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Abstract
We consider the hydrodynamic regime of gauge theories with general triangle anomalies, where
the participating currents may be global or gauged, abelian or non-abelian. We generalize the
argument of larXiv:0906.5044, and construct at the viscous order the stress-energy tensor, the

charge currents and the entropy current.
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I. INTRODUCTION AND SUMMARY

In this letter we will consider the hydrodynamic regime of microscopic quantum gauge
theories with triangle anomalies. The field theory currents can be global or gauged, abelian
or non-abelian. We will label this full set of currents with the indices («, 3, ...), and will
limit ourselves to symmetries which are not spontaneously broken.

Some of the field theory charges will be accessible at the energy scale defined by the
temperature. Such charges and their chemical potentials may take part in the hydrodynamic
description, as part of the local equilibrium parameters. There are possible obstructions to
this, e.g. a gauged charge may be screened. Also, to be part of the thermodynamics a charge
must be conserved with sufficient accuracy within each local equilibration region; thus, a
global U(1) charge will not be part of the fluid description if its conservation is too disrupted
by anomalies with gauged currents. For the bulk of the discussion, we will assume that the
conservation of hydrodynamic charges is not violated at all. However, during the derivation
we will violate the conservation of charges using fictitious external fields. The more general
case of slight violation will be discussed in section [Vl

Gauge fields may also enter the fluid description by assuming nonzero average values over
macroscopic distances. This possibility upgrades the discussion from pure hydrodynamics to
electro/magneto-hydrodynamics. If a gauge field enters the description, so will the current
that it induces; the associated charge density may also appear as an independent parameter,
or it may be screened.

For non-abelian gauge fields and their associated charges, a complication arises. If a
charge density is to be part of the thermal parameters, it must be additive and conserved
(in the ordinary, not in the gauge-covariant sense) within each local equilibration region.
In other words, within each equilibration region the charge must be approximately abelian.
This imposes a condition on the fluctuating microscopic component of the associated gauge
field. The same condition must hold for the gauge field itself to enter a fluid description:
without a consistent gauge frame within each equilibration region, the gauge field cannot
have a smooth, well-defined average value. The technical consequences of this condition are
that gauge-covariant derivatives commute with thermal averaging, and that the averaged
field strength F7, can be derived from the averaged potential Af.

Our aim is to find the allowed leading viscous order constitutive relations of the field



theory hydrodynamics. In order to keep track of orders of magnitude, we introduce a formal
small parameter €. The “order” of a quantity will refer to the power of ¢ involved. We will
take all the gradients and field strengths to be of order ~ e. The background metric g,
may be curved on the length scale of the hydrodynamic gradients, i.e. its Riemann tensor
is of order O(g?).

The zeroth-order constitutive relations for the stress-energy density, the charge currents

and the entropy current have the standard ideal-fluid form:

th(])“ =V _gnauu ) (1)

where u” is the energy velocity, u,ut = —1, € is the energy density, p is the pressure, n, is
the charge density and s is the entropy density. Py = 4} + u,u” is the projector orthogonal
to u. The indices (a, b, ...) enumerate the currents which participate in the hydrodynamics
(whether through a charge density or a gauge field). For screened charges, we set n, = 0. T, :
is the “intrinsic” stress-energy density, i.e. it includes the contribution from the microscopic
component of the gauge fields, but not the contribution from the macroscopic gauge fields.

Our result for the first-order constitutive relations is a direct generalization of [1]. We

will find (in the Landau frame):
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where T' = (0¢/0s)y is the temperature, u, = (Je/0On®)s are the chemical potentials (with
a = 0 for screened charges), n > 0 is the shear viscosity, ¢ > 0 is the bulk viscosity, and oy,
is the conductivity matrix with o) positive semi-definite. D, is the covariant derivative
with respect to the metric and the gauge fields. The derivative of p,/T is taken in the
gauge-covariant sense, i.e. D, = O, g + fabCAl; 1, where fgu. are the Lie algebra structure
constants. The shear tensor 7, and the vorticity density w* are defined by:
1
T = PﬁPfD(puU) - gP;prW’ :
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where €7 is the metric-independent Levi-Civita density with components +1. The electric

field E* and magnetic field B# are defined by:

E* = F"u,; B"™ = -y, FS (4)
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where F, is the macroscopic gauge field strength. For global charges, we set Fj, = 0.
The ordinary viscous coefficients ¢, n and o, can be arbitrary functions of state. In
contrast, the vorticity /magnetic coefficients &, féf), ¢ and &(LB) are almost entirely fixed by

the field theory’s chiral anomalies:
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Here, Cy. is a symmetric tensor of anomaly coefficients:
Cape = L tr{T(, T, T, } (6)
abc — o (& Y
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where T, are the symmetry generators in the fermion representation. (3, and ~ are numerical
constants, which are not constrained by the anomaly. Note that a nonzero ~ is possible only
for a parity-breaking theory. (,, on the other hand, is allowed in parity-conserving theories,
as long as it is nonzero only for values of a corresponding to axial charges. Also, the group
structure forbids a nonzero 5, when a corresponds to a non-abelian charge.

