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Abstract

The Stokes multipliers in the matrix models are invariants in the string-theory
moduli space and related to the D-instanton chemical potentials. They not only
represent non-perturbative information but also play an important role to connect
various perturbative string theories in the moduli space. They are a key concept
to the non-perturbative completion of string theory and also expected to imply
some remnant of strong coupling dynamics from M theory. In this paper, we
investigate the non-perturbative completion problem consisted of two constraints
on Stokes multipliers. As the first constraint, Stokes phenomena which realize the
multi-cut geometry are studied in the Zk symmetric critical points of the multi-cut
two-matrix models. Sequence of solutions to the constraints are obtained in general
k-cut critical points. A discrete set of solutions and a continuum set of solutions are
explicitly shown, and they can be classified by several constrained configurations of
Young diagram. As the second constraint, we discuss non-perturbative stability of
backgrounds in terms of the Riemann-Hilbert problem. In particular, our procedure
in the 2-cut (1, 2) case (pure-supergravity case) completely fixes the D-instanton
chemical potentials and results in the Hastings-McLeod solution to the Painlevé II
equation. It is also stressed that the Riemann-Hilbert approach realizes an off-shell
background independent formulation of non-critical string theory.
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1 Introduction and summary

Non-critical string theory [1] has provided interesting theoretical laboratories which un-
cover various intriguing features about string theory. This string theory is known as solv-
able system not only in the perturbative world-sheet formulation, Liouville theory [2–10],
but also in the non-perturbative matrix-model formulation [11–31]. Recently, among
various kinds of matrix models, the multi-cut matrix models [32] have turned out to be
a fruitful system. The first discovery was on the two-cut matrix models [33–38], which
were found to describe type 0 superstring theory [39–41]. Furthermore, the multi-cut two-
matrix models were generally found to have a correspondence with the so-called fractional
superstring theory [42] and also with non-critical M theory as its strong-coupling dual
theory [43], which realizes the philosophy proposed in the Hořava-Keeler non-critical M
theory [44].

Quantitative analyses of critical points and perturbative amplitudes in the multi-cut
two-matrix models have been carried out in [43, 45]. The main observables used there
are macroscopic loop amplitudes (or resolvent) [12–17, 28, 29, 46–50] which provide the
information of spectral curves, the classical spacetime of this string theory [31, 51, 52].
The concrete expression for spectral curve is important because they provide relevant
information for reproducing all order perturbative amplitudes in the multi-cut two-matrix
models by the method of topological recursions [53].

The main theme in this paper is, on the other hand, about non-perturbative aspects
of the multi-cut two-matrix models. Non-perturbative aspects in matrix models have
also been studied extensively [23, 26, 27, 30, 31, 50–52, 54–77]. The main concern is about
non-perturbative contributions of the matrix-model free energy F(C; gstr) on the large N
spectral curve C:1

F(C; gstr) ≃
asym

∞∑

n=0

g2n−2
str Fn(C) + Fnon-perturb.(C; gstr), gstr → 0. (1.1)

Here Fn(C) is the genus-n perturbative free energy on the spectral curve C, and the
information of the matrix-model potentials (so-called KP flows {tn}n∈Z) is implicitly
included in the spectral curve:

C = C
(
{tn}n∈Z

)
, {tn}n∈Z ∈M(non−norm.)

string ⊂ C
Z, (1.2)

which is known as the non-normalizable string-theory moduli space M(non−norm.)
string [78].2

The first quantitative implication was given in the early 90’s and is about the strength of
string non-perturbative corrections which are O(e−1/gstr) order quantities [79], i.e. open-
string (D-brane) degree of freedom [80]:

Fnon-perturb.(C; gstr) =
∑

I

θI exp
[
− 1

gstr
S
(I)
inst(C; gstr)

]
. (1.3)

1We carefully put “asym” below the equation in order to emphasize that they are equal only in the
asymptotic sense.

2The normalizable string-theory moduli spaceM(norm.)
string is known as the space of filling fraction [74]

which parametrizes the on-shell string backgrounds. The off-shell backgrounds are defined in Section 5.
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Here I is a set of indices which labels multi-instanton sectors, I = {i1, i2, · · · },

S
(I)
inst(C; gstr) =

∑

i∈I={i1,i2,··· }

S
(i)
inst(C; gstr) +O(gstr), S

(I)
inst(C; gstr) ∼ O(g0str), (1.4)

and each primitive instanton S
(i)
inst(C; gstr) (i = 1, 2, · · · , Ninst), is shown to have the precise

correspondence with a singular point of the spectral curve C [41, 55–59, 61, 68] and the
leading disk amplitudes are identified with the ZZ-brane amplitudes in Liouville theory
[7,9,10]. It is worth mentioning that these instanton corrections with further higher order

gstr corrections S
(I)
inst(C; gstr) are important in order to make the free energy F(C; gstr) to

be modular invariant under modular transformations of the spectral curve C and also
to be background independent in the normalizable string-theory moduli space M(norm.)

string

(i.e. the filling fractions) [74]. The constant θI is called D-instanton chemical potential
(or fugacity). These constants are understood as integration constants of corresponding
string equations [27], that is,

∂θI
∂tm

= 0, m ∈ Z, {tn}n∈Z ∈M(non−norm.)
string , (1.5)

for the flows in the non-normalizable moduli space M(non−norm.)
string . It was shown [31]

that the only Ninst (i.e. the number of primitive instantons) chemical potentials θi (i =
1, 2, · · · , Ninst) are independent among all the chemical potentials θI .

Although various aspects of matrix models have been understood well so far, there
still remains an important issue, which is about the D-instanton chemical potentials:
What is the physical requirement to determine the D-instanton chemical potentials? Al-
though the actual matrix models should employ some particular universal values [60],
they seem to be totally free parameters at least within continuum formulations based
on string (or loop) equations. This point has been studied in the bosonic minimal/2D
string theories [60,64,65,67], in the type 0 (1, 2) superstring theory [62], in the collective
string field theory [63] and in the free-fermion formulation [50, 66]. In this paper, we
address this issue by solving non-perturbative completion problem within a continuous
formulation for the critical points of the multi-cut two-matrix models. In practice, we
pick up physically acceptable D-instanton chemical potentials which realize physically
reasonable behaviors in the non-perturbative region gstr → ∞. Our solutions are based
on two physical requirements: One is multi-cut boundary condition (in Section 4) and the
other is non-perturbative stability of perturbative backgrounds (in Section 5).

The first requirement, the multi-cut boundary condition, is a non-perturbative con-
straint on the Baker-Akhiezer function system in these multi-cut critical points:

gstr
∂

∂ζ
Ψ(t; ζ) = Q(t; ζ) Ψ(t; ζ), gstr

∂

∂t
Ψ(t; ζ) = P(t; ζ) Ψ(t; ζ), (1.6)

where the equation system here is expressed as an ordinary differential equation in ζ and
its isomonodromy deformation system in t.3 Note that the Lax operators in Eq. (1.6)
in the k-cut critical points are k × k matrix-valued operators [68]. The idea of the first
constraint is motivated by the non-perturbative relationship between the Baker-Akhiezer

3 The parameter t is one of the parameters in the non-normalizable moduli spaceM(non−norm.)
string , which

is usually a coupling of the most relevant operator or the world-sheet cosmological constant.
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functions and cuts in the resolvent curves. This kind of relationship is discussed in terms
of Airy function [51]. Specifically, the asymptotic expansion of the Airy function around
the cut (ζ → −∞) is expressed as4

Ai(t; ζ) ≃
asym

( gstrπ

(ζ + t)1/2

)1/2 [
e
− 2

3gstr
(ζ+t)3/2

+ ie
2

3gstr
(ζ+t)3/2

]
+ · · · , (1.7)

where the relation to the resolvent (or macroscopic loop) operator R(ζ) [19] is roughly
expressed as

Ai(t; ζ) ∼ exp
[
N

∫ ζ

dζ ′R(ζ ′)
]
, R(ζ) ≡ 1

N

〈
tr

1

ζ −M

〉
∼
√

ζ + t, (1.8)

with the expectation value 〈· · ·〉 taken with respect to the Hermitian one-matrix model of
a matrixM . From this expression, one observes that the cut in the negative axes (ζ < −t)
appears as a line where a competition between the exponents e

± 2
3gstr

(ζ+t)3/2
(i.e. along

the Stokes lines) happens. Therefore, we interpret this as a non-perturbative definition
of the resolvent cuts. This consideration turns out to be important in the fractional-
superstring critical points of the multi-cut two-matrix models [43], since most of the
cuts in these critical points are created by this procedure and cannot be read from the
algebraic equations of the resolvent spectral curve. What is more, as we will see in
Section 4, this procedure do not necessarily create the necessary and sufficient k cuts on
the resolvent curve, even though the k-cut Baker-Akhiezer function Eq. (1.6) is obtained
from the assumption that the critical points have k cuts around ζ → ∞. Therefore, we
need to impose a physical constraint so that the resolvent curves in the k-cut critical
points should have k cuts around ζ →∞. This constraint is expressed in terms of Stokes
multipliers for the possible Stokes phenomena in this system.

The second requirement, the non-perturbative stability of perturbative backgrounds,
is imposed in the other formulation which is closely related to the Baker-Akhierzer func-
tion system: the so-called the Riemann-Hilbert (or inverse monodromy) approach [81–83]
[22]. A brief flowchart of this approach is shown in Fig. 1. Details are given in Section 5,
but in order to show how the Riemann-Hilbert approach works in resolving the issue, we
here show the leading expression of the free energy (more precisely the two-point function
of cosmological constant t) in the two-cut (1, 2) case:

∂2F(t; gstr)
∂t2

=
[
f(t)

]2
, f(t) =

∑

n

sn,2,1

∫

Kn

dλ

2πi
eg

(2)(t;λ)−g(1)(t;λ) + · · · . (1.9)

The parameter sn,2,1 is a Stokes multiplier of the Baker-Akhierzer function system of the
corresponding integrable system and the contour Kn is an anti-Stokes line corresponding
to the Stokes multiplier sn,2,1. As one can suspect from the expression, the Riemann-
Hilbert approach is directly related to the study of Stokes phenomena at ζ → ∞ in the
ordinary differential equation of the Baker-Akhierzer system.

