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ABSTRACT

Aims. We report the discovery of WASP-38b, a long period transiting planet in an eccentric 6.871815 day orbit. The transit epoch is
2455335.92050± 0.00074 (HJD) and the transit duration is 4.663 hours.
Methods. WASP-38b’s discovery was enabled due to an upgrade to the SuperWASP-North cameras. We performed a spectral analysis
of the host star HD 146389/BD+10 2980 that yieldedTe f f = 6150±80 K, logg= 4.3±0.1, v sini=8.6±0.4 km s−1, M∗ = 1.16±0.04 M⊙
andR∗ = 1.33± 0.03R⊙, consistent with a dwarf of spectral type F8. Assuming a main-sequence mass-radius relation for the star, we
fitted simultaneously the radial velocity variations and the transit light curves to estimate the orbital and planetaryparameters.
Results. The planet has a mass of 2.69± 0.06 MJup and a radius of 1.09± 0.03 RJup giving a density,ρp = 2.1 ± 0.1ρJ . The high
precision of the eccentricitye = 0.0314± 0.0044 is due to the relative transit timing from the light curves and the RV shape. The
planet equilibrium temperature is estimated at 1292± 33 K. WASP-38b is the longest period planet found by SuperWASP-North and
with a bright host star (V= 9.4 mag), is a good candidate for followup atmospheric studies.
Conclusions.

Key words. planetary systems – stars: individual: (WASP-38, HD 146389, BD+10 2980) –techniques: photometric, radial velocities

1. Introduction

Transiting planets are important because the geometry of these
systems gives us a wealth of information. Photometry during
transit allows us to derive the inclination of the orbit and the
radii of both the host star and planet. Combining this informa-
tion with radial velocity variations allows us to derive theab-
solute mass of the planet and, hence, the density. Even just an
estimation of the bulk density gives us an insight into the com-
position of the planet (Guillot, 2005; Fortney et al., 2007)and
can be used to put constraints on planetary structure and for-
mation models. These systems also offer a potential for mea-
suring planetary emission spectra through occultation observa-
tions (e.g. Charbonneau et al. 2008) and we can gain an insight
into the composition of planetary atmospheres using transit spec-
troscopy (Charbonneau et al., 2002; Vidal-Madjar et al., 2003;
Swain et al., 2009).

For these reasons, there are several ground-based sur-
veys searching for transiting exoplanets, such as HATNet
(Bakos et al., 2004), TrES (Alonso et al., 2004), XO
(McCullough et al., 2005) and WASP (Pollacco et al., 2006).
Currently, there are also two space-based surveys: CoRoT
(Baglin et al., 2006) and Kepler (Borucki et al., 2010). WASPis
the most prolific of these surveys having discovered 38 of the
106 known transiting exoplanets. The WASP project consistsof
two robotic observatories: one in the Observatorio del Roque de
los Muchachos, La Palma, Canary Islands, Spain and the other
in the South African Astronomical Observatory of Sutherland,
South Africa.

In this paper, we report the discovery of WASP-38b, an ec-
centric giant planet in a 6.87 day orbit. The candidate was iden-
tified in February 2010 in SuperWASP-North data. Radial veloc-
ity followup started at the end of March withFIES (2.6m NOT).
The planetary nature of the object was established withSOPHIE
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(1.93m OHP) andCORALIE (1.2m EULER) in May 2010.
High precision photometry light curves were obtained with the
Faulkes Telescope North (FTN) and Liverpool Telescope (LT).

WASP-38b is the 12th longest period of the 106 transiting
exoplanets reported to date, and the fourth longest period of
those discovered by ground-based observations. It was discov-
ered after an upgrade to the SuperWASP-North cameras which
we discuss in section 2.1. Therefore, WASP-38b is an important
object whose properties add to the known transiting planetspa-
rameter space.

2. Observations

2.1. SuperWASP observations

The SuperWASP-North observatory in La Palma consists of
8 cameras each with a Canon 200-mm f/1.8 lens coupled
to an Andor e2v 2048× 2048 pixel back-illuminated CCD
(Pollacco et al., 2006). This configuration gives a pixel scale of
13.7′′/pixel which corresponds to a field of view of 7.8 × 7.8
square degrees per camera.