Our derivation generalizes the results of [1] by allowing for gauged and/or non-abelian
charges. We also elucidate the precise definition of the currents used in the derivation,
leading to the correct value for Cy,.. Finally, we include the additional vorticity coefficients
Bq and vy, which were omitted in [1]. The results are consistent with our previous derivation
for global non-abelian charges based on a null horizon dynamics in a gravitational dual
description [2].

The appearance of the vorticity term w* in the anomalous hydrodynamic current has been
first observed in the dual gravitational description of relativistic conformal hydrodynamics

[3, 4]. Experimental manifestations of the vorticity term in heavy ion collisions have been



proposed in [, 6]. We note that hydrodynamics with SU(2) global symmetry charges has
been considered in a holographic setup in [7].

The paper is organized as follows. In section [[I, we introduce external fields and carefully
define the anomalous currents and their non-conservation equations. In section [II, we run
through the derivation of egs. (). The derivation closely follows the one in [1], with gauge-
covariant derivatives introduced where necessary. It is essential for the argument that the
currents and (non-)conservation equations defined in section [l are gauge-covariant, and that
Cupe assumes a symmetric form. Finally, in section [V] we consider global currents whose

conservation is slightly violated by anomalies with gauge fields.

II. EXTERNAL FIELDS AND DEFINITION OF THE CURRENTS

In order to better exploit the second law of thermodynamics, we will extend the theory
by coupling the global hydrodynamic currents to external gauge fields. After this step, there
is a gauge field A7 coupled to each hydrodynamic current. The external gauge fields will
enter along with the dynamical fields into the anomalous non-conservation equations. The
external field strengths are of order ~ ¢, and are approximately homogeneous within each
equilibration region; they may vary over the length scales of the hydrodynamic gradients.
The covariant derivative D, will be understood to take the external fields into account.

In a theory with anomalies, two subtleties arise with regard to the definition of the cur-
rents and the precise form of their non-conservation equations. First, the anomaly diagram
may be regularized in different ways, by adding different local counterterms to the action
[8]. These counterterms are given by local functionals of A, and affect the definition of
the current. Furthermore, the current may be defined not directly from the variation of the
path integral, but again with the addition of some local functional of Aj [9]. Since there are
no anomalies among the dynamically gauged currents, these issues only arise after we add
the external gauge fields. What we would like to have is a set of currents that are gauge-
covariant with respect to both the dynamical and the external gauge fields. The covariance
can then be used to constrain the hydrodynamic constitutive relations. We will now see that
there is essentially one such choice of currents, regardless of the regularization.

Let the anomalous diagrams be regularized in any permissible way (i.e. keeping the dy-

namical gauge symmetries intact). Consider a spacetime region €2, with boundary conditions



on 0f2 corresponding to our hydrodynamic state. Let us perform the path integral within €2

with these boundary conditions, without integrating over the gauge fields:
Wguw, AZ‘] S ln/D¢DwD¢ oS 19u, Agi b 5.9] ’ 7)

where 1 are the fermion fields responsible for the anomaly, and ¢ are any other fields present
in the theory. Our notation shows the dependence of W on the values of g,, and Af, within
2, and suppresses its dependence on the boundary conditions on 9. The gauge fields Aj
include both the dynamical fields, whether or not they enter the fluid description, and the
external fields.

We now wish to derive the currents and the stress-energy density by varying W with
respect to A7} and g, respectively. However, in the hydrodynamic context we do not want
the macroscopic currents to contain the D, F'*” contribution derived from the kinetic term
of the dynamical gauge fields; also, we do not want the stress-energy density to contain the
stress-energy of the macroscopic piece of the dynamical gauge fields. Therefore, we first

subtract from W the kinetic term of the macroscopic gauge fields:
1 a Y
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where the index a runs over the dynamical gauge fields, and the brackets denote averag-
ing over the local equilibration region. This adjustment is gauge-invariant, so the gauge
transformation properties of W’ are the same as for W.