In this expression, the function g(j)(t; ζ) is an arbitrary function but should be properly
chosen so that the integrals other than the “leading” expression shown in Eq. (1.9) are
negligible [83]. From the matrix-model viewpoints (discussed in Section 5), this function
can be interpreted as an off-shell string background geometry of string theory. Therefore,

4The asymptotic expansion of Airy function is reviewed in Appendix A.
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String equations

(Painlevé system)

∈

D-instanton
fugacities

Orthonormal polynomials

(Baker-Akhiezer system)

∈

Stokes data
at ζ →∞

======⇒

⇐======

Inverse scattering method

Inverse monodromy method

(Riemann-Hilbert problem)

Figure 1: The Riemann Hilbert approach and the D-instanton chemical potentials (or fugacities)

if one chooses g(j)(t; ζ) as a macroscopic loop amplitude realized in the large N limit
of the matrix models, then the leading integral (1.9) becomes a similar expression to
the mean field expression for a single eigenvalue of the matrix integral which appears
in various studies in literature [27, 30, 31, 59, 60, 62].5 Therefore, the Stokes multipliers
sn,2,1 in Eq. (1.9) are directly identified as the D-instanton chemical potentials in the
semi-classical saddle-point analysis. That is, the first constraint is directly related to
the constraint on the D-instanton chemical potentials. Furthermore, since the Riemann-
Hilbert integral, Eq. (1.9), provides the complete integration representation based on
the reference string background g(j)(t; ζ), we can discuss non-perturbative stability of
the background g(j)(t; ζ), especially for the background which is obtained as large N
limit of the matrix models. This consideration for the stability is also expressed as a
constraint on the Stokes multipliers and therefore the D-instanton chemical potentials.
Originally, the mean field analyses include ambiguity of choice of contour and weight
of these contours [27] and this fact becomes a cause of the ambiguity about the D-
instanton chemical potentials in continuum loop-equation systems. In the Riemann-
Hilbert approach, however, these degrees of freedom are identified as anti-Stokes lines Kn

and Stokes multipliers sn,2,1, and they are tightly related to each other. As a consequence,
the physical section of the D-instanton chemical potentials is obtained in the name of non-
perturbative completion. This viewpoint is important in non-critical string theory because
non-critical strings are sometimes defined as the large N (i.e. perturbative) expansion
of unstable matrix-model critical points (e.g. (2, 3) bosonic minimal string theory) and
therefore the matrix-model description does not necessary guarantee non-perturbative
completion of string theory.

As we will see in the coming sections, the above procedures completely determine the
D-instanton chemical potentials in the two-cut (1, 2) critical points and results in the
Hastings-McLeod solution [84] to the Painlevé II equation (in Section 5.1). Actually it
is known that this is the unique solution which realizes the two phases of the two-cut
(1, 2) critical point of the two-cut matrix model,6 and therefore the Hastings-McLeod
solution is suitable for this critical point. An advantage of our work is the discovery of

5It is interesting that the Riemann-Hilbert expression gives a similar expression to the D-instanton
operators obtained in the free-fermion formulation [30, 31].

6It was shown by Hastings-McLeod [84] that their solution is a unique solution to the Painlevé II
equation, Eq. (2.43), which realizes the following asymptotic behaviors of f(t) on the two sides of infinity
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the actual physical requirements to obtain the correct solutions to the non-perturbative
completion which are also applicable to the critical points with an arbitrary number of
cuts. Furthermore, we carry out the non-perturbative completion procedures generally in
higher number-cut (which even reaches to∞-cut) critical points and obtain the concrete
form of solutions (in Section 4.3). Interestingly, we found that the solutions are labeled by
constrained Young diagrams. This result implies that there is a quite rich world beyond
this non-perturbative horizon, and that the multi-cut matrix models provide fruitful fields
for a quantitative study of these issues.

Organization of this paper is as follows: In Section 2, after summarizing the asymp-
totic expansion of the ODE system in the multi-cut critical points, the general facts about
Stokes phenomenon in ordinary differential equations are reviewed. As a warming up,
the case of the two-cut (1, 2) critical point is also shown. In Section 3, Stokes phenomena
in the multi-cut critical points are studied. In particular, the practical way of reading the
Stokes multipliers in the general cases is developed. In Section 4, the multi-cut boundary
condition is proposed. In Section 4.3, the discrete and continuum solutions are obtained
with imposing several ansatz. In Section 5, the non-perturbative stability condition is
studied in terms of the Riemann-Hilbert problem. Section 6 is devoted to conclusion and
discussion.

Context of Appendices is: Appendix A is about the Stokes phenomenon of Airy
function (a review of [51]). Appendix B is about calculation of Lax operators. Appendix
C is about calculation of the multi-cut boundary-condition recursive equations. Appendix
D is about calculation of the 3 and 4-cut (1, 1) critical points.

2 Stokes phenomena in the ODE systems

Before we devote ourselves into the multi-cut systems, we here first review some gen-
eral facts about Stokes phenomenon in ordinary differential equation systems, then we
summarize the well-studied two-cut (1, 2) case. This two-cut system has been exten-
sively studied not only in physical context [33–38, 41, 52, 68] but also in mathematical
context [82–84, 86–89], since it is related to the Hastings-McLeod solution [84] of the
Painlevé II system. For more comprehensive and rigorous reviews and references on
the isomonodromy deformations, Stokes phenomenon and inverse monodromy problems,
see [85]. We also note that the idea of ismonodromy deformation was introduced in
non-critical string theory by [22].

2.1 The ODE system and asymptotic expansions

It was first proposed in [68] that the multi-cut matrix models are controlled by multi-
component KP hierarchy [90] and therefore by the following Baker-Akhiezer function

t→ ±∞:

1

2
¨f(t)− f3(t) + 2tf(t) = 0 : f(t→∞) ∼ 0, f(t→ −∞) ∼

√
−t, (1.10)

which is the same behavior as the two-cut (1, 2) critical point of the two-cut matrix model discussed
in [41].

5



system:

ζΨ(t; ζ) = P (t; ∂) Ψ(t; ζ), (2.1)

gstr
∂

∂ζ
Ψ(t; ζ) = Q(t; ∂) Ψ(t; ζ). (2.2)

Here the operator P (t; ∂) and Q(t; ∂) are p̂-th and q̂-th order differential operators in
∂ ≡ gstr∂t, respectively, which satisfy the Douglas equation [20]:

[
P (t; ∂),Q(t; ∂)

]
= gstrIk. (2.3)

Critical points in the multi-cut two-matrix models are characterized by these Lax oper-
ators and explicitly obtained in [45] with their critical potentials. There are two kinds
of interesting critical points: the Zk-symmetric critical points and fractional-superstring
critical points.

1. The Zk-symmetric critical points are characterized by the following k × k Lax
operators [45]:

P (t; ∂) = Γ ∂p̂ +

p̂−1∑

n=0

U (ZkP )
n (t) ∂n, Q(t; ∂) = Γ−1 ∂q̂ +

q̂−1∑

n=0

U (ZkQ)
n (t) ∂n, (2.4)

with the shift matrix Γ,

Γ =




0 1
0 1

. . .
. . .

0 1
1 0




, (2.5)

and the k × k matrix-valued real coefficients U
(ZkP )
n (t) and U

(ZkQ)
n (t) which satisfy

U (ZkP )
n (t) =




0 ∗
0 ∗

. . .
. . .

0 ∗
∗ 0




, U (ZkQ)
n (t) =




0 ∗
∗ 0

. . .
. . .

∗ 0
∗ 0




, (2.6)

as a result of the Zk symmetry of the critical points. Macroscopic loop amplitudes
(i.e. off-critical resolvent amplitudes with t 6= 0) in this kind of critical points are
also obtained in [45] with the Daul-Kazakov-Kostov prescription [29] and written
with the Jacobi polynomials or the third and fourth Chebyshev polynomials. In
particular, the amplitudes in the the k-cut (1, 1) critical points are given as the
eigenvalues of the Lax operators Eq. (2.4) in the weak coupling limit gstr → 0:7

P (t; ∂) ≃ diagkj=1

(
P

(j)
classical(t; z)

)
= diagkj=1

(
ωj−1 x(z)

)
,

Q(t; ∂) ≃ diagkj=1

(
Q

(j)
classical(t; z)

)
= diagkj=1

(
ω−(j−1) y(z)

)
, (2.7)

7In this paper, the equality ≃ means that they are equal up to some similarity transformation.
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with

x(z) = t
k

√(
z − c

)l(
z − b

)k−l
, y(z) = t

k

√(
z − c

)k−l(
z − b

)l
(2.8)

and 0 = c l + b (k − l) and the dimensionless variable z ≡ gstrt
−1∂t.

2. The fractional-superstring critical points [42] are characterized by the following two
kinds of Lax operators [45]: The first kind is given as

P (t; ∂) = Γ ∂p̂ +

p̂−1∑

n=0

U (FkP )
n (t) ∂n, Q(t; ∂) = Γ ∂q̂ +

q̂−1∑

n=0

U (FkQ)
n (t) ∂n. (2.9)

These Lax operators are derived from the ω1/2-rotated critical potentials. The
second kind is given as

P (t; ∂) = Γ(real) ∂p̂ +

p̂−1∑

n=0

U (RkP )
n (t) ∂n, Q(t; ∂) = Γ(real) ∂q̂ +

q̂−1∑

n=0

U (RkQ)
n (t) ∂n,

(2.10)

with the matrix Γ(real),

Γ(real) =




0 1
0 1

. . .
. . .

0 1
−1 0




. (2.11)

These Lax operators are derived from the real critical potentials. In both cases,
all the k × k matrix-valued coefficients U

(FkP )
n (t) and U

(FkQ)
n (t) (and U

(RkP )
n (t) and

U
(RkQ)
n (t)) are real functions. The macroscopic loop amplitudes in each case are

obtained and written by the deformed Chebyshev functions [43].

In this paper, for the sake of simplicity, we concentrate on the p̂ = 1 cases of the
Zk-symmetric critical points. With this choice of critical points, the Lax operator P (t; ∂)
becomes

P (t; ∂) = Γ∂ +H(t), (2.12)

and the Baker-Akhiezer function for the eigenvalue problem of the operator P (t; ∂),
Eq. (2.1), is rewritten as

gstr
∂

∂t
Ψ(t; ζ) = P(t; ζ) Ψ(t; ζ) ≡ Γ−1

[
ζ −H(t)

]
Ψ(t; ζ), (2.13)

and therefore Eq. (2.2) is also rewritten as a k × k matrix polynomial operator in ζ :

gstr
∂Ψ(t; ζ)

∂ζ
= Q(t; ζ) Ψ(t; ζ) ≡ Q(t; ∂) Ψ(t; ζ), Q(t; ζ) =

−r∑

n=−1

Qn(t)

ζn+1
. (2.14)

7



Here we define r as

r ≡ q̂ + 1 > 0, (2.15)

which is referred to as the Poincaré index in literature. The advantage of this formulation
is that the pair of Lax operators (P (t; ∂),Q(t; ∂)) becomes a pair of the polynomial
operators (P(t; ζ),Q(t; ζ)), and the system can be expressed as an k × k first order
ordinary differential equation (ODE) system. These systems are called the Zakharov-
Shabat eigenvalue problem [91] or AKNS hierarchy [92] in literature. Note that the
Douglas equation becomes

[
P (t; ∂),Q(t; ∂)

]
= gstrIk ⇔

[
gstr∂ζ −Q(t; ζ), ∂ − P(t; ζ)

]
= 0, (2.16)

in terms of these Lax operators.
This ODE system Eq. (2.14) has the k independent order k column vector solutions

Ψ(j)(t; ζ), (j = 1, 2, · · · , k), and we here use the following matrix solution notation:

Ψ(t; ζ) ≡
(
Ψ(1)(t; ζ), · · · ,Ψ(k)(t; ζ)

)
. (2.17)

As in the usual ODE, we consider formal expansion around ζ → ∞. However the
point ζ → ∞ is an irregular singularity and the formal series expansion around this
irregular point in general does not converge absolutely. Up to proper redefinition of the
k independent solutions, the formal series expansion of the solutions around ζ → ∞ is
given as

Ψasym(t; ζ) ≡ Y (t; ζ) eϕ(t;ζ) ≡
[
Ik +

∞∑

n=1

Yn(t)

ζn

]
× exp

[
ϕ0 ln ζ −

∞∑

m=−r, 6=0

ϕm(t)

mζm

]
. (2.18)

The coefficient matrices are obtained from the recursive equations,

0 = −nYn(t) +
n+r∑

m=0

(
Ym(t)ϕn−m(t)−Qn−m(t) Ym(t)

)
,
(
n = −r,−r + 1, · · ·

)
. (2.19)

For convenience, we extend the indices of the coefficients:

Y0(t) = Ik, Yn(t) = 0 (n < 0), ϕm(t) = Qm(t) = 0 (m < −r), (2.20)

and imposing the following constraints on Yn(t) and ϕn(t):

[
Γl, ϕn(t)

]
= 0,

k∑

i=1

[
Yn(t)

]
i,i+l

= 0, (l = 0, 1, · · · , k − 1). (2.21)

This recursive relation then can be solved uniquely and all the expansion coefficient are
written with the coefficient matrix-valued function H(t) in Eq. (2.12).