In October 2008, we introduced an electronic focus con-
trol and we also started stabilisation of the temperature ofthe
SuperWASP-North camera lenses. Prior to this upgrade, night-
time temperature variations affected the focal length of the lenses
altering the FWHM of stars. This introduced trends in the data
(mimicking partial transits), especially at the beginningand end
of the night when the temperature variation is more extreme.
These effects are not corrected by our detrending algorithms
SYSREM (Tamuz et al., 2005) and FTA (Kovács et al., 2005)
because they are position-dependent and do not affect all stars
in the same manner. To reduce this source of systematic noise,
heating strips were placed around each lens so that their tem-
perature is maintained above ambient at 21 degrees. Besidesthe
stabilisation of the temperature we also significantly improved
the focus of each of the lenses, which now can be done remotely.
This upgrade was successful and proved very important for the
discovery of WASP-38b.

The field containing WASP-38 (HD 146389/ BD+10 2980
α =16:15:50.36δ = +10:01:57.3) was observed in the pe-
riod between 2008-03-29 and 2008-06-30 by camera 144 (3777
points) and camera 145 (3278 points). During this season, our
transit search algorithm (Collier Cameron et al., 2006, 2007) did
not detect the transit. In the following year, after the upgrade, ob-
servation of this field continued using the same cameras between
2009-03-30 and 2009-06-30. Camera 144 recorded 5920 obser-
vations and camera 145 recorded 2922. In the 2009 data, transits
were detected using both cameras. The phase folded light curve
using the 2009 SuperWASP data of WASP-38 is shown in the
bottom panel of Figure 1. We also present the same for the 2008
SuperWASP data in the top panel, showing that the transit is also
visible in the 2008 data. Comparing both data sets, we conclude
that the somewhat higher rms (8.7mmag) of the 2008 data com-
pared with the 2009 data (6.6mmag) prevented the detection of
the transits in the first observing season.

Hence, we conclude that the upgrade was very success-
ful in reducing the systematic noise of the SuperWASP-North
cameras and allowed the discovery of a long period transit-
ing planet. WASP-38b is the longest period transiting exoplanet
found by SuperWASP-North. WASP-8b (Queloz et al., 2010)
has a slightly longer period (P= 8.16 days) but was discovered
by WASP South. Ground-based transiting surveys of exoplanets
are biased towards shorter period planets due to their duty cy-
cle and shorter transits. Reducing the systematic noise will be
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Fig. 1. SuperWASP phase folded light curve for WASP-38. On
the top panel we show the 2008 data and on the bottom we show
the 2009 data after the upgrade.

important in the discovery of long period and/or smaller radii
planets.

2.2. Spectroscopic followup

The first radial velocity measurements of WASP-38 were taken
with the Fibre-Fed Echelle Spectrograph (FIES) mounted on the
2.56m Nordic Optical Telescope in La Palma.FIES was used
in medium resolution mode (R = 46 000) with simultaneous
ThAr wavelength calibration. Two observations were made on
the nights of 2010-03-29 and 2010-03-30. On 2010 June 08 fur-
ther nine observations were taken close to phase zero but out-of-
transit. The observations were reduced with the FIEStool pack-
age and cross-correlated with a high signal-to-noise spectrum of
the Sun to obtain the radial velocities.

The planetary nature of WASP-38b was established with
SOPHIE mounted on the 1.93m telescope of the Observatoire
de Haute Provence (Perruchot et al., 2008; Bouchy et al., 2009)
and CORALIE on the 1.2m Swiss Euler telescope in La Silla
(Baranne et al., 1996; Queloz et al., 2000; Pepe et al., 2002).
Ten measurements were taken bySOPHIE and 16 byCORALIE
between 2010 April and July, both achieving a signal-to-noise
ratio of 30. The data was reduced with theSOPHIE and
CORALIE pipelines, respectively. The radial velocity errors ac-
count for the photon noise plus known systematics in the high
efficiency mode (Boisse et al., 2010).