We now define the “consistent” anomalous currents as
gh = 5W’/5Aﬁ ) 9)

The divergence D,jk generates gauge transformations inside €2. The j& are not gauge-
covariant, but they can be made covariant by the addition of a local functional of Aj. This
is best explained in two steps. First, let G be the counterterm to the action which would be
necessary to pass from our chosen regularization of the anomalous diagrams to the standard
symmetric one (which would violate the dynamical gauge symmetries). Now, let us add
0G/dAS to our currents. The resulting currents have the same transformation properties
and satisfy the same non-conservation equations as the “consistent” currents under the
symmetric regularization. These are still not gauge-covariant. However, as shown in [9],

we can add to them an additional local functional X/[AS], which brings the currents into

6



a gauge-covariant form. We denote the new covariant currents by J¥. They satisfy the

non-conservation equation:

1
Duli = 3 gy € P F8 Y (10)
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where Cpg, is given by (@), with the indices a5y of the full symmetry algebra instead of
abc. We stress that eq. (I0) depends only on the matter content of the theory, and not on
the choice of regularization. Also, in this context there is no conflict between the symmetric
form of (I0) and the exact gauge invariance of the dynamically gauged currents.

There are essentially no other choices of a gauge-covariant current: the only gauge-
covariant functional of Af with the right dimension that can be added to J} is D, F}".
For the hydrodynamic currents, such a term was intentionally excluded. In any case, the
divergence of this term vanishes identically, so it would not change eq. (I0). We also note
that if one is interested in the constitutive relations for some other choice of currents, one
should simply take the results (1) and (2) for J* and add to them the appropriate gauge-
field functional. In principle, we should have another contribution to D,J# from anomalies
with gravity. However, these are proportional to the square of the Riemann tensor, which is
O(e*). The gravitational contribution is therefore negligible at the relevant hydrodynamic
order.

We now turn to the stress-energy density. So far, we have not performed the path integral
over the dynamical gauge fields. Let us now integrate over all the gauge fields except for
the macroscopic piece of the fields Aj, that participates in the hydrodynamics. This yields a
new functional W’[g,,, <AZ>] The stress-energy density is then defined as T*" = §W' /0 g, .
This is a gauge-invariant quantity, since variations dg,, of the metric commute with gauge
transformations A%, and the anomaly dW/’'/dA“ is a metric-independent functional of gauge
fields. From the transformation law under diffeomorphisms inside €2, we obtain the conser-

vation law:
D,T; = (F3,) (Ga) — (A3) Do () (11)

where the covariant derivative on the RHS is defined in terms of <AZ> Eq. (1) can be

written in a manifestly gauge-covariant way as:

DT = (Fg,) (J)) . (12)



To see that the two equations are equivalent, we note that their difference is a functional of
gauge fields alone (where the gauge fields that were already integrated out are understood
as operators). Also, the difference must be gauge-invariant, since the LHS of both equations
and the RHS of the second one are manifestly gauge-invariant. It must also be of mass
dimension five. Finally, recalling the form of D,j” and J! — j”, we see that the lowest
power with which gauge fields appear can in the difference is three. There is no functional
satisfying these conditions, so the difference between the two equations must vanish.

It remains to complete the path integration, and to write the average of eq. (I{) for the

hydrodynamic currents:

1 vVpo
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On the LHS of this equation, the covariant derivative D, commutes with the averaging
brackets, due to the weakness condition on the microscopic component of the dynamical
gauge fields which participate in the hydrodynamics. By assumption (which will be relaxed
in section [[V]), the RHS vanishes in the absence of external fields. In other words, it receives
no contribution from products e””p"nyFpVU of two dynamical field strengths. Now, the

external gauge fields do not have a microscopic component. Therefore, we can pull them

out of the averaging brackets, giving:

1
D, (J" = 3 abc€?7 (FP)Y (F) (14)

a

We’ve reduced the summed-over indices into the subspace of hydrodynamic currents, since
only the gauge fields associated with such currents have a non-vanishing macroscopic com-

ponent.

III. CONSTITUTIVE RELATIONS

The zeroth-order hydrodynamic constitutive relations are given by (). We will now use
the non-conservation equations (I2)), (I4) and the second law of thermodynamics to derive
the possible form of the first-order constitutive relations. From now on we will drop the

averaging brackets, understanding that averaged quantities are always implied. Using the



definitions (), we rewrite the relevant components of eqs. (I2)), (I4]) as:

u'D,T) = EJ"
p p (15)
D,J! = CabcEZBC“ .
We fix the velocity u/ as the unit timelike eigenvector of 77, the energy density € as the
eigenvalue of T /v/—g corresponding to u*, and the charge density as n, = u,J"/\/—g.

Using gauge covariance to constrain the possible contributions, the most general first-order

corrections to the constitutive relations read:

T = — V=h(2nr’ + CPYDu’)
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The various coefficient functions are constrained by the non-negativity of the entropy pro-
duction rate. Using eqs. (IH), the ideal fluid equations and the first law of thermodynamics,
the entropy production rate can be written as:
Ous" = (—T(l)‘“’D“u,, 4 JWan (EW _ TDH%> _ Cabcu“EZBc“) -
+, (S(l)u I % J(l)aﬂ> ,

The different terms in (I7) divide into those with a factor of e**? (via w* or B¥) and
those without. For the terms without €77, a standard exercise shows that we must have
V=C(=0, xo =0, = &\ = 0, Uff) = 0a, >0, ¢ > 0 and a positive semi-definite o).