On the other hand, it is also convenient to use a diagonal basis, Ψ̃asym(t; ζ), which is
defined by

Ψ̃asym(t; ζ) ≡ Ỹ (t; ζ) eϕ̃(t;ζ) ≡
[
Ik +

∞∑

n=1

Ỹn(t)

ζn

]
× exp

[
ϕ̃0 ln ζ −

∞∑

m=−r, 6=0

ϕ̃m(t)

mζm

]

≡ U † Ψasym(t; ζ)U, (2.22)

8



where the matrix U is given as

Ujl =
1√
k
ω(j−1)(l−1), ΓU = U Ω, (2.23)

with Ω = diag(1, ω, ω2, · · · , ωk−1) and ω = e2πi/k. Since this is a similarity transforma-
tion, the coefficients also satisfy the same recursive relation (2.19). In this basis, the
function ϕ̃(t; ζ) is a diagonalized matrix and we write its eigenvalues as

ϕ̃(t; ζ) = diag
(
ϕ(1)(t; ζ), · · · , ϕ(k)(t; ζ)

)
. (2.24)

The vector components of the formal series, Ψ̃asym =
(
Ψ̃

(1)
asym, · · · , Ψ̃(k)

asym

)
, is given as

Ψ̃(j)
asym(t; ζ) = Ỹ (j)(t; ζ) eϕ

(j)(t;ζ), (j = 1, 2, · · · , k), (2.25)

with Ỹ (t; ζ) =
(
Ỹ (1), · · · , Ỹ (k)

)
.

Although the above formal solutions are formal series around the irregular singularity,
they are related to the exact analytic solutions to the ODE system, Ψ̃(t; ζ), in the sense
of asymptotic expansion:

Ψ̃(t; ζ) ≃
asym

Ψ̃asym(t; ζ)C, (2.26)

in some specific angular domain [93]:

ζ →∞ ∈ D(a; b) ≡
{
ζ ∈ C; a < arg(ζ) < b

}
. (2.27)

An example of the angular domain is shown in Fig. 2-a. Here C is a proper coefficient
matrix, and the meaning of asymptotic expansion is following:

Definition 1 [asymptotic expansion] For a holomorphic function f(ζ), an asymptotic
expansion of f(ζ) in a domain D(a; b) is defined as a formal series

∑
n fnζ

−n such that

there exists a constant B
(N)
R;a,b ∈ R which satisfies

∣∣∣f(ζ)−
N∑

n=−r

fn
ζn

∣∣∣ <
B

(N)
R;a,b

|ζ |N , ζ ∈ D(a; b) ∩
{
ζ ∈ C;

∣∣ζ
∣∣ > R

}
(2.28)

for each integer N = −r,−r + 1, · · · and sufficiently large R ∈ R. This is written as

f(ζ) ≃
asym

∞∑

n=−r

fn
ζn

, ζ →∞ ∈ D(a; b). (2.29)

The maximal angular domains are called Stokes sectors.

2.2 General facts on Stokes phenomena in the ODE system

In this subsection, in order to understand the asymptotic expansion Eqs. (2.22) and
(2.26), we review some general theorem about the asympototic expansions and Stokes
phenomena in the general k × k ODE systems,

gstr
∂

∂ζ
Ψ̃(t; ζ) =

[
Q̃−r ζ

r−1 + Q̃−r+1(t) ζ
r−2 + · · · Q̃−1(t)

]
Ψ̃(t; ζ)

≡ Q̃(t; ζ) Ψ̃(t; ζ). (2.30)
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Note that proof of the theorems appearing in this subsection can be found in [85] and
references therein. For sake of simplicity, we assume

Q̃−r = diag
(
A1, A2, · · · , Ak

)
, Ai −Aj 6= 0, Ai 6= 0, (i, j = 1, 2, · · · , k).

(2.31)

Therefore, the exponents Eq. (2.24) are expressed as

ϕ̃(t; ζ) = ϕ̃0(t) ln ζ −
∞∑

n=−r,n 6=0

ϕ̃n(t)

nζn
=

1

r
Q̃−r ζ

r + · · · , (2.32)

and ϕ
(i)
−r = Ai (i = 1, 2, · · · , k) also satisfies (2.31).

The meaning of the asymptotic expansion Eq. (2.22) is that basically we ignore rela-
tively small exponents. One takes some (small enough) anglular domain D(a; eiǫa) then
compares the relative magnitudes around ζ →∞, for example,

∣∣eϕ(j1)(t;ζ)
∣∣ <

∣∣eϕ(j2)(t;ζ)
∣∣ < · · · <

∣∣eϕ(jk)(t;ζ)
∣∣, ζ →∞ ∈ D(a; eiǫa). (2.33)

Then one can obtain the following equality under the asymptotic expansion:

eϕ
(j2)(t;ζ) + θeϕ

(j1)(t;ζ) ≃
asym

eϕ
(j2)(t;ζ), ζ →∞ ∈ D(a; eiǫa). (2.34)

That is, the smaller exponents become practically invisible in view of the asymptotic
expansion. Therefore, it is important to consider the angles of ζ where the the exponents,
exp
(
ϕ(j)(ζ)

)
(i = 1, 2, · · · , k), change the relative magnitudes around ζ →∞. This leads

to the concept of Stokes lines:

Definition 2 [Stokes lines] With the assumption (2.31), Stokes lines SLj,l in this ODE
system are defined for each pair of (j, l) as

SLj,l ≡
{
ζ ∈ C; Re

[(
ϕ
(j)
−r − ϕ

(l)
−r

)
ζr
]
= 0
}
=

2r−1⋃

n=0

SL
(n)
j,l , (2.35)

which consists of 2r semi-infinite lines, SL
(n)
j,l (n = 0, 1, · · · , 2r−1). The set of lines, SL,

denotes a set of whole Stokes lines, SL ≡ ⋃j,l SLj,l.

An example of Stokes lines SLj,l is shown in Fig. 2-b. In particular, if the angular
domain D(a; b) of the asymptotic expansion includes a Stokes line, one cannot neglect
the exponents as it happens in Eq. (2.34). This leads to the following definition of Stokes
sectors:

Definition 3 [Stokes sectors] A Stokes sector D in the ODE system is an angular
domain, D = D(a; b), with angles (a, b) such that for each pair of (j, l) there exist a

unique Stokes line SL
(nj,l)
j,l which satisfies,

SL
(nj,l)
j,l ⊂ D = D(a; b), (2.36)

that is, except for this line SL
(nj,l)

j,l there is no other line SL
(n′

j,l)

j,l ( 6= SL
(nj,l)

j,l ) which runs
inside the domain, D.
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ζ

0

6

-a
b

D(a; b)

(a)

ζ

0

(1,2)

(2,3)

(3,1)(1,2)

(2,3)

(3,1)

(1,2)
(2,3)

(3,1)(1,2)

(2,3)

(3,1)

(b)

Figure 2: a) An angular domain of D(a; b). b) Stokes lines and Stokes sectors. This is the 3-cut (1, 1)
critical points. An example of Stokes sectors is also shown. In this critical point, there are three kinds
of the Stokes lines SLi,j , (i, j) = (1, 2), (2, 3), (3, 1). Stokes sectors includes one and only one Stokes line
of each kind.

An example of the Stokes sectors (the 3-cut (1, 1) critical point) is shown in Fig. 2-b.
Actually the definition of the Stokes sectors results in the following theorem:

Theorem 1 [93] For a given Stokes sector D, any solutions to the ODE system Ψ̃(t; ζ)
has the following asymptotic expansion:

Ψ̃(t; ζ) ≃
asym

Ψ̃asym(t; ζ)C, ζ →∞ ∈ D, (2.37)

with a matrix C. Furthermore, the coefficient matrix C (i.e. asymptotic expansion) is
unique in the Stokes sector D.

This uniqueness enables us to define the following unique solution in a Stokes sector D:

Definition 4 [Canonical solution] If the solution to the ODE system, Ψ̃can(t; ζ), has
the asymptotic expansion with C = Ik in a Stokes sector D,

Ψ̃can(t; ζ) ≃
asym

Ψ̃asym(t; ζ), ζ →∞ ∈ D, (2.38)

this solution is called the canonical solution in the Stokes sector D.

This theorem on the other hand means that the asymptotic expansion is not unique
if one chooses some angular domain D′ narrower than Stokes sectors. In particular, as is
shown in Fig. 3, the intersection of two different Stokes sectors D1 and D2 is generally
narrower than Stokes sectors, and therefore there appears difference between the canonical
solutions Ψ̃i(t; ζ) of each sector Di(i = 1, 2):

Ψ̃2(t; ζ) = Ψ̃1(t; ζ)S, D1 ∩D2 6= ∅. (2.39)

This k×k matrix S which expresses the difference between Ψ̃1(t; ζ) and Ψ̃2(t; ζ) is called
a Stokes matrix in the intersection D1 ∩ D2. This indicates that solutions in the ODE

11



0

6

-

Ψ̃1(t; ζ) ≃
asym

Ψ̃asym(t; ζ)
(
ζ →∞ ∈ D1

)

Ψ̃2(t; ζ) = Ψ̃1(t; ζ)S ≃
asym

Ψ̃asym(t; ζ)
(
ζ →∞ ∈ D1 ∩D2

)

Ψ̃2(t; ζ) ≃
asym

Ψ̃asym(t; ζ)(
ζ →∞ ∈ D2

)



)

i

Figure 3: Explanation of Stokes phenomenon in ODE systems. For given two Stokes sectors, their
canonical solutions are generally different by a Stokes matrix, S in the intersection D1 ∩ D2. This
behavior of analytic functions is called Stokes phenomenon.

system generally have different asymptotic expansion in different Stokes sectors. This
analytic behavior of the solutions is referred to as the Stokes phenomenon in the ODE
system.