The radial velocity measurements are given in Table 1. In
Figure 2, we show the phase folded radial velocities fromFIES
(squares),SOPHIE (triangles) andCORALIE (circles). We su-
perimpose the best fit Keplerian model described in section 3.2.
In the same figure we show the residuals from the Keplerian
model which show no long term trend. The semi-amplitude of
the radial velocities is∼ 250 m s−1 consistent with a 2.7 MJup
planet in a slightly eccentric orbit.

A bisector span analysis was performed on theSOPHIE and
CORALIE data and is shown in Figure 3. The bisector span
shows no significant variation nor correlation with the radial
velocities. This suggests that the radial velocity variations are
mainly due to Doppler shifts of the stellar lines rather thanstel-
lar profile variations due to stellar activity or a blended eclipsing
binary.
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Fig. 2. Phase folded radial velocities of WASP-38 obtained with
FIES (squares),SOPHIE (triangles) andCORALIE (circles). The
centre-of-mass velocity for each data set was subtracted from the
RVs. We also show the residuals from the orbital fit against time
(bottom panel).

−300 −200 −100 0 100 200 300
Radial Velocity (m/s)

−100

−50

0

50

100

B
is

ec
to

r 
V

ar
ia

tio
n 

(m
/s

)

Fig. 3. Bisector span measurements for WASP-38 as a function
of radial velocity forSOPHIE (triangles) andCORALIE (circles)
data.

2.3. Photometric followup

To better constrain the system parameters, high precision tran-
sit light curves were obtained. The first photometric followup
observations of WASP-38 were performed on 2010 May 19
using the LCOGT1 2.0m FTN located on Haleakala, Maui.
The Spectral instrument was used which contains a Fairchild
4096× 4096 pixel CCD which was binned 2× 2 to give 0.304′′

pixels and a field of view of 10′ × 10′. Observations were taken
through a Pan-STARRS z filter and the telescope was defocussed

1 http://lcogt.net

Table 1. Radial velocities of WASP-38

BJD RV ±1σ Vspan

-2 450 000 (km s−1) (km s−1) (km s−1)
FIES NOT

5285.6603 -9.678 0.010
5286.7164 -9.526 0.008
5356.3942 -9.800 0.010
5356.4056 -9.801 0.009
5356.4170 -9.808 0.011
5356.4284 -9.804 0.010
5356.6447 -9.862 0.012
5356.6561 -9.867 0.015
5356.6675 -9.865 0.014
5356.6788 -9.851 0.010
5356.6902 -9.896 0.010

SOPHIE OHP
5299.58942 -9.510 0.015 0.003
5303.54816 -9.950 0.016 0.025
5303.55212 -9.947 0.016 -0.022
5304.53449 -9.822 0.010 0.023
5305.50502 -9.607 0.011 -0.023
5323.54137 -9.951 0.011 0.020
5324.58983 -9.955 0.012 -0.021
5325.62208 -9.717 0.009 0.010
5346.45645 -9.646 0.012 -0.017
5355.52441 -9.489 0.013 -0.018

CORALIE Euler
5306.836479 -9.5406 0.0059 -0.0225
5309.783314 -10.019 0.0059 -0.0374
5311.873800 -9.8128 0.0063 -0.0570
5312.849321 -9.6171 0.0071 -0.0307
5321.796623 -9.6852 0.0062 -0.0296
5323.780775 -10.0284 0.0061 -0.0286
5324.762705 -10.0020 0.0069 -0.0031
5326.759164 -9.5716 0.0073 -0.0611
5327.789065 -9.5406 0.0102 -0.0214
5362.657765 -9.6272 0.0064 -0.0454
5364.669083 -10.0109 0.0072 -0.0584
5377.739163 -9.9354 0.0081 -0.0429
5378.657251 -10.0269 0.0067 -0.0654
5380.693611 -9.7909 0.0078 -0.0680
5387.614500 -9.7862 0.0064 -0.0176
5404.620483 -9.7757 0.0061 -0.0336

during the observations to prevent saturation and to increase the
exposure time and reduce the effect of scintillation. The expo-
sure time of the observations was 20 s. The DAOPHOT photom-
etry package within IRAF was used to perform object detec-
tion and aperture photometry using a 16 pixel aperture radius.
Differential photometry was performed relative to 23 compari-
son stars within the field-of-view.