Let us now turn to the e**??-terms, closely following the derivation of [1]. The only way

for these terms to be non-negative is to vanish identically. The following consequences of

the ideal fluid equations are useful:

Ow" = 2a,w" = — W (Oup — naEZ) ,

€+ p

18)
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We choose (p, i1;/T) as the independent thermodynamic parameters on which the coeffi-
cients (&g, féf), £, 5&3)) may depend. We use the indices ¢, 7, k to enumerate the hydrodynamic

charges which are not screened, and can therefore assume nonzero values. For the gradients



of € and &7 in (I7), we use the chain rule for the covariant derivative:
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where « is any thermodynamic function of state, with arbitrary charge indices.

The condition on the e#??-terms in (I7]) can now be written as:
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At a point, the second-order terms on the right of each set of parentheses are independent.

Therefore, all the coefficients must vanish separately:

o 2 og” &Y

8p €+ p Ip  e+p (21)
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where the index ¢ runs over the screened charges, for which n, = 0. To solve these equations,

we use the thermodynamic identities:

(8_T) T ( oT )__m‘cr? o)
o )r €+p \0(w/T)), e+p

Eq. (2I) then implies that /72 and &P /T are functions of u;/T only. Using eq. ([22)) to
eliminate & and §Zb , eq. (23)) then gives:

AE/T?) _ 2 2&”/T) _ 1
o /T) T ou/T) T
For eq. (26) to be integrable, we must have the symmetry conditions Cj;, = Ci;), and

vkt (26)

Cijt = Cujry- As we saw in section [Il this is guaranteed by our construction of gauge-
covariant currents. Integrating and taking into account eq. (24)), we get the result (5). The
numbers (3, and ~ arise as integration constants. Taking away the external fields, we obtain

the constitutive relations of the physical fluid.
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IV. NON-CONSERVATION DUE TO DYNAMICAL GAUGE FIELDS

In the above discussion, we assumed that in the absence of external fields, the hydro-
dynamic currents are exactly conserved. This assumption can be relaxed. To be part of
the fluid description, a global charge only needs to be conserved approximately, so that its
production rate is negligible within each local equilibration region. However, on the scale of
hydrodynamic gradients, the conservation of the charge may be violated, as it was in sections
[T due to anomalies with external gauge fields. The same kind of “soft” non-conservation
may take place in the physical fluid with no external fields, due to anomalies with the dy-
namical fields. Taking into account both kinds of anomalies, the averaged non-conservation

equation (I4)) takes the form:

a

1
D, (J2) = §Cawe™™ (L) (Fie) + .
(27)

micro ’

d, = %CQWWM (FoF7,
where @, is the charge production rate due to anomalies with the microscopic component of
the dynamical gauge fields. Due to the group structure, ®, can be nonzero only for global
U(1) charges. Like every quantity in the hydrodynamic regime, ®, will be a local functional

of the thermodynamic parameters and the macroscopic gauge fields.

The ®,-term provides a correction to the hydrodynamic charge production rate in (I5):
Dy Jt = Cape ENB* + O, . (28)
This propagates into the entropy production rate (7)), which becomes:

1 a
Ops" = T <_T(1)WDMUV + JWan <Eau - TDM%) - Cabc,UaEsz - ,Uacba)

29
1o (S(l)u 4 Ha J(l)au> . (#9)
. T

In powers of the small parameter ¢, we are interested in ®, up to second order. A zeroth-
order contribution to ®, must be suppressed by some small dimensionless factor, in order
to maintain the approximate conservation of charge within each local equilibration region.
Such a term does not mix with any other term in (29). Therefore, its contribution to the
entropy production must be always non-negative, i.e. 1, ®®* < 0. A first-order contribution
) also cannot mix with any other term in (29)). Such a contribution is then ruled out by

the second law of thermodynamics, since it must be proportional to D,u*, with no way to

11



constrain its sign. Finally, a second-order term ®? is not ruled out by the second law, and
it will mix with the other terms in (29). In fact, such an arbitrary second-order contribution
would affect the entire set of constraints on the transport coefficients, and invalidate our

conclusions. Thus, the only situation in which we can make a clear statement is when Y

) must be taken into account. In fact, this is a reasonable

can be neglected, and only o
assumption: this is what we get if the same suppression factor present in o also affects
<I>fl2), in addition to the suppression from small derivatives.

In conclusion, we assume that ®, is given by some thermodynamic function of state,
without derivatives or gauge field factors. This function must be suppressed by some small

number, and satisfy p,®* < 0. Our results for the transport coefficients remain unchanged,

and the entropy production rate reads:

—h a
= T (o, 0% (5~ 10,12) (13 0

1
— — 1P .
TILL

(30)
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