A direct calculation shows that the Stokes matrices do not depend on ζ , and further-
more, they do not depend on the deformation parameter t either (as in (2.13)):

dS

dζ
=

dS

dt
= 0. (2.40)

This means that the Stokes matrices are understood as integration constants for the
evolution system in the t space. Therefore, these integrable deformations in the original
multi-component KP hierarchy are also called isomonodromy deformation system [81].
This also leads us to the concept of inverse monodromy approach [81, 82], which is also
briefly reviewed in Section 5.

Components of Stokes matrices satisfy the following theorem (See [85], for example):

Theorem 2 [Stokes multipliers] For given two Stokes sectors D1 and D2 (D1 ∩ D2 6=
∅), components of their Stokes matrices, i.e. Stokes multipliers, S = (sij), satisfy the
following triangular condition:

sij = 0 if Re
[
(ϕ

(i)
−r − ϕ

(j)
−r)ζ

r
]
</ 0 ζ →∞ ∈ D1 ∩D2 6= ∅, (2.41)

with sjj = 1.

Here note that A − B </ 0 includes the cases, in which the ordering of (A,B) cannot
be defined. Therefore, equivalently, this means that the Stokes multiplier si,j can take
non-zero values only when the exponents satisfy

Re
[
(ϕ

(i)
−r − ϕ

(j)
−r)ζ

r
]
< 0 for all angular range of ζ →∞ ∈ D1 ∩D2 6= ∅. (2.42)

In this paper, we often refer to these facts about Stokes phenomena in ODE systems.
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2.3 Stokes phenomena in the two-cut case

In this subsection, we consider the above general consideration in the two-cut (1, 2) critical
point.

2.3.1 The ODE system and asymptotic expansions in the two-cut case

The string equation in this system is known as the Painlevé II equation [34, 35],

g2str
2

f̈ − f 3 + 2tf = 0, (2.43)

which is equivalent to the following ODE system in ζ (Eq. (2.45)) with its isomonodromy
deformations in t (Eq. (2.46)):8

gstr
∂

∂ζ
Ψ̃(t; ζ) =

[
σ3ζ

2 −
(
σ1f
)
ζ +

(
−1
2
f 2 + µ

)
σ3 − gstr

i

2
σ2ḟ
]
Ψ̃(t; ζ), (2.45)

gstr
∂

∂t
Ψ̃(t; ζ) =

[
σ3ζ − σ1 f(t)

]
Ψ̃(t; ζ). (2.46)

Since this 2 × 2 first-order ODE system has two independent column vector solutions
Ψ̃(1)(t; ζ) and Ψ̃(2)(t; ζ), we use the matrix notation for the solutions:

Ψ̃(t; ζ) =
(
Ψ̃(1)(t; ζ), Ψ̃(2)(t; ζ)

)
. (2.47)

At the point ζ →∞, the ODE has an irregular singularity (of the Poincaré order 3)
and the formal expansion of the solutions (2.22) is given as

Ψ̃asym(ζ ; t) =
[
I2 +

i

2ζ
σ2f(t) +O(1/ζ2)

]
exp
[ 1

gstr

(1
3
σ3ζ

3 + µσ3ζ +O(1/ζ)
)]

≡ Ỹ (t; ζ) eϕ̃(t;ζ). (2.48)

This can be obtained with the recursion relation 2.19 (see also in Appendix B.2). Note
that the exponent ϕ̃(t; ζ) is a diagonal matrix which satisfies ϕ̃(t; ζ) ∝ σ3, and then each

vector solution Ψ̃
(i)
asym(t; ζ) (i = 1, 2) has different exponents:

Ψ̃(i)
asym(t; ζ) = Ỹ (i)(t; ζ) eϕ

(i)(t;ζ), (2.49)

with

Ỹ (t; ζ) =
(
Ỹ (1)(t; ζ), Ỹ (2)(t; ζ)

)
, ϕ̃(t; ζ) = diag

(
ϕ(1)(t; ζ), ϕ(2)(t; ζ)

)
. (2.50)

8In the later discussion (from Section 3), we also define the different basis: Ψ(t; ζ) ≡ U †Ψ̃(t; ζ)U ,
with

Uσ3U
† = σ1, Uσ1U

† = −σ3, Uσ2U
† = σ2. (2.44)

This basis naturally appears in the matrix-model calculations and is more suitable to read the Hermiticity
of the multi-cut matrix models [45].
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2.3.2 Stokes sectors and Stokes matrices

In this case, there is only one kind of the Stokes lines SL1,2 which is given by (2.35) as

ζ = |ζ |eiθ : θ =
π

6
+

nπ

3
(n = 0, 1, · · · , 5). (2.51)

Therefore, Stokes sectors Dn are given as

Dn = eni
π
3D0, (n = 0, 1, · · · , 5), D0 =

{
ζ ∈ C ; −π

2
< arg(ζ) <

π

6

}
. (2.52)

This is shown in Fig. 4. The canonical solution on the Stokes sector Dn is denoted by
Ψ̃n(t; ζ). The Stokes matrices Sn are now defined as

Sn ≡ Ψ̃−1
n (t; ζ) Ψ̃n+1(t; ζ), (n = 0, 1, · · · , 5), (2.53)

and therefore components of the Stokes matrices are read as

D2n ∩D2n+1 : S2n =

(
1 0
s2n 1

)
;

(∣∣eϕ(1)(t;ζ)
∣∣ >

∣∣eϕ(2)(t;ζ)
∣∣, ζ →∞

)
,

D2n+1 ∩D2n+2 : S2n+1 =

(
1 s2n+1

0 1

)
;

(∣∣eϕ(1)(t;ζ)
∣∣ <

∣∣eϕ(2)(t;ζ)
∣∣, ζ →∞

)
. (2.54)

6

-

(a)

6

-

(b)

D4

D2

D0

6

-

(c)

D1

D5

D3

Figure 4: a) Stokes lines in the two-cut (1, 2) case. b) Stokes sectors of D0, D2 and D4. c) Stokes
sectors of D1, D3 and D5.

2.3.3 Three basic constraints on the Stokes multipliers

The Stokes multipliers satisfy three constraints from the symmetry of the original ODE
system.

Z2 symmetry constraint This symmetry originates from the Z2 symmetry of the
matrix model. That is, this is the reflection symmetry M → −M of the one-matrix
models:

Z =

∫
dMe−N trV (M), V (−M) = V (M). (2.55)
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In terms of the ODE system, this symmetry is expressed by the reflection of ζ → −ζ :

gstr
dΨ̃(t;−ζ)

dζ
=
[
−Q̃(t;−ζ)

]
Ψ̃(t;−ζ) =

[
σ1Q̃(t; ζ)σ1

]
Ψ̃(t;−ζ),

gstr
dΨ̃(t;−ζ)

dt
=
[
P̃(t;−ζ)

]
Ψ̃(t;−ζ) =

[
σ1P̃(t; ζ)σ1

]
Ψ̃(t;−ζ). (2.56)

Therefore, each canonical solution is mapped to other canonical solution as:

σ1Ψ̃n(t;−ζ)σ1 = Ψ̃n+3(t; ζ), (n = 0, 2, · · · , 5), (2.57)

and the Stokes matrices are mapped as

Sn+3 = σ1Snσ1, sn+3 = sn, (n = 0, 1, · · · , 5). (2.58)

This means that there are only three independent Stokes multipliers,

s0 = s3 ≡ α, s1 = s4 ≡ β, s2 = s5 = γ. (2.59)

Hermiticity constraint This originates from Hermiticity of the matrix models. In
the two-cut cases, they are studied in [38, 68]. This symmetry is expressed as9

Q̃∗(t; ζ∗) = Q̃(t; ζ∗), P̃∗(t; ζ∗) = P̃(t; ζ∗). (2.60)

Therefore, each canonical solution is mapped to other canonical solution as:

Ψ̃∗
n(t; ζ

∗) = Ψ̃7−n(t; ζ), (n = 0, 1, · · · , 5), (2.61)

and the Stokes matrices are mapped as

S∗
n = S−1

6−n, s∗n + s6−n = 0, (n = 0, 1, · · · , 5). (2.62)

This reduces three independent Stokes multipliers α, β and γ to be two real parameters:

α∗ + α = 0, β∗ + γ = 0. (2.63)

Monodromy free constraint The last constraint is the requirement that the solu-
tions to the ODE system are single-valued functions. Note that one can also introduce
this degree of freedom in the context of matrix models. This corresponds to introducing
background RR flux and/or D0-branes in 0A string background, that is, the system be-
comes the complex matrix models [41,94]. This constraint for the single-valued solutions
is expressed as

Ψ̃n(t; ζ) = Ψ̃n(t; e
2πiζ) = Ψ̃n+6(t; ζ), (2.64)

therefore

S0 S1 S2 S3 S4 S5 = I2, (2.65)

9Note that we use the following convention of complex conjugation in this paper: [f(ζ)]∗ = f∗(ζ∗) =∑
n f

∗
nζ

∗, with a function f(ζ) ≡∑n fnζ
n.
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which results in

s0 + s1 + s2 + s0s1s3 = α(1− |β|2) + β − β∗ = 0, (2.66)

with the other constraints. Consequently, the Stokes multipliers have one real degree of
freedom, say α. On the other hand, the Lax operators in this case also have one real
degree of freedom, f(t). In this sense, the system is completely fixed with one integration
constant.

Here it is also worth mentioning that among the Stokes multipliers satisfying the
algebraic relation (2.66), it is the following choice

α = 0, β = ±1, (2.67)

which realize the actual perturbative behavior (in t→ ±∞) of the matrix models argued
in [41]. This choice of the Stokes multipliers is known as the Hastings-McLeod solution
in the Painlevé II equation [84].10 This means that there is a unique (or at least discrete)
choice of the physical Stokes multipliers (therefore D-instantion chemical potentials). As
mentioned in Introduction, this naturally rises the following question: what is the physical
requirements which specify the above multipliers? This is also related to the issue cited
by [60, 62]: What is the boundary condition in continuum formulations which can fix
the D-instanton chemical potentials in the matrix models? Our procedure (discussed in
Section 4 and Section 5) gives an answer to the question. In Section 4.2.1 and then
Section 5.1, we will see that our physical requirements correctly choose this particular
parametrization Eq. (2.67) of the Stokes multipliers.

3 Stokes phenomena in the multi-cut cases

In this section, we develop general framework for Stokes phenomena in the general multi-
cut critical points, and show explicitly how the actual systems can be controlled. Key
information is provided by profile of dominant exponents introduced in Section 3.2.