Additional photometry was obtained on 2010 June 08 and
15 with a 18 cm Takahashi astrograph in La Palma. The CCD
is an Andor 1024× 1024 pixel e2v detector with 5.33′′pixels
and 1.5◦ × 1.5◦ field of view. The observations were taken with
the i′ filter with an exposure time of 15 seconds. Images were
bias and dark subtracted and flat field corrected with standard
IRAF packages. We performed differential photometry relative
to 5 comparison stars using DAOPHOT within IRAF.

On the night of 2010 June 15 we also observed WASP-38
with the high-speed CCD camera RISE mounted on the 2.0m
Liverpool Telescope (Steele et al., 2008; Gibson et al., 2008).
RISE has a wideband filter∼ 500 - 700 nm which corresponds
approximately to V+R. We obtained 3530 exposures in the 2×2
binning mode with an exposure time of 3.7 seconds and effec-
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Fig. 4. Phase folded light curve for WASP-38. From top to bot-
tom; FTN taken on the 2010 May 19, Takahashi (Tk.) astrograph
taken on the 2010 June 8 and 15 and LT/RISE taken on the 2010
June 15. We superimpose the best-fit transit model and also show
the residuals for each light curve on the bottom of the figure.The
data were binned and displaced vertically for clarity.

tively no dead time. As usual, when using RISE for exoplanet
transit observations, the telescope was defocussed by -1.2mm
to spread the PSF over a larger number of pixels thereby in-
creasing the signal-to-noise ratio. This resulted in a FWHMof
∼ 11 ′′. The data were reduced using the ULTRACAM pipeline
(Dhillon et al., 2007) which is optimized for time-series photom-
etry. Each frame was bias subtracted and flat field corrected.We
performed differential photometry relative to seven nearby bright
stars, all checked to be non-variable. We sampled different aper-
ture radii and chose the aperture radius that minimised the noise
which turned out to be a 24 pixel aperture radius (13′′).

The final high precision photometric light curves are shown
in Figure 4 along with the best-fit model described in section3.2.

3. Results and system parameters

3.1. Stellar Parameters

WASP-38 (HD 146389, BD+10 2980) is listed as having spectral
type F8 in the HD catalogue (Cannon & Pickering, 1921). This
is consistent with that implied by the value ofB − V = 0.502
given in the Tycho catalogue (Hoeg et al., 1997).

The FIES spectra were co-added to produce a single spec-
trum with a average signal-to-noise of around 200:1. Standard
pipeline reduction products were used in the analysis.

The spectral analysis was performed using the methods
given in Gillon et al. (2009). TheHα line was used to deter-
mine the effective temperature (Teff), while the Nai D and Mg
i b lines were employed as surface gravity (logg) diagnostics.
Parameters obtained from the analysis are listed in Table 2.The
elemental abundances were determined from equivalent width
measurements of several clean and unblended lines. A value for
microturbulence (ξt) was determined from Fei using the method
of Magain (1984). The quoted error estimates include that given
by the uncertainties inTeff , logg andξt, as well as the scatter due
to measurement and atomic data uncertainties.

The projected stellar rotation velocity (v sini) was deter-
mined by fitting the profiles of several unblended Fei lines.
A value for macroturbulence (vmac) of 4.9 ± 0.3 km s−1 was
assumed, based on the tabulation by Gray (2008), and an in-
strumental FWHM of 0.13± 0.01 Å was determined from the
telluric lines around 6300Å. A best-fit value ofv sini = 8.6 ±
0.4 km s−1 was obtained.

We estimated the distance by comparing the V magnitude (V
= 9.447) taken from Tycho (Hoeg et al., 1997) with the absolute
magnitude of a F8-type star from Gray (1992).

Table 2. Stellar parameters of WASP-38 from spectroscopic
analysis.

