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Abstract

We consider the hydrodynamic regime of gauge theories with general triangle anomalies, where

the participating currents may be global or gauged, abelian or non-abelian. We generalize the

argument of arXiv:0906.5044, and construct at the viscous order the stress-energy tensor, the

charge currents and the entropy current.
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I. INTRODUCTION AND SUMMARY

In this letter we will consider the hydrodynamic regime of microscopic quantum gauge

theories with triangle anomalies. The field theory currents can be global or gauged, abelian

or non-abelian. We will label this full set of currents with the indices (α, β, . . . ), and will

limit ourselves to symmetries which are not spontaneously broken.

Some of the field theory charges will be accessible at the energy scale defined by the

temperature. Such charges and their chemical potentials may take part in the hydrodynamic

description, as part of the local equilibrium parameters. There are possible obstructions to

this, e.g. a gauged charge may be screened. Also, to be part of the thermodynamics a charge

must be conserved with sufficient accuracy within each local equilibration region; thus, a

global U(1) charge will not be part of the fluid description if its conservation is too disrupted

by anomalies with gauged currents. For the bulk of the discussion, we will assume that the

conservation of hydrodynamic charges is not violated at all. However, during the derivation

we will violate the conservation of charges using fictitious external fields. The more general

case of slight violation will be discussed in section IV.

Gauge fields may also enter the fluid description by assuming nonzero average values over

macroscopic distances. This possibility upgrades the discussion from pure hydrodynamics to

electro/magneto-hydrodynamics. If a gauge field enters the description, so will the current

that it induces; the associated charge density may also appear as an independent parameter,

or it may be screened.

For non-abelian gauge fields and their associated charges, a complication arises. If a

charge density is to be part of the thermal parameters, it must be additive and conserved

(in the ordinary, not in the gauge-covariant sense) within each local equilibration region.

In other words, within each equilibration region the charge must be approximately abelian.

This imposes a condition on the fluctuating microscopic component of the associated gauge

field. The same condition must hold for the gauge field itself to enter a fluid description:

without a consistent gauge frame within each equilibration region, the gauge field cannot

have a smooth, well-defined average value. The technical consequences of this condition are

that gauge-covariant derivatives commute with thermal averaging, and that the averaged

field strength F a
µν can be derived from the averaged potential Aaµ.

Our aim is to find the allowed leading viscous order constitutive relations of the field
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theory hydrodynamics. In order to keep track of orders of magnitude, we introduce a formal

small parameter ε. The “order” of a quantity will refer to the power of ε involved. We will

take all the gradients and field strengths to be of order ∼ ε. The background metric gµν

may be curved on the length scale of the hydrodynamic gradients, i.e. its Riemann tensor

is of order O(ε2).

The zeroth-order constitutive relations for the stress-energy density, the charge currents

and the entropy current have the standard ideal-fluid form:

T (0)ν
µ =

√−g(ǫuµuν + pP ν
µ ) ,

J (0)µ
a =

√−gnauµ ,

s(0)µ =
√
−gsuµ ,

(1)

where uµ is the energy velocity, uµu
µ = −1, ǫ is the energy density, p is the pressure, na is

the charge density and s is the entropy density. P ν
µ = δνµ + uµu

ν is the projector orthogonal

to uµ. The indices (a, b, . . . ) enumerate the currents which participate in the hydrodynamics

(whether through a charge density or a gauge field). For screened charges, we set na = 0. T νµ

is the “intrinsic” stress-energy density, i.e. it includes the contribution from the microscopic

component of the gauge fields, but not the contribution from the macroscopic gauge fields.

Our result for the first-order constitutive relations is a direct generalization of [1]. We

will find (in the Landau frame):

T (1)ν
µ = −

√
−g(2ηπνµ + ζP ν

µDρu
ρ) ,

J (1)µ
a =

√−gσab
(

Eµ
b − TP µνDν

µb
T

)

+ ξaω
µ + ξ

(B)
ab B

bµ ,

s(1)µ = −µ
a

T
J (1)µ
a + ξ̃ωµ + ξ̃(B)

a Baµ ,

(2)

where T = (∂ǫ/∂s)
n
is the temperature, µa = (∂ǫ/∂na)s are the chemical potentials (with