3.1 Stokes lines and Stokes sectors

First we focus on the Stokes lines,

SLj,l : Re
[(
ϕ
(j)
−r − ϕ

(l)
−r

)
ζr
]
= 0, (3.1)

and the resulting Stokes sectors (2.36). In this paper, we are interested in the Zk-
symmetric critical points, and as one can see in Appendix B, the leading coefficient of
the exponents, ϕ

(j)
−r, is given as

ϕ
(j)
−r = ω−r(j−1). (3.2)

Consequently, the conditions on the Stokes lines (in terms of angle, ζ = |ζ |eiθ) are
expressed as

Re
[(
ϕ
(j)
−r − ϕ

(l)
−r

)
eriθ
]
= −2 sin

(
rθ − π

r(j + l − 2)

k

)
sin
(
π
r(j − l)

k

)
. (3.3)

10See [85] for reviews of this solution.
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First of all, if there is a pair of (j, l) such that

r(j − l) ∈ kZ, (3.4)

then the condition (2.31) does not satisfy. This means that the highest exponents degen-

erate (ϕ
(j)
−r − ϕ

(l)
−r) ζ

r = 0. In this case, we consider the next leading Stokes lines,

Re
[(
ϕ
(j)
−r+1 − ϕ

(l)
−r+1

)
ζr−1

]
= 0, (3.5)

or more generally we consider the following Stokes lines:

Definition 5 [(General) Stokes lines] The general Stokes lines SLg
j,l in this ODE system

are defined for each pair of (j, l) as

SLg
j,l ≡

{
ζ ∈ C; Re

[
ϕ(j)(t; ζ)− ϕ(l)(t; ζ)

]
= 0
}
=

2r−1⋃

n=0

SL
g; (n)
j,l , (3.6)

which consists of 2r semi-infinite lines, SL
g; (n)
j,l (n = 0, 1, · · · , 2r − 1). The set of lines,

SLg, denotes a set of whole (general) Stokes lines, SLg ≡ ⋃j,l SL
g
j,l.

The physical interpretation of these general Stokes lines is discussed in Section 4.2. The
situations (3.4) are also interesting critical points in the multi-cut matrix models, however
here for sake of simplicity, we concentrate on the following cases,

(k, r): a coprime, (3.7)

because Eq. (3.4) becomes trivial in this case:

r(j − l) ∈ kZ ⇔ j − l ∈ kZ. (3.8)

Therefore Eq. (3.3) gives the angle θ
(n)
j,l for the Stokes lines SLj,l as

11

θ = θ
(n)
j,l =

kn + r(j + l − 2)

rk
π, n ∈ Z, (3.10)

in the Zk-symmetric cases. From this formula, one can read several basic information
about the Stokes lines. An example of Stokes lines (3-cut (1, 1) case) is shown in Fig. 2-b.
For later convenience, we introduce the following concept:

Definition 6 [Segments] Angular domains in between two Stokes lines which do not
include any Stokes lines are called segments.

11Note that if one considers the fractional-superstring cases the formula is expressed as

θ = θ
(n)
j,l =

kn+ (r − 2)(j + l − 2)

rk
π, n ∈ Z (3.9)

with ϕ
(j)
−r = ω−(r−2)(j−1) and the coprime condition is imposed on the pair (k, r − 2).
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In our present cases with a coprime (k, r) and with k ≥ 3, there are 2rk distinct segments
δDn (n = 0, 1, · · · , 2rk − 1) given as

δDn ≡ D
(
nδθ − δθ;nδθ

)
,

(
n = 0, 1, · · · , 2rk − 1; δθ =

π

rk

)
, (3.11)

which can fill the complex plane C,

2rk−1⋃

n=0

δDn = C, δDm ∩ δDm′ = ∅
(
m 6= m′

)
. (3.12)

According to the definition of Stokes sectors, Eq. (2.36), we define the following most
basic Stokes sectors, Dn:

Definition 7 [Fine Stokes sectors/matrices] The following angular domains Dn

Dn = eniδθD0, D0 = D
(
−δθ; kδθ

)
, (n = 0, 1, · · · , 2rk − 1), (3.13)

are Stokes sectors of a coprime (k, r) system with k ≥ 3, which are referred to as fine

Stokes sectors. The canonical solution of the fine Stokes sector Dn is denoted as Ψ̃n(t; ζ)
and the corresponding Stokes matrices Sn are given as

Ψ̃n+1(t; ζ) = Ψ̃n(t; ζ)Sn, (3.14)

which is referred to as (fine) Stokes matrices.

Here we also define the other two kinds of Stokes sectors/matrices: First we define Stokes
sectors/matrices which respect to the Zk symmetry of the multi-cut matrix models:

Definition 8 [Symmetric Stokes sectors/matrices] The following subset of the fine
Stokes sectors,

D2nr, (n = 0, 1, · · · , k − 1), (3.15)

are referred to as symmetric Stokes sectors,12 and the corresponding Stokes matrices
S
(sym)
2rn

S
(sym)
2rn ≡ Ψ̃−1

2rn(t; ζ) Ψ̃2r(n+1)(t; ζ) = S2rn · S2rn+1 · · ·S2r(n+1)−1. (3.16)

are referred to as symmetric Stokes matrices.

Next we define the following economical Stokes sectors/matrices:

Definition 9 [Coarse Stokes sectors/matrices] The following subset of the fine Stokes
sectors,

Dnk, (n = 0, 1, · · · , 2r − 1), (3.17)

are referred to as coarse Stokes sectors, and the corresponding Stokes matrices S
(c)
nk are

written as

S
(coa)
nk ≡ Ψ̃−1

nk (t; ζ) Ψ̃(n+1)k(t; ζ) = Snk · Snk+1 · · ·S(n+1)k−1. (3.18)

are referred to as coarse Stokes matrices.

Coarse Stokes sectors are most often used in literature. However, in the following discus-
sions, one will see that the fine Stokes matrices are more convenient for our calculations.

12Note that this definition is not enough for the k = 3, r = 2 case. In these cases, we employ a modified
version of the Stokes sectors, for example, Dnr.
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3.2 Profile of dominant exponents

The non-zero components of Stokes matrices (Stokes multipliers) are determined by the
triangular condition of Theorem 2. However, this definition is inconvenient for practical
evaluations. Therefore we here develop a way to read the information of these non-zero
Stokes multipliers by evaluating the profile of dominant exponents. The definition of this
concept is following:

Since there is no Stokes line in the segments defined in Eq. (3.11), one can define the
following ordered set Jl of indices jl,i:

Jl =
[
jl,1 jl,2 · · · jl,k

]
∈ N

k, (3.19)

which describes the profile of dominant exponents in the segment Dl

Re
[
ϕ
(jl,1)
−r ζr

]
< Re

[
ϕ
(jl,2)
−r ζr

]
< · · · < Re

[
ϕ
(jl,k)
−r ζr

]
, ζ ∈ δDl. (3.20)

This sequence of numbers, J = {Jl}2rkl=0, is referred to as profile of dominant exponents.
Here we express the profile J as follows:

J =




j2rk−1,1 j2rk−1,2 · · · j2rk−1,k

...
...

...
j1,1 j1,2 · · · j1,k
j0,1 j0,2 · · · j0,k


 (3.21)

Note that the ordering of indices in the vertical direction is different from the usual
matrix, and that elements are periodic in the index l, Jl = Jl+2rk. An example (3-cut
(1, 1) critical point) and the relation to the ζ plane are shown in Fig. 5.

ζ

0

(1,2)

(2,3)

(3,1)

2 < 3 < 1
2 <

1 <
3

1
<
2
<
3

1
<

3
<

2
3
<
1
<
2

3<
2<

1

2<3<1
2<

1<
3

1
<
2
<
3

1
<

3
<

2

3
<
1
<
2

3 <
2 <

1

(1,2)

(2,3)

(3,1)

(1,2)
(2,3)

(3,1)(1,2)

(2,3)

(3,1)

(a)

J =




3 1 2

1 3 2

1 2 3

2 1 3

2 3 1

3 2 1

3 1 2

1 3 2

1 2 3

2 1 3

2 3 1

3 2 1




(b)

Figure 5: The two expressions for the profile of dominant exponents in the 3-cut (1, 1) critical point.

Re[ϕ
(jl,1)
−2 ] < Re[ϕ

(jl,2)
−2 ] < Re[ϕ

(jl,3)
−2 ] is expressed as jl,1 < jl,2 < jl,3. a) The profile in the ζ plane. b)

The profile J in the table. In the same way, the dominance is expressed as [jl,1|jl,2|jl,3]

Next we address how to fill the non-zero elements in the profiles. The basic equation
for reading this information is the definition of Stokes lines (3.10),

SLi,j : θ = θ
(n)
i,j =

kn+ r(i+ j − 2)

rk
π, n ∈ Z. (3.22)
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Since (r, k) is a coprime pair of integers, the Stokes lines appear at the following angles:

θ
(n)
i,j =

l

rk
π = lδθ, l ∈ Z. (3.23)

Therefore, we re-interpret this in the following way: the pair (i, j) will change their
dominance at angle θ = lδθ when there exists an integer n which satisfies

r(i+ j − 2) + kn = l, n, l ∈ Z. (3.24)

To study this relation, we introduce the Euclid reminder (ml, nl) of

rml + knl = l. (3.25)

This relation uniquely determines pair of (ml, nl) up to the following shift:

(ml, nl) → (ml + ks, nl − rs), s ∈ Z. (3.26)

Note that the redundancy (3.26) is understood as redundancy of the indices j, j → j+sk
in Eq. (3.24). Therefore without loss of generality, one can choose one representative as
0 ≤ ml < k, and

ml ≡ lm1 mod k. (3.27)

Consequently, we obtain the following rule:

Proposition 1 [Sum rule of indices] For a given Jl, a pair of indices (i, j) in the profile
Jl change their relative dominance at angle θ = lδθ when they satisfy the following sum
rule:

i+ j − 2 = ml, (3.28)

with the Euclidean reminder (nl, ml) of Eq. (3.25).

From this proposition, one can read all the pairs of indices which change the relative
dominance at the angle θ = lδθ:

(i, j) ≡ (a,ml + 2− a) mod k, (k − b+ 1, ml + 2 + b− 1) mod k,

with a = 1, 2, · · · ,
⌊ml + 1

2

⌋
; b = 1, 2, · · · ,

⌊k −ml − 1

2

⌋
, (3.29)

the number of which is

#(i,j) pairs =





k−1
2

(k : odd)
k
2

(k : even, ml : odd)
k
2
− 1 (k : even, ml : even)

. (3.30)

By taking into account these results, one can show the following proposition:

Proposition 2 [Trajectory of the indices] If the profile of dominance Jl in a segment
δDl is given by the following sequence:

Jl =
[
jl,1 jl,2 · · · jl,k

]
=
[
a1 a2 · · · ak

]
, (3.31)
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then the next profile Jl+1 =
[
jl+1,1 jl+1,2 · · · jl+1,k

]
is given as follows:

k is odd

l ∈ 2Z :





jl+1,2m = jl,2m−1 = a2m−1, (1 < 2m < k)
jl+1,2m−1 = jl,2m = a2m, (1 ≤ 2m− 1 < k)
jl+1,k = jl,k = ak

l ∈ 2Z+ 1 :





jl+1,2m = jl,2m+1 = a2m+1, (1 < 2m < k)
jl+1,2m+1 = jl,2m = a2m, (1 < 2m+ 1 ≤ k)
jl+1,1 = jl,1 = a1

,

k is even

l ∈ 2Z :






jl+1,2m = jl,2m+1 = a2m+1, (1 < 2m < k)
jl+1,2m+1 = jl,2m = a2m, (1 ≤ 2m+ 1 < k)
jl+1,1 = jl,1 = a1
jl+1,k = jl,k = ak

l ∈ 2Z+ 1 :

{
jl+1,2m = jl,2m−1 = a2m−1, (1 < 2m ≤ k)
jl+1,2m−1 = jl,2m = a2m, (1 ≤ 2m− 1 ≤ k)

, (3.32)

In terms of table, they are expressed as

k is odd

J =




...
...