RA(J200) 16:15:50.36
DEC(J2000) +10:01:57.3

V(mag) 9.447± 0.024
Teff 6150± 80 K

logg [cgs] 4.3± 0.1
ξt 1.4± 0.1 km s−1

v sini 8.6± 0.4 km s−1

log A(Li) 1.93± 0.08
Mass [M⊙] 1.16± 0.09
Radius [R⊙] 1.26± 0.17

Spectral Type F8
Distance 110± 20 pc

[Fe/H] −0.12± 0.07
[Na/H] −0.07± 0.07
[Mg/H] −0.03± 0.07
[Si/H] −0.01± 0.04
[Ca/H] +0.00± 0.13
[Sc/H] −0.03± 0.16
[Ti /H] −0.06± 0.12
[V /H] −0.17± 0.09
[Cr/H] −0.08± 0.11
[Mn/H] −0.22± 0.12
[Co/H] −0.17± 0.21
[Ni /H] −0.14± 0.07

Note: Mass and radius estimate using the Torres et al. (2010)
calibration. Spectral type from HD Catalogue.
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3.2. Planet parameters

To determine the planetary and orbital parameters, we fitted
all the photometry and radial velocity measurements simul-
taneously. Our model is an updated version of the Markov-
Chain Monte Carlo (MCMC) fitting procedure described
by Collier Cameron et al. (2007) and Pollacco et al. (2008).
Our global fit uses the Mandel & Agol (2002) transit model
parametrised by the transit epochT0, orbital periodP, impact pa-
rameterb, transit durationTT and squared ratio of planet radius
to star radius (Rp/R∗)2. For each photometric data set, we include
the non-linear limb darkening coefficients for the respective filter
based on the tables of Claret (2000, 2004). The Keplerian model
for the host star’s reflex motion is parametrised by the centre-
of-mass velocityγ, the radial velocity amplitudeK, the orbital
eccentricitye and the longitude of the periastronw.

The main difference in the new version of our MCMC code
is that the stellar mass is no longer an input parameter and
is estimated fromTeff, ρ∗ and [Fe/H] using the calibration of
Torres et al. (2010) as described in Enoch et al. (2010). While
Teff and [Fe/H] are input parameters derived from spectral fit-
ting (Table 2),ρ∗ is estimated at each point in the chain directly
from the light curves.

Due to the poor quality of the only complete transit of
WASP-38b we imposed a main-sequence mass-radius relation
for the parent star, i.e.R∗ = M0.8

∗ (Seager & Mallén-Ornelas,
2003; Cox, 2000) in our global fit. To better constrain the sys-
tem parameters, a high precision complete transit light curve is
needed. Unfortunately, due to its long transit duration there are
not many full transits observable for this target and the only full
transit visible from La Palma this season failed due to technical
issues.

The system parameters of WASP-38 and the 1σ uncertainties
derived from the MCMC analysis are given in Table 3. WASP-
38b is a 2.691 MJup giant planet with an eccentric (e = 0.031)
6.87 day orbit. The planet radius is 1.09 RJup, and hence, it has a
high density of 2.06ρJ.

Table 3. WASP-38 system parameters.

Parameter Value
Transit epochT0 [HJD] 2455335.9205± 0.00074
Orbital periodP [days] 6.871815+0.000045

−0.000042
Planet/star area ratio (Rp/R∗)2 0.00712± 0.00018
Transit durationTT [days] 0.1942+0.0018

−0.0019
Impact parameterb [R∗] 0.066+0.093

−0.046
Orbital inclinationI [degrees] 89.69+0.30

−0.25

Stellar reflex velocityK [ m s−1] 253.9± 2.4
Orbital semimajor axisa [AU] 0 .07522+0.00074

−0.00075
Orbital eccentricitye 0.0314+0.0046

−0.0041
Longitude of periastronω[degrees] −16.+18

−17

Stellar massM∗ [M⊙] 1.203± 0.036
Stellar radiusR∗ [R⊙] 1.331+0.030

−0.025
Stellar surface gravity logg∗ [cgs] 4.250+0.012

−0.013
Stellar densityρ∗ [ρ⊙] 0.509± 0.023

Planet massMp [M Jup] 2.691± 0.058
Planet radiusRp [RJup] 1.094+0.029

−0.028
Planet densityρp [ρJ ] 2.06± 0.14

3.3. Eccentricity

The current version of our MCMC code uses the parameters√
e cosω and

√
e sinω as jump parameters. This scaling allows

the parameter space to be explored efficiently at small eccen-
tricities, as recommended by Ford (2006), but ensures a uniform
prior one (Collier Cameron et al 2010, in prep).