µa ≡ 0 for screened charges), η ≥ 0 is the shear viscosity, ζ ≥ 0 is the bulk viscosity, and σab

is the conductivity matrix with σ(ab) positive semi-definite. Dµ is the covariant derivative

with respect to the metric and the gauge fields. The derivative of µa/T is taken in the

gauge-covariant sense, i.e. Dνµa = ∂νµa+ fabcA
b
νµ

c, where fabc are the Lie algebra structure

constants. The shear tensor πµν and the vorticity density ωµ are defined by:

πµν ≡ P ρ
µP

σ
ν D(ρuσ) −

1

3
PµνDρu

ρ ,

ωµ ≡ 1

2
ǫµνρσuν∂ρuσ ,

(3)
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where ǫµνρσ is the metric-independent Levi-Civita density with components ±1. The electric

field Eµ
a and magnetic field Bµ

a are defined by:

Eµ
a ≡ F µν

a uν ; Baµ ≡ 1

2
ǫµνρσuνF

a
ρσ , (4)

where F a
µν is the macroscopic gauge field strength. For global charges, we set F a

µν = 0.

The ordinary viscous coefficients ζ , η and σab can be arbitrary functions of state. In

contrast, the vorticity/magnetic coefficients ξa, ξ
(B)
ab , ξ̃ and ξ̃

(B)
a are almost entirely fixed by

the field theory’s chiral anomalies:

ξa = Cabcµ
bµc + 2βaT

2 − 2na
ǫ+ p

(

1

3
Cbcdµ

bµcµd + 2βbµ
bT 2 + γT 3

)

,

ξ
(B)
ab = Cabcµ

c − na
ǫ+ p

(

1

2
Cbcdµ

cµd + βbT
2

)

,

ξ̃ =
1

3T
Cabcµ

aµbµc + 2βaµ
aT + γT 2 ,

ξ̃(B)
a =

1

2T
Cabcµ

bµc + βaT .

(5)

Here, Cabc is a symmetric tensor of anomaly coefficients:

Cabc =
1

4π2
tr{T(aTbTc)}, (6)

where Ta are the symmetry generators in the fermion representation. βa and γ are numerical

constants, which are not constrained by the anomaly. Note that a nonzero γ is possible only

for a parity-breaking theory. βa, on the other hand, is allowed in parity-conserving theories,

as long as it is nonzero only for values of a corresponding to axial charges. Also, the group

structure forbids a nonzero βa when a corresponds to a non-abelian charge.

Our derivation generalizes the results of [1] by allowing for gauged and/or non-abelian

charges. We also elucidate the precise definition of the currents used in the derivation,

leading to the correct value for Cabc. Finally, we include the additional vorticity coefficients

βa and γ, which were omitted in [1]. The results are consistent with our previous derivation

for global non-abelian charges based on a null horizon dynamics in a gravitational dual

description [2].

The appearance of the vorticity term ωµ in the anomalous hydrodynamic current has been

first observed in the dual gravitational description of relativistic conformal hydrodynamics

[3, 4]. Experimental manifestations of the vorticity term in heavy ion collisions have been
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proposed in [5, 6]. We note that hydrodynamics with SU(2) global symmetry charges has

been considered in a holographic setup in [7].

The paper is organized as follows. In section II, we introduce external fields and carefully

define the anomalous currents and their non-conservation equations. In section III, we run

through the derivation of eqs. (5). The derivation closely follows the one in [1], with gauge-

covariant derivatives introduced where necessary. It is essential for the argument that the

currents and (non-)conservation equations defined in section II are gauge-covariant, and that

Cabc assumes a symmetric form. Finally, in section IV we consider global currents whose

conservation is slightly violated by anomalies with gauge fields.

II. EXTERNAL FIELDS AND DEFINITION OF THE CURRENTS

In order to better exploit the second law of thermodynamics, we will extend the theory

by coupling the global hydrodynamic currents to external gauge fields. After this step, there

is a gauge field Aaµ coupled to each hydrodynamic current. The external gauge fields will

enter along with the dynamical fields into the anomalous non-conservation equations. The

external field strengths are of order ∼ ε, and are approximately homogeneous within each

equilibration region; they may vary over the length scales of the hydrodynamic gradients.