...
...

...
...

...
...

a2 a1 a4 a3 a6 · · · ak−1 ak−2 ak
a1 a2 a3 a4 a5 · · · ak−2 ak−1 ak
...

...
...

...
...

...
...

...
b1 b3 b2 b5 b4 · · · bk−3 bk bk−1

b1 b2 b3 b4 b5 · · · bk−2 bk−1 bk
...

...
...

...
...

...
...

...




�I �I �I �I 6

6 �I �I �I�I

,

← Jl, (l ∈ 2Z)

← Jl′, (l
′ ∈ 2Z+ 1)

k is even

J =




...
...

...
...

...
...

...
...

a1 a3 a2 a5 a4 · · · ak−1 ak−2 ak
a1 a2 a3 a4 a5 · · · ak−2 ak−1 ak
...

...
...

...
...

...
...

...
b2 b1 b4 b3 b6 · · · bk−3 bk bk−1

b1 b2 b3 b4 b5 · · · bk−2 bk−1 bk
...

...
...

...
...

...
...

...




6 �I �I �I 6

�I �I �I �I�I

,

← Jl, (l ∈ 2Z)

← Jl′, (l
′ ∈ 2Z+ 1)

(3.33)

with Jl′ =
[
jl′,1 jl′,2 · · · jl′,k

]
=
[
b1 b2 · · · bk

]
.

This proposition means that trajectories of the indices, for instance a and b, are given as
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follows:

k is odd k is even

J =




...
...

...
...

...
...

a · · · b
a · · · b
a · · · b

a · · · b
a · · · b

...
...

...
...

...
...




, J =




...
...

...
...

...
...

a · · · b
a · · · b
a · · · b

a · · · b
a · · · b

...
...

...
...

...
...




(3.34)

Furthermore, the non-zero elements in the profile are recursively fixed by using the sum
rule (3.28). The direct comparison of exponents {ϕ(j)

−r}kj=1 results in the following initial
numbers for the recursions:

Proposition 3 The most dominant exponent in the segments δD0 and δD1 is given as

j0,k = j1,k = 1. (3.35)

with the assumption of coprime (k, r) and k ≥ 3.

First we fix the numbers in J0, which are now denoted as

J0 ≡
[
Ak · · · A3 A2 A1

]
=
[
Ak · · · A3 A2 1

]
. (3.36)

From Proposition 2, one can see all the profile J :

J =



· · · A4 (A7 A2) (A5 1) A3

· · · (A7 A4) (A5 A2) (A3 1)
· · · A6 (A5 A4) (A3 A2) 1
· · · (A5 A6) (A3 A4) (1 A2)

← J0.
(3.37)

Here we put parentheses, (∗|∗), around two indices to indicate the pair of dominance
changing of (3.29). The point is that we use two recursive relations with respect to the
pair of (Al+1|Al),

A2m → A2m+1 : A2m + A2m+1 = m0 + 2 = 2

A2m+1 → A2m+2 : A2m+1 + A2m+2 = m−1 + 2 = 2−m1, (3.38)

to determine the components. The result is given as

Lemma 1 [Components of J0] The components of the profile J0 ≡
[
Ak · · · A3 A2 A1

]

is give as

An = 1− (−1)n
⌊n
2

⌋
×m1, (3.39)

especially the 2r shift of the index n gives An+2r = An + (−1)n+1 mod k.
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The last equation is useful to fill the profile. In particular, one can fill the numbers from
1 to k by using

A1+2rs = 1 + s, (3.40)

with reflection relations An = An+2k and An = A1−n of Eq. (3.39). The vertical sequence
in J is also read from this result:

Corollary 1 [Vertical components] The sequence of {jl,k}2rkl=0 is given as

jl,k = A2⌊ l
2
⌋+1 = 1 +

⌊ l
2

⌋
×m1, (3.41)

especially the 2r shift of the index l gives jl+2r,k = jl,k + 1 mod k.

Therefore, repeating the same procedure, one obtains the following general formula:

Theorem 3 [General components] The general components of the profile J are given
as

l : even jl,n =

{
1 +

(⌊
k−n+1

2

⌋
+
⌊
l
2

⌋)
m1 (n : odd)

1 +
(
l −
⌊
k−n+1

2

⌋
−
⌊
l
2

⌋)
m1 (n : even)

l : odd jl,n =

{
1−

(⌊
k−n
2

⌋
−
⌊
l
2

⌋)
m1 (n : odd)

1 +
(
l +
⌊
k−n
2

⌋
−
⌊
l
2

⌋)
m1 (n : even)

. (3.42)

These are modulo k, and for n = 1, 2, · · · , k and l = 0, 1, · · · , 2rk − 1.

Finally, we show two examples of the profiles Jk,r for the case of (k, r) = (3, 2) and (5, 2):

J3,2 =




3 (1 2)
(1 3) 2
1 (2 3)
(2 1) 3
2 (3 1)
(3 2) 1
3 (1 2)
(1 3) 2
1 (2 3)
(2 1) 3
2 (3 1)
(3 2) 1




,

← J11

← J0

J5,2 =




2 (4 5) (1 3)
(4 2) (1 5) 3
4 (1 2) (3 5)
(1 4) (3 2) 5
1 (3 4) (5 2)
(3 1) (5 4) 2
3 (5 1) (2 4)
(5 3) (2 1) 4
5 (2 3) (4 1)
(2 5) (4 3) 1
2 (4 5) (1 3)
(4 2) (1 5) 3
4 (1 2) (3 5)
(1 4) (3 2) 5
1 (3 4) (5 2)
(3 1) (5 4) 2
3 (5 1) (2 4)
(5 3) (2 1) 4
5 (2 3) (4 1)
(2 5) (4 3) 1




.

← J19

← J0

(3.43)

One can observe that there is a 2k periodicity, jn+2k,i = jn,i, or more precisely, a reflection
by step k, jn,i = jn+k,k−i+1.
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3.3 Components of Stokes matrices and the profiles

From the profile we have considered above, one can see the non-zero multipliers by refer-
ring to Theorem 2. For example, if one wants to calculate the symmetric Stokes matrix
S
(sym)
0 in the (r, k) = (2, 5) case, one first sees the dominance profile in the domain

D0 ∩D4,

D0 ∩D4 ⊃
[
1 3 4 5 2
3 1 5 4 2

]
,
← J5

← J4
(3.44)

and reads the ordering of magnitude:

(2) > (5), (4), (3), (1), (5) > (3), (1), (4) > (3), (1). (3.45)

This results in the necessary and sufficient symmetric Stokes multipliers:

S
(sym)
0 =




1 s
(sym)
0,1,2 0 s

(sym)
0,1,4 s

(sym)
0,1,5

0 1 0 0 0

0 s
(sym)
0,3,2 1 s

(sym)
0,3,4 s

(sym)
0,3,5

0 s
(sym)
0,4,2 0 1 0

0 s
(sym)
0,5,2 0 0 1




. (3.46)

In the same way, if one wants to calculate the fine Stokes matrix S0, one first sees the
dominance profile in the domain D0 ∩D1,

D0 ∩D1 ⊃




1 3 4 5 2
3 1 5 4 2
3 5 1 2 4
5 3 2 1 4
5 2 3 4 1



,

← J5

← J1

(3.47)

and reads the ordering of magnitude:

(4) > (3), (2) > (5). (3.48)

This results in the necessary and sufficient Stokes multipliers:

S0 =




1 0 0 0 0
0 1 0 0 0
0 0 1 s0,3,4 0
0 0 0 1 0
0 s0,5,2 0 0 1




. (3.49)

With this original way of reading the multipliers, it is quite difficult to see the general
structure. From the above result, however, one may notice that there is a relation between
indices of non-zero Stokes multipliers s0,i,j in the Stokes matrix S0 and the dominance
changing pairs (j, i) in the profile J0:

s0,3,4, s0,5,2 ↔ (2|5), (4|3) ∈ J0 =
[
(2 5) (4 3) 1

]
. (3.50)

In view of this, one can generally show the following statement:

24



Theorem 4 The non-zero Stokes multipliers in the fine Stokes matrix Sl can be read
from the profile Jl as

sl,i,j = 0 (i 6= j) if (i, j) 6= (jl,m, jl,m−1) with k + l +m ∈ 2Z+ 1. (3.51)

That is, if there is a dominance changing pair (i|j) in the profile Jl, then the Stokes
multiplier sl,j,i can take non-zero value.13

The other Stokes matrices, say S
(sym)
n and S

(coa)
n , are written as a product of the fine

Stokes matrices Sn (as in (3.16) and (3.18)). For instance,

S
(sym)
0 =




1 s
(sym)
0,1,2 0 s

(sym)
0,1,4 s

(sym)
0,1,5

0 1 0 0 0

0 s
(sym)
0,3,2 1 s

(sym)
0,3,4 s

(sym)
0,3,5

0 s
(sym)
0,4,2 0 1 0

0 s
(sym)
0,5,2 0 0 1




=




1 s2,1,2 + s1,1,4s3,4,2 0 s1,1,4 s3,1,5
0 1 0 0 0
0 s1,3,2 + s0,3,4s3,4,2 1 s0,3,4 s2,3,5
0 s3,4,2 0 1 0
0 s0,5,2 0 0 1




,

S
(coa)
0 =




1 s
(coa)
0,1,2 s

(coa)
0,1,3 s

(coa)
0,1,4 s

(coa)
0,1,5

0 1 0 0 0

0 s
(coa)
0,3,2 1 s

(coa)
0,3,4 s

(coa)
0,3,5

0 s
(coa)
0,4,2 0 1 s

(coa)
0,4,5

0 s
(coa)
0,5,2 0 0 1




=

=




1 s2,1,2 + s1,1,4s3,4,2 s4,1,3 s1,1,4 s3,1,5 + s1,1,4s4,4,5
0 1 0 0 0
0 s1,3,2 + s0,3,4s3,4,2 1 s0,3,4 s2,3,5 + s0,3,4s4,4,5
0 s3,4,2 0 1 s4,4,5
0 s0,5,2 0 0 1




(3.52)

As one can see from these special examples, the Stokes multipliers are always related as14

s
(xxx)
0,i,j = s∗,i,j + · · · . (3.53)

This phenomenon can be generally shown by using the following expression for the fine
Stokes matrix Sl:

Sl = Ik + Λl ≡ Ik +
∑

i,j

sl,i,jEi,j, (3.54)

with the matrix unit Ei,j , then the multiplication rule is given as

S
(xxx)
l ≡ SlSl+1 · · ·Sl+nxxx = Ik +

nxxx∑

i=0

Λl+i +
∑

0≤i1<i2≤nxxx

Λl+i1Λl+i2 + · · ·

≡ Ik + Λ
(xxx)
l ≡ Ik +

∑

i,j

s
(xxx)
l,i,j Ei,j. (3.55)

One can then see that the number of independent Stokes multipliers in each Stokes
matrix S

(sym)
0 and S

(coa)
0 is supplied by the fine Stokes matrices. Consequently, the same

statement also holds for these cases:
13Note that the orderings of indices (i|j) and sl,j,i are different: i↔ j.
14More generally the cases of (k, r) = (k, 2) are shown in Eq. (C.7).
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Corollary 2 The non-zero Stokes multipliers in other kinds of Stokes matrices are also
read from the profile J as follows:

s
(sym)
2rn,i,j = 0 (i 6= j) if (i, j) 6= (jl,m, jl,m−1)

with k + l +m ∈ 2Z+ 1, 2rn ≤ l < 2r(n+ 1),

s
(coa)
kn,i,j = 0 (i 6= j) if (i, j) 6= (jl,m, jl,m−1)

with k + l +m ∈ 2Z+ 1, kn ≤ l < k(n+ 1). (3.56)

Here s
(sym)
2rn,i,j is the multiplier of S

(sym)
2rn and s

(coa)
kn,i,j is the multiplier of S

(coa)
kn .