From our global MCMC fit we derived an eccentricity of
0.0314+0.0046

−0.0041 which although being very small is significant at
7 σ. Given the small eccentricity we also tried fitting a circu-
lar orbit for WASP-38. Theχ2 value for the eccentric model fit
is 77 while theχ2 value for the circular model is 143. The ec-
centric model is parametrised by six parameters:γ, K, e cosω,
e sinω and two offsets to account for the shift between the zero
points of theFIES, SOPHIE andCORALIE. The first twoFIES
points were excluded from the fit due to contamination from the
moon hence we used a total of 35 RVs. Therefore, the Lucy and
Sweeney test (Lucy & Sweeney, 1971) give a 99.99% probabil-
ity for the eccentric orbit.

Interestingly if we fit only the radial velocities, the eccen-
tricity is not significantly detected and the solution is compat-
ible with a circular orbit. A more careful analysis of our data
revealed that our high sensitivity to the eccentricity comes from
the timing of the transit relative to the RV curve which places
a tight constraint one cosω = 0.0293± 0.0036 whilee sinω is
consistent with zero. This is contrary to the common assump-
tion that the eccentricity is almost solely constrained by the RV
curve. The transit of WASP-38 occurs∼ 1.7 hours earlier than
what was expected from the RVs if the orbit was circular. The
timing shift is consistent for all of the followup light curves.

4. Discussion

The newly discovered planet WASP-38b is quite similar to the
other currently known long-period transiting planets. It is mas-
sive (2.69 MJup), has an eccentric orbit (e = 0.031) and does
not suffer from the radius anomaly. For an updated list of
the properties of these objects see Kovács et al. (2010). Only
eleven out of the 106 transiting exoplanets have orbital pe-
riods longer than WASP-38b. Of these, five have been dis-
covered by the CoRoT mission, two were found by Kepler
(Holman et al., 2010), two were found in radial velocity sur-
veys (HD17156b (Fischer et al., 2007; Barbieri et al., 2007)and
HD80606b (Naef et al., 2001; Moutou et al., 2009; Fossey et al.,
2009; Garcia-Melendo & McCullough, 2009)) and the remain-
ing three are WASP-8b, HAT-P-15b (Kovács et al., 2010) and
HAT-P-17b (Howard et al., 2010). Therefore, WASP-38b is the
forth exoplanet with a period longer than six days discovered in
a ground-based transit survey.

The low number of transiting planets with periods longer
than five days is mostly due to selection effects. It is widely
known that the transit probability decreases with period.
Moreover, for ground-based surveys (which are responsiblefor
the discovery of 72% of the transiting planets), the detection
probability also steeply decreases with period. This is dueto
the longer duty cycle of the transits and longer transit duration
coupled with the restricted observing time from a single site on
Earth. To increase the duty cycle of the observations, telescope
networks spread in geographic latitude or space-based surveys
are needed. In the case of WASP-38b it was very important to
reduce the systematic noise which ultimately allowed the discov-
ery of the planet. However, the selection effects might be hiding
a real decrease of the number of planets at longer periods. In
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fact, from radial velocity surveys there appears to be a depletion
of planets between∼ 0.1− 1AU (Udry et al., 2003).