The covariant derivative Dµ will be understood to take the external fields into account.

In a theory with anomalies, two subtleties arise with regard to the definition of the cur-

rents and the precise form of their non-conservation equations. First, the anomaly diagram

may be regularized in different ways, by adding different local counterterms to the action

[8]. These counterterms are given by local functionals of Aaµ, and affect the definition of

the current. Furthermore, the current may be defined not directly from the variation of the

path integral, but again with the addition of some local functional of Aaµ [9]. Since there are

no anomalies among the dynamically gauged currents, these issues only arise after we add

the external gauge fields. What we would like to have is a set of currents that are gauge-

covariant with respect to both the dynamical and the external gauge fields. The covariance

can then be used to constrain the hydrodynamic constitutive relations. We will now see that

there is essentially one such choice of currents, regardless of the regularization.

Let the anomalous diagrams be regularized in any permissible way (i.e. keeping the dy-

namical gauge symmetries intact). Consider a spacetime region Ω, with boundary conditions
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on ∂Ω corresponding to our hydrodynamic state. Let us perform the path integral within Ω

with these boundary conditions, without integrating over the gauge fields:

W [gµν , A
α
µ] = −i ln

∫

DψDψ̄Dφ eiS[gµν,Aα
µ ,ψ,ψ̄,φ] , (7)

where ψ are the fermion fields responsible for the anomaly, and φ are any other fields present

in the theory. Our notation shows the dependence of W on the values of gµν and Aαµ within

Ω, and suppresses its dependence on the boundary conditions on ∂Ω. The gauge fields Aαµ

include both the dynamical fields, whether or not they enter the fluid description, and the

external fields.

We now wish to derive the currents and the stress-energy density by varying W with

respect to Aαµ and gµν , respectively. However, in the hydrodynamic context we do not want

the macroscopic currents to contain the DνF
µν contribution derived from the kinetic term

of the dynamical gauge fields; also, we do not want the stress-energy density to contain the

stress-energy of the macroscopic piece of the dynamical gauge fields. Therefore, we first

subtract from W the kinetic term of the macroscopic gauge fields:

W ′ = W +
1

4

∫

d4x
√
−g
〈

F ā
µν

〉

〈F µν
ā 〉 , (8)

where the index ā runs over the dynamical gauge fields, and the brackets denote averag-

ing over the local equilibration region. This adjustment is gauge-invariant, so the gauge

transformation properties of W ′ are the same as for W .

We now define the “consistent” anomalous currents as

jµα = δW ′/δAαµ . (9)

The divergence Dµj
µ
α generates gauge transformations inside Ω. The jµα are not gauge-

covariant, but they can be made covariant by the addition of a local functional of Aαµ. This

is best explained in two steps. First, let G be the counterterm to the action which would be

necessary to pass from our chosen regularization of the anomalous diagrams to the standard

symmetric one (which would violate the dynamical gauge symmetries). Now, let us add

δG/δAαµ to our currents. The resulting currents have the same transformation properties

and satisfy the same non-conservation equations as the “consistent” currents under the

symmetric regularization. These are still not gauge-covariant. However, as shown in [9],

we can add to them an additional local functional Xµ
α [A

α
µ], which brings the currents into
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a gauge-covariant form. We denote the new covariant currents by Jµα . They satisfy the

non-conservation equation:

DµJ
µ
α =

1

8
Cαβγǫ

µνρσF β
µνF

γ
ρσ , (10)

where Cαβγ is given by (6), with the indices αβγ of the full symmetry algebra instead of

abc. We stress that eq. (10) depends only on the matter content of the theory, and not on

the choice of regularization. Also, in this context there is no conflict between the symmetric

form of (10) and the exact gauge invariance of the dynamically gauged currents.

There are essentially no other choices of a gauge-covariant current: the only gauge-

covariant functional of Aαµ with the right dimension that can be added to Jµα is DνF
µν
α .

For the hydrodynamic currents, such a term was intentionally excluded. In any case, the

divergence of this term vanishes identically, so it would not change eq. (10). We also note

that if one is interested in the constitutive relations for some other choice of currents, one

should simply take the results (1) and (2) for Jµa and add to them the appropriate gauge-

field functional. In principle, we should have another contribution to DµJ
µ
α from anomalies

with gravity. However, these are proportional to the square of the Riemann tensor, which is

O(ε4). The gravitational contribution is therefore negligible at the relevant hydrodynamic

order.