3.4 Three basic constraints on the Stokes matrices

Finally we show the three basic constraints as the extension of the two-cut cases (See
Section 2.3 for the two-cut cases).

Zk symmetry condition This condition generally results in

Sn+2r = Γ−1SnΓ, (3.57)

for the fine Stokes matrices Sn, (n = 0, 1, · · · , 2rk), which is obtained from the Zk sym-
metry (see [45]) of the ODE system as follows: First we replace ζ as ζ → ω−1ζ ,

g
∂Ψ(t; ζ)

∂ζ
= Q(t; ζ) Ψ(t; ζ) in ζ ∈ D

→ g
∂Ψ(t;ω−1ζ)

∂ζ
= ω−1Q(t;ω−1ζ) Ψ(t;ω−1ζ) in ζ ∈ ωD. (3.58)

Since the symmetry of the ODE is expressed as15

ω−1Q(t;ω−1ζ) = Ω−1Q(t; ζ) Ω, with Ω−1Ei,i+1Ω = ωEi,i+1, (3.59)

the ODE is expressed as

g
∂
[
ΩΨ(t;ω−1ζ)Ω−1

]

∂ζ
= Q(t; ζ)

[
ΩΨ(t;ω−1ζ)Ω−1

]
in ζ ∈ ωD. (3.60)

This defines a map from Ψn(t; ζ) to Ψn+2r(t; ζ):

Ψn(t; ζ) in ζ ∈ Dn

→ Ψn+2r(t; ζ) =
[
ΩΨ(t;ω−1ζ)Ω−1

]
in ζ ∈ Dn+2r = ωDn. (3.61)

The above translation for the canonical solutions is given as

Ψn+2r(t; ζ) = ΩΨn(t;ω
−1ζ)Ω−1 ⇔ Ψ̃n+2r(t; ζ) = Γ−1Ψ̃n(t;ω

−1ζ)Γ, (3.62)

with U−1ΩU = Γ−1. Therefore, the translation of the Stokes matrices is given as

Sn+2r = Ψ̃−1
n+2r(t; ζ)Ψ̃n+2r+1(t; ζ) = Γ−1Ψ̃−1

n (t; ζ)Ψ̃n+1(t; ζ)Γ

= Γ−1SnΓ, (3.63)

15Note Eq. (2.6).
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and this proves the above relation. This means that only the first 2r Stokes matrices
Sn (n = 0, 1, · · · , 2r − 1) are independent. In this sense, we use the first 2r dominance
profiles to read the components of these Stokes matrices

J (sym)
k,r ≡




J2r−1

...
J1

J0


 ⇔ Sn (n = 0, 1, · · · , 2r − 1). (3.64)

Here we show several examples of r = 2:

J (sym)
5,2 =




3 (5 1) (2 4)
(5 3) (2 1) 4
5 (2 3) (4 1)
(2 5) (4 3) 1




: J3

: J2

: J1

: J0

, J (sym)
7,2 =




7 (3 4) (6 1) (2 5)
(3 7) (6 4) (2 1) 5
3 (6 7) (2 4) (5 1)
(6 3) (2 7) (5 4) 1




: J3

: J2

: J1

: J0

,

J (sym)
9,2 =




4 (8 9) (3 5) (7 1) (2 6)
(8 4) (3 9) (7 5) (2 1) 6
8 (3 4) (7 9) (2 5) (6 1)
(3 8) (7 4) (2 9) (6 5) 1




: J3

: J2

: J1

: J0

,

J (sym)
11,2 =




10 (4 5) (9 11) (3 6) (8 1) (2 7)
(4 10) (9 5) (3 11) (8 6) (2 1) 7
4 (9 10) (3 5) (8 11) (2 6) (7 1)
(9 4) (3 10) (8 5) (2 11) (7 6) 1




: J3

: J2

: J1

: J0

,

J (sym)
13,2 =




5 (11 12) (4 6) (10 13) (3 7) (9 1) (2 8)
(11 5) (4 12) (10 6) (3 13) (9 7) (2 1) 8
11 (4 5) (10 12) (3 6) (9 13) (2 7) (8 1)
(4 11) (10 5) (3 12) (9 6) (2 13) (8 7) 1




: J3

: J2

: J1

: J0

,

(3.65)

and the general k-cut cases J (sym)
k,2 are shown as Eq. (C.3) and (C.4) in Appendix C.

Hermiticity condition This condition generally results in

S∗
n = ∆ΓS−1

(2r−1)k−n Γ
−1∆, (3.66)

for the fine Stokes matrices Sn, (n = 0, 1, · · · , 2rk), which is obtained from the Hermitic-
ity condition of the ODE system as follows. First we consider the complex conjugation,
ζ → ζ∗:

g
∂Ψ(t; ζ)

∂ζ
= Q(t; ζ) Ψ(t; ζ) in ζ ∈ D

→ g
∂Ψ∗(t; ζ∗)

∂ζ∗
= Q∗(t; ζ∗) Ψ∗(t; ζ∗) in ζ∗ ∈ D∗. (3.67)

Since then the Hermiticity condition [45] is expressed as

Q∗(t; ζ∗) = Q(t; ζ∗), (3.68)
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the ODE is expressed as

g
∂Ψ∗(t; ζ)

∂ζ
= Q(t; ζ) Ψ∗(t; ζ). (3.69)

This defines a map from Ψn(t; ζ) to Ψ(2r−1)k+1−n(t; ζ):

Ψn(t; ζ) in ζ ∈ Dn

→ Ψ(2r−1)k+1−n(t; ζ) = Ψ∗
n(t; ζ) in ζ ∈ D(2r−1)k+1−n = D∗

n. (3.70)

The above transformation for the canonical solutions is given as

Ψ∗
n(t; ζ) = Ψ(2r−1)k+1−n(t; ζ) ⇔ Ψ̃∗

n = U2 Ψ̃(2r−1)k+1−n(t; ζ)U
−2

= ∆Γ Ψ̃(2r−1)k+1−n(t; ζ) Γ
−1∆. (3.71)

Note that U∗ = U−1, U2 = ∆Γ and ∆i,j = δi,k−i+1. Therefore, the translation of the
Stokes matrices is

S∗
n =

[
Ψ̃−1

n (t; ζ)Ψ̃n+1(t; ζ)
]∗

= ∆Γ
[
Ψ̃−1

(2r−1)k+1−n(t; ζ)Ψ̃(2r−1)k−n(t; ζ)
]
Γ−1∆

= ∆Γ
[
Ψ̃−1

(2r−1)k−n(t; ζ)Ψ̃(2r−1)k+1−n(t; ζ)
]−1

Γ−1∆

= ∆ΓS−1
(2r−1)k−n Γ

−1∆. (3.72)

This proves the above formula Eq. (3.66).

Monodromy free condition If the formal expansion satisfies ϕ0 = 0 (discussed in
Appendix B), then the canonical solutions are the single valued functions:

Ψ̃n(t; ζ) = Ψ̃n(t; e
2πiζ) = Ψ̃n+2kr(t; ζ), (3.73)

therefore the Stokes matrices satisfy

S0 · S1 · · ·S2rk−1 = S
(coa)
0 · S(coa)

k · · ·S(coa)
k(2r−1)

= S
(sym)
0 · S(sym)

2r · · ·S(sym)
2r(k−1) = Ik. (3.74)

Note that, with the Zk-symmetry constraints, 2rk Stokes matrices are reduced to fun-
damental 2r Stokes matrices, {Sn}2r−1

n=0 , and also that the monodromy free condition is
written as

(
S
(sym)
0 Γ−1

)k
= Ik. (3.75)

4 The multi-cut boundary condition and solutions

So far we have considered the Stokes phenomena in the ODE systems which appear in
the multi-cut matrix models. In Section 3.4, we discussed three basic constraints required
by the symmetries. As is mentioned in Introduction, however, not all the solutions to
these constraints can realize the critical points in the multi-cut matrix models. In this
section, we propose the first physical constraints which we refer to as multi-cut boundary
conditions. The second physical condition is proposed in Section 5.
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4.1 Non-perturbative definition of cuts in spectral curves

In this subsection, we first recall the set up of the multi-cut two-matrix models and the
relationship between the Baker-Akhiezer function system (i.e. the ODE system) and cuts
in the spectral curves. The definition of the multi-cut two-matrix models is given by the
following matrix integral:

Z =

∫

C
(k)
N ×C

(k)
N

dX dY e−Ntr[V1(X)+V2(Y )−XY ], (4.1)

with the matrix contour C(k)N of the following N ×N k-cut normal matrix,

C(k)N ≡
{
X = U diag(x1, x2, · · · , xN)U

†; U ∈ U(N), xj ∈
k−1⋃

n=0

e2πi
n
k R

}
. (4.2)

The system of two-matrix models has the corresponding orthonormal polynomial system
[95]:

αn(x) =
1√
hn

(
xn + · · ·

)
, βn(y) =

1√
hn

(
yn + · · ·

)
, (4.3)

with

δn,m =

∫

C(k)×C(k)

dx dy e−N [V1(x)+V2(y)−xy] αn(x) βm(y). (4.4)

Here the contour C(k) is given as

C(k) =
{
x ∈

k−1⋃

n=0

e2πi
n
k R

}
, (4.5)

an example of which is shown in Fig.6.

x

0

-

?

