi
e±| = vg± for each mode.
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19. V.A. Kostelecký and M. Mewes, Phys. Rev. D 80, 015020 (2009) [arXiv:0905.0031 [hep-ph]], Table XIV; S. Liberati and
L. Maccione, Ann. Rev. Nucl. Part. Sci. 59(2009), 245 [arXiv:0906.0681 [astro-ph]].
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36. V.A. Kostelecký and R. Lehnert, Phys. Rev. D 63, 065008 (2001).
37. C. Adam and F.R. Klinkhamer, Nucl. Phys. B 607, 247 (2001); Phys. Lett. B 513, 245 (2001).
38. D. Anselmi, JHEP 02, 051 (2008).

http://arxiv.org/abs/gr-qc/0106002
http://arxiv.org/abs/gr-qc/0505065
http://arxiv.org/abs/0811.2217
http://arxiv.org/abs/0801.0287
http://arxiv.org/abs/1002.0349
http://arxiv.org/abs/0911.2276
http://arxiv.org/abs/1007.2269
http://arxiv.org/abs/1003.5468
http://arxiv.org/abs/0905.0031
http://arxiv.org/abs/0906.0681
http://arxiv.org/abs/gr-qc/0502097
http://arxiv.org/abs/gr-qc/0107091

	1 Introduction
	2 A brief review of the photon part of SME
	3 A derivation of eikonal equation
	4 A case study and discussions
	5 Conclusion