We now turn to the stress-energy density. So far, we have not performed the path integral

over the dynamical gauge fields. Let us now integrate over all the gauge fields except for

the macroscopic piece of the fields Aaµ that participates in the hydrodynamics. This yields a

new functional W ′[gµν ,
〈

Aaµ
〉

]. The stress-energy density is then defined as T µν = δW ′/δgµν .

This is a gauge-invariant quantity, since variations δgµν of the metric commute with gauge

transformations δΛa, and the anomaly δW ′/δΛa is a metric-independent functional of gauge

fields. From the transformation law under diffeomorphisms inside Ω, we obtain the conser-

vation law:

DνT
ν
µ =

〈

F a
µν

〉

〈jνa〉 −
〈

Aaµ
〉

Dν 〈jνa〉 , (11)

where the covariant derivative on the RHS is defined in terms of
〈

Aaµ
〉

. Eq. (11) can be

written in a manifestly gauge-covariant way as:

DνT
ν
µ =

〈

F a
µν

〉

〈Jνa 〉 . (12)
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To see that the two equations are equivalent, we note that their difference is a functional of

gauge fields alone (where the gauge fields that were already integrated out are understood

as operators). Also, the difference must be gauge-invariant, since the LHS of both equations

and the RHS of the second one are manifestly gauge-invariant. It must also be of mass

dimension five. Finally, recalling the form of Dνj
ν
a and Jνa − jνa , we see that the lowest

power with which gauge fields appear can in the difference is three. There is no functional

satisfying these conditions, so the difference between the two equations must vanish.

It remains to complete the path integration, and to write the average of eq. (10) for the

hydrodynamic currents:

Dµ 〈Jµa 〉 =
1

8
Caβγǫ

µνρσ
〈

F β
µνF

γ
ρσ

〉

. (13)

On the LHS of this equation, the covariant derivative Dµ commutes with the averaging

brackets, due to the weakness condition on the microscopic component of the dynamical

gauge fields which participate in the hydrodynamics. By assumption (which will be relaxed

in section IV), the RHS vanishes in the absence of external fields. In other words, it receives

no contribution from products ǫµνρσF β
µνF

γ
ρσ of two dynamical field strengths. Now, the

external gauge fields do not have a microscopic component. Therefore, we can pull them

out of the averaging brackets, giving:

Dµ 〈Jµa 〉 =
1

8
Cabcǫ

µνρσ
〈

F b
µν

〉 〈

F c
ρσ

〉

. (14)

We’ve reduced the summed-over indices into the subspace of hydrodynamic currents, since

only the gauge fields associated with such currents have a non-vanishing macroscopic com-

ponent.

III. CONSTITUTIVE RELATIONS

The zeroth-order hydrodynamic constitutive relations are given by (1). We will now use

the non-conservation equations (12), (14) and the second law of thermodynamics to derive

the possible form of the first-order constitutive relations. From now on we will drop the

averaging brackets, understanding that averaged quantities are always implied. Using the
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definitions (4), we rewrite the relevant components of eqs. (12), (14) as:

uµDνT
ν
µ = Ea

µJ
µ
a ,

DµJ
µ
a = CabcE

b
µB

cµ .
(15)

We fix the velocity uµ as the unit timelike eigenvector of T νµ , the energy density ǫ as the

eigenvalue of T νµ/
√−g corresponding to uµ, and the charge density as na = uµJ

µ
a /

√−g.
Using gauge covariance to constrain the possible contributions, the most general first-order

corrections to the constitutive relations read:

T (1)ν
µ = −

√
−h(2ηπνµ + ζP ν

µDρu
ρ) ,

J (1)µ
a =

√
−h
(

χaP
µν∂νp− Tσa

bP µνDν
µb
T

+ σ
(E)
ab E

bµ
)

+ ξaω
µ + ξ

(B)
ab B

bµ ,

s(1)µ = − µa

T
J (1)µ
a +

√
−h
(

ζ̃uµDνu
ν + χ̃P µν∂νp+ σ̃aP µνDν

µa
T

+ σ̃(E)
a Eaµ

)

+ ξ̃ωµ + ξ̃(B)
a Baµ .