(a)

x

0

6

-

(b)

Figure 6: Examples of contours C(k). (a) is 6-cut contour C(6) and (b) is the 5-cut contour C(5) which
is equal to the 10-cut contour C(10). For reference, the position of cuts (zig-zag lines) around ζ →∞ is
also denoted.
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In the double scaling limit, the orthonormal polynomials αn(x) (or their dual poly-
nomials βn(y)) turn out to be a continuum Baker-Akhiezer function, Ψorth(t; ζ):

αn(x) = a−p̂/2Ψorth(ζ ; t), (4.6)

with the following scaling relations of a→ 0:

x = ω−1/2ap̂/2ζ → 0,
n

N
= exp

(
−ta p̂+q̂−1

2

)
→ 1,

N−1 = gstr a
p̂+q̂
2 → 0, ∂n = −a1/2gstr∂t ≡ −a1/2∂ → 0, (4.7)

which satisfies the differential equations (4.8) and (4.9):

ζΨorth(t; ζ) = P (t; ∂) Ψorth(t; ζ), (4.8)

gstr
∂

∂ζ
Ψorth(t; ζ) = Q(t; ∂) Ψorth(t; ζ). (4.9)

This means that the orthonormal polynomial system is one of the solutions to the dif-
ferential equations (4.8) and (4.9), and eventually the ODE systems (2.13) and (2.14).
Consequently, its asymptotic expansion in the Stokes sector, ζ ∈ Dn, is given by the
canonical solutions Ψn(t; ζ) with some proper vector X(n) as

Ψorth(t; ζ) ≃
asym

Ψ̃n(t; ζ)X
(n), ζ →∞ ∈ Dn. (4.10)

By taking into account the Stokes phenomena (3.14), these vectors of various Stokes
sectors are related as follows:

X(n) = Sn X
(n+1), X(n+2rk) = X(n). (4.11)

Note that the scaled orthonormal polynomials Ψorth(t; ζ) are entire functions in ζ ∈ C

because the original orthonormal polynomials are also entire functions.
On the other hand, another important approach to solving the multi-cut matrix mod-

els is the semi-classical approach with the resolvent operator R(x) of the matrix models,

R(x) =
〈

1

N
tr

1

x−X

〉
=

∫

C(k)

dz
ρ(z)

x− z
, (4.12)

where ρ(z) is the density function of eigenvalues of the matrix X and it produces the
cuts along the matrix-model contour C(k) on the ζ space. This resolvent operator is also
related to the orthonormal polynomial solution Ψorth(t; ζ) in the following way [19]:16

Ψorth(t; ζ) ∼
〈
det
(
x−X

)〉
∼ exp

[
N

∫ x

dx′R(x′)
]
, (4.13)

with the scaling relation, x = ω−1/2ap̂/2ζ , of Eq. (4.7). This relation is quite precise, and
therefore one can consider the following equivalent expression:17

R(x) ∼ lim
gstr→0

gstr
∂

∂ζ
lnΨorth(t; ζ). (4.14)

16For the precise relations, see Appendix A in [45], for example.
17 Although Ψorth(t; ζ) is a vector valued function, the behaviors of exponents are the same among

the vector components. Therefore, it is understood by taking one particular element of the function
Ψorth(t; ζ).
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4.2 The multi-cut boundary conditions

In the previous subsection, we introduced two types of definitions for the resolvent op-
erator R(x). One is from the condensation of eigenvalues in the semi-classical limit
(4.12) and the other is from the orthonormal polynomials (4.14). The difference between
these two actually provides another type of physical constraints on the Stokes multipliers,
since the position of cuts in the orthonormal polynomials (4.14) is quite non-trivial. The
position of cuts in the semi-classical approach (4.12) is clear and given by the original
matrix-model contour C(k) (as shown in Fig. 6). It is because the eigenvalues of the
matrix models can have condensation only along the matrix-model contour:18

Cuts ≡
k⋃

j=1

Cut(j) ⊂ ω1/2 × Cx ≡
k−1⋃

n=0

ωn+1/2
R. (4.15)

On the other hand, the position of cuts in the orthonormal polynomials (4.14) can be
read in the following way:

First of all, the resolvent operators R(x) are related to the exponents ϕ(j)(t; ζ) in the
asymptotic expansions (2.22). In particular, when Ψorth(t; ζ) is expressed by a superpo-

sition of several exponents eϕ
(j1)(t;ζ), · · · , eϕ(jL)(t;ζ) in some angular domain D:

Ψorth(t; ζ) ∼
L∑

i=1

θi e
ϕ(ji)(t;ζ), ζ →∞ ∈ ∃D, (4.16)

the definition (4.14) extracts only the most dominant exponents, say

R(x) ∼ gstr ∂ζϕ
(jM )(t; ζ) +O

(
(gstr)

0
)
, (4.17)

with Re
[
ϕ(jM )(t; ζ)−ϕ(j)(t; ζ)

]
> 0 for j ( 6= jM) = j1, · · · , jL and θj 6= 0. Therefore, when

ζ crosses the Stokes lines (2.35), the resolvent operator (4.17) realizes discontinuities in
the ζ plane (at least around ζ → ∞). This is understood as a tail of cuts. However,
for instance, if one generally chooses the Stokes multipliers and the vector X(n) in the
orthonormal polynomials (4.10) and (4.11), the cuts (4.17) appear almost along all the
Stokes lines SL in (2.35) and do not generally realize the cuts in the original definition of
the resolvent operator (4.12). Therefore, we impose some conditions on the multipliers
so that the resolvent (4.17) realizes the multi-cut geometry (4.15) expected from the
definition of the multi-cut matrix models (4.1). This constraint on the Stokes multipliers
is referred to as multi-cut boundary condition.

Quantitatively, the multi-cut constraints are imposed as follows: The total number of
cuts around ζ →∞ is k and the angles of the k cuts are given as

Cut(j) ⊂ ωj−1/2
R+, (j = 1, 2, · · · , k). (4.18)

Therefore, we obtain:

Definition 10 [Multi-cut boundary condition] The following requirement is called the
multi-cut boundary condition:

1. There is an ordered set of k distinct indices, (a1, a2, · · · , ak).
18See also [45] for the reason why we have the ω1/2 rotation.
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2. There are the discontinuities along Cut(j)(j = 1, 2, · · · , k):

Ψorth(t; e
iǫζ) ≃

asym
cj+1 × Ψ̃(aj+1)

asym (t; ζ), Ψorth(t; e
−iǫζ) ≃

asym
cj × Ψ̃(aj )

asym(t; ζ),

along ζ →∞ ∈ Cut(j) ⊂ ωj/2
R+; ǫ→ 0+, (4.19)

with some constant cj (j = 1, 2, · · · , k).

3. The orthonormal polynomial Ψorth(t; ζ) in the angular domain between Cut(j−1) and
Cut(j) has the following leading behavior:

Ψorth(t; ζ) ≃
asym

cj × Ψ̃(aj)
asym(t; ζ), ζ →∞ ∈ D

(2π(j − 3/2)

k
;
2π(j − 1/2)

k

)
.

(4.20)

In the case of the real-potential critical points (2.10), the position of cuts is given by C(k).
An example of the boundary condition in the ζ plane is shown in Fig. 7.

ζ

0

∼ eϕ
(1)(t;ζ)

∼ eϕ
(2)(t;ζ)

∼ eϕ
(3)(t;ζ)

Figure 7: The multi-cut boundary condition in the 3-cut (1, 1) critical point. Although the general
solutions to the Baker-Akhiezer function system generally have 12 cuts, there are three cuts in the
orthonormal polynomial.

Below we make several comments:

• From the orthonormal polynomial approach (4.17), the position of cuts has the
mathematical meaning as Stokes lines. Since our definition of Stokes line (2.35)
only cares the position at ζ → ∞, in order to extract the information of the
position of cuts in the ζ plane (especially in the weak coupling semi-classical limit),
we have to use the following definition of Stokes lines:

Re
[
ϕ(j)(t; ζ)− ϕ(l)(t; ζ)

]
= 0, (4.21)

instead of (2.35). Although these lines are generally curved, we understand it as
an (analytic) deformation of matrix contour. This consideration is important if
one considers some matrix models with complex potentials.19 See for example the
semi-classical solution in fractional-superstring critical points [43]. We will come
back to this consideration in Section 5.

19In this sense, perturbations of potentials with complex coefficients in matrix models are interpreted
as deformations of the matrix-model contour.
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• In the p̂ > 1 cases, the exponents ϕ(j)(t; ζ) have non-trivial cuts in the ζ plane, say
ϕ(j)(t; ζ) ∼ ζ (q̂+1)/p̂. This p̂-th root cut should be smeared by a proper supplement
of exponents [51]. This is also reviewed in Appendix A. Since we concentrate on
the p̂ = 1 cases in this paper, we do not encounter this phenomenon and this point
in the general k-cut cases remains to be studied for future investigations.

Before devoting into general cases, we first consider the multi-cut boundary condition in
the two-cut case, as a warming up for the general systems.

4.2.1 The multi-cut boundary condition in the two-cut case

Here we show how to solve the multi-cut boundary conditions in the two-cut (1, 2) case.
The orthonormal polynomial Ψorth(t; ζ) in a Stokes sector Dn is generally given as a

superposition of independent solutions, Ψ̃
(j)
n (t; ζ):

Ψorth(t; ζ) = Ψ̃n(t; ζ)X
(n) = x

(n)
1 Ψ̃(1)

n (t; ζ) + x
(n)
2 Ψ̃(2)

n (t; ζ), ζ →∞ ∈ Dn. (4.22)

However this assumption results in the 6-cut geometry of resolvent as shown in Fig. 8-a,
even though this system is called “two-cut”. Therefore, one has to choose proper Stokes
multipliers in order to satisfy the multi-cut boundary condition and therefore to obtain
the geometry which only includes two cuts as shown in Fig. 8-b.

-�

(a)

δD1δD4

δD2δD3

δD0δD5

-�

(b)

∼ eϕ
(2)(t;ζ)

Re(ζ) > 0∼ eϕ
(1)(t;ζ)

Re(ζ) < 0

δD5 :
δD4 :
δD3 :
δD2 :
δD1 :
δD0 :




2 1
1 62
2 1
1 2
2 61
1 2


 -

-

(c)

Figure 8: The positions of cuts in the two-cut (1, 2) ODE system. a) A general configuration of cuts
for the general Stokes multipliers. There are 6 cuts. b) A configuration of cuts for the (1, 2) critical
point in the two-cut matrix models. The boxes indicate the regions Re(ζ) > 0 and Re(ζ) < 0, in which

the asymptotic expansion is given by ∼ eϕ
(i)(ζ) (i = 1, 2). c) The profile of dominance depicted with the

position of cuts and the weak coupling infinity ζ → ±∞ ∈ R.

The multi-cut boundary condition is then given as follows: Since we wish to erase the
cuts of orthonormal polynomial (4.10) along the Stokes lines of

θ = ±π
3
, ±5π

3
, (4.23)

we impose the following boundary condition:

X(0) =

(
0

x
(0)
2

)
, X(1) =

(
0

x
(1)
2

)
, X(2) =

(
x
(2)
1

x
(2)
2

)
,

X(3) =

(
x
(3)
1

0

)
, X(4) =

(
x
(4)
1

0

)
, X(5) =

(
x
(5)
1

x
(5)
2

)
, (4.24)
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where all the x
(n)
i appearing here are non-zero. This can be