The low lithium abundance,logA(Li) = 1.93 points to an age
of > 5 Gyr for WASP-38 (Sestito & Randich, 2005). However,
it has been shown (Israelian et al., 2009) that stars with planets
have an under-abundance of lithium compared with stars with-
out planets. Therefore, in this case, the lithium abundancemight
be overestimating the age. In fact, if we estimate the age from
the rotation period (∼ 7.5 days), we obtain∼ 1 Gyr from Barnes
(2007) (using Tycho B-V=0.5). Unfortunately, our light curves
are not good enough to constrain the radius of the star. As men-
tioned above, we had to assume the mass-radius relation for the
main-sequence in our parameters fit. Hence, we cannot use the
stellar radius to calculate the isochrone age. Further observations
are needed in order to better constrain the age and the evolution-
ary status of the star.

WASP-38b is very dense but not atypically so for a mas-
sive planet. Its equilibrium temperature is 1292± 33 K which is
quite hot for a long period planet due to its “hot” F8 host star
that has a luminosity∼ 2.4L⊙. To receive the same flux in our
solar system the planet would have to be at 0.049AU from the
Sun. WASP-38b is a “pL” class planet according to the classifi-
cation of Fortney et al. (2008). Therefore, we expect an efficient
re-distribution of heat from the day side to the night side ofthe
planet and no temperature inversion in the atmosphere.

A better insight on the planet composition will require a bet-
ter constraint on its age. According to the Fortney et al. (2007)
models, if WASP-38b is∼ 1Gyr old it might have a substan-
tial core with a mass up to 100 Earth masses. However, if the
planet is much older (4.5Gyr) its radius is consistent with a hy-
drogen/helium coreless planet. A better estimation of the radius
of the planet will also help constrain its composition. Given that
the star is metal poor, it would be interesting to determine the
existence of a core.

The Safronov number for WASP-38b is∼ 0.3
(Hansen & Barman, 2007). With the exception of CoRoT-4b, all
the transiting planets with a period longer than WASP-38b have
Safronov numbers larger than 0.3 and hence they do not belong
to either of the classes proposed by Hansen & Barman (2007).

Due to its long period it is not surprising that WASP-38b
is slightly eccentric. As discussed above, the eccentricity how-
ever small is significant. The circularization timescale isgiven
by (Goldreich & Soter, 1966; Bodenheimer et al., 2001):

τCIR ≈ 0.63

(

Qp

106

) (

Mp

MJup

) (

M⊙
M∗

)3/2 (

a
10R⊙

)13/2 (

RJup

Rp

)5

Gyr. (1)

From studies of binary stellar evolution (Meibom & Mathieu,
2005) and from our Solar System (Goldreich & Soter, 1966;
Peale, 1999), the tidal dissipation parameter isQp = 105 − 106.
Therefore, for WASP-38b the circularisation timescale is be-
tween∼ 1.9− 19 Gyr which is consistent with our constraint on
the age of WASP-38 and can be compared to the main-sequence
lifetime for an F8 star (∼ 9 Gyr). Therefore, depending on the
value ofQp, WASP-38b’s orbit might never circularise, as it ap-
pears to be at the limit of circularisation. All longer period tran-
siting planets are eccentric or the eccentricity has been fixed to
zero. A better constraint on the age of WASP-38 might be im-
portant to constraint the tidal dissipation parameters, sofurther
studies are encouraged.

WASP-38 is a bright star (V= 9.4 mag) and therefore is a
good candidate for followup observations. The secondary transit
is predicted to be at phase 0.520± 0.002,T0 = 2455456.3055±
0.015 and have a duration of 274.5 ± 5.0 minutes. Next year,

the only full transit visible from La Palma is on 2011 April 21.
Observations of a spectroscopic transit to measure the Rossiter-
McLaughlin effect were obtained in 2010 June by one of our co-
authors and will be presented elsewhere (Simpson et al. 2010, in
prep.).
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Hoeg, E., Bässgen, G., Bastian, U., et al. 1997, A&A, 323, L57
Holman, M. J., Fabrycky, D. C., Ragozzine, D., et al. 2010, Science, sci-

ence.1195778



S. C. C. Barros et al.: WASP-38b 7

Howard, A. W., Bakos, G.́A., Hartman, J., et al. 2010, ArXiv e-prints
Israelian, G., Delgado Mena, E., Santos, N. C., et al. 2009, Nature, 462, 189
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