(16)

The various coefficient functions are constrained by the non-negativity of the entropy pro-

duction rate. Using eqs. (15), the ideal fluid equations and the first law of thermodynamics,

the entropy production rate can be written as:

∂µs
µ =

1

T

(

−T (1)µνDµuν + J (1)aµ
(

Eaµ − TDµ
µa
T

)

− Cabcµ
aEb

µB
cµ
)

+ ∂µ

(

s(1)µ +
µa
T
J (1)aµ

)

.
(17)

The different terms in (17) divide into those with a factor of ǫµνρσ (via ωµ or Bµ
a ) and

those without. For the terms without ǫµνρσ, a standard exercise shows that we must have

χ̃ = ζ̃ = 0, χa = σ̃a = σ̃
(E)
a = 0, σ

(E)
ab = σab, η ≥ 0, ζ ≥ 0 and a positive semi-definite σ(ab).

Let us now turn to the ǫµνρσ-terms, closely following the derivation of [1]. The only way

for these terms to be non-negative is to vanish identically. The following consequences of

the ideal fluid equations are useful:

∂µω
µ = 2aµω

µ = − 2

ǫ+ p
ωµ(∂µp− naE

a
µ) ,

DµB
µ
a = −2ωµEaµ + aµB

µ
a = −2ωµEaµ −

1

ǫ+ p
Bµ
a (∂µp− nbE

b
µ) .

(18)

We choose (p, µi/T ) as the independent thermodynamic parameters on which the coeffi-

cients (ξa, ξ
(B)
ab , ξ̃, ξ̃

(B)
a ) may depend. We use the indices i, j, k to enumerate the hydrodynamic

charges which are not screened, and can therefore assume nonzero values. For the gradients
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of ξ̃ and ξ̃
(B)
a in (17), we use the chain rule for the covariant derivative:

Dµα =

(

∂α

∂p

)

µi/T

∂µp+

(

∂α

∂(µi/T )

)

p

Dµ
µi
T
, (19)

where α is any thermodynamic function of state, with arbitrary charge indices.

The condition on the ǫµνρσ-terms in (17) can now be written as:
(

∂ξ̃

∂p
− 2ξ̃

ǫ+ p

)

∂µp ω
µ +

(

∂ξ̃

∂(µi/T )
− ξi

)

Dµ
µi

T
ωµ +

(

ξa
T

+
2naξ̃

ǫ+ p
− 2ξ̃(B)

a

)

Ea
µω

µ

+

(

∂ξ̃
(B)
a

∂p
− ξ̃

(B)
a

ǫ+ p

)

∂µpB
aµ +

(

∂ξ̃
(B)
b

∂(µi/T )
− ξ

(B)
ib

)

Dµ
µi

T
Bbµ

+

(

1

T
ξ
(B)
ab − 1

T
Ciabµ

i +
naξ̃

(B)
b

ǫ+ p

)

Ea
µB

bµ = 0 .

(20)

At a point, the second-order terms on the right of each set of parentheses are independent.

Therefore, all the coefficients must vanish separately:

∂ξ̃

∂p
=

2ξ̃

ǫ+ p
;

∂ξ̃
(B)
a

∂p
=

ξ̃
(B)
a

ǫ+ p
(21)

∂ξ̃

∂(µi/T )
= ξi;

∂ξ̃
(B)
b

∂(µi/T )
= ξ

(B)
ib (22)

ξi
T

+
2niξ̃

ǫ+ p
= 2ξ̃

(B)
i ;

1

T
ξ
(B)
ib +

niξ̃
(B)
b

ǫ+ p
=

1

T
Cjibµ

j (23)

ξq
T

= 2ξ̃(B)
q ;

1

T
ξ
(B)
qb =

1

T
Ciqbµ

i (24)

where the index q runs over the screened charges, for which nq = 0. To solve these equations,

we use the thermodynamic identities:
(

∂T

∂p

)

µi/T

=
T

ǫ+ p
;

(

∂T

∂(µi/T )

)

p

= −niT 2

ǫ+ p
. (25)

Eq. (21) then implies that ξ̃/T 2 and ξ̃
(B)
a /T are functions of µi/T only. Using eq. (22) to

eliminate ξi and ξ
(B)
ib , eq. (23) then gives:

∂(ξ̃/T 2)

∂(µi/T )
=

2

T
ξ̃
(B)
i ,

∂(ξ̃
(B)
b /T )

∂(µi/T )
=

1

T
Cjibµ

j . (26)

For eq. (26) to be integrable, we must have the symmetry conditions Cijb = C(ij)b and

Cijk = C(ijk). As we saw in section II, this is guaranteed by our construction of gauge-

covariant currents. Integrating and taking into account eq. (24), we get the result (5). The

numbers βa and γ arise as integration constants. Taking away the external fields, we obtain

the constitutive relations of the physical fluid.
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IV. NON-CONSERVATION DUE TO DYNAMICAL GAUGE FIELDS

In the above discussion, we assumed that in the absence of external fields, the hydro-

dynamic currents are exactly conserved. This assumption can be relaxed. To be part of

the fluid description, a global charge only needs to be conserved approximately, so that its

production rate is negligible within each local equilibration region. However, on the scale of

hydrodynamic gradients, the conservation of the charge may be violated, as it was in sections

II-III due to anomalies with external gauge fields. The same kind of “soft” non-conservation

may take place in the physical fluid with no external fields, due to anomalies with the dy-

namical fields. Taking into account both kinds of anomalies, the averaged non-conservation

equation (14) takes the form:

Dµ 〈Jµa 〉 =
1

8
Cabcǫ

µνρσ
〈

F b
µν

〉 〈

F c
ρσ

〉

+ Φa ,

Φa ≡
1

8
Caβγǫ

µνρσ
〈

F β
µνF

γ
ρσ

〉

micro
,

(27)

where Φa is the charge production rate due to anomalies with the microscopic component of

the dynamical gauge fields. Due to the group structure, Φa can be nonzero only for global

U(1) charges. Like every quantity in the hydrodynamic regime, Φa will be a local functional

of the thermodynamic parameters and the macroscopic gauge fields.

The Φa-term provides a correction to the hydrodynamic charge production rate in (15):

DµJ
µ
a = CabcE

b
µB

cµ + Φa . (28)

This propagates into the entropy production rate (17), which becomes:

∂µs
µ =

1

T

(

−T (1)µνDµuν + J (1)aµ
(

Eaµ − TDµ
µa
T

)

− Cabcµ
aEb

µB
cµ − µaΦ

a
)

+ ∂µ

(

s(1)µ +
µa
T
J (1)aµ

)

.
(29)

In powers of the small parameter ε, we are interested in Φa up to second order. A zeroth-

order contribution to Φa must be suppressed by some small dimensionless factor, in order

to maintain the approximate conservation of charge within each local equilibration region.

Such a term does not mix with any other term in (29). Therefore, its contribution to the

entropy production must be always non-negative, i.e. µaΦ
(0)a ≤ 0. A first-order contribution

Φ
(1)
a also cannot mix with any other term in (29). Such a contribution is then ruled out by

the second law of thermodynamics, since it must be proportional to Dµu
µ, with no way to
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constrain its sign. Finally, a second-order term Φ
(2)
a is not ruled out by the second law, and

it will mix with the other terms in (29). In fact, such an arbitrary second-order contribution

would affect the entire set of constraints on the transport coefficients, and invalidate our

conclusions. Thus, the only situation in which we can make a clear statement is when Φ
(2)
a

can be neglected, and only Φ
(0)
a must be taken into account. In fact, this is a reasonable

assumption: this is what we get if the same suppression factor present in Φ
(0)
a also affects

Φ
(2)
a , in addition to the suppression from small derivatives.

In conclusion, we assume that Φa is given by some thermodynamic function of state,

without derivatives or gauge field factors. This function must be suppressed by some small

number, and satisfy µaΦ
a ≤ 0. Our results for the transport coefficients remain unchanged,

and the entropy production rate reads:

∂µs
µ =

√
−h
T

(

2ηπµνπ
µν + 3ζ(Dµu

µ)2 + σab
(

Eaµ − TDµ
µa
T

)(

Eµ
b − TDµµb

T

))

− 1

T
µaΦ

a .

(30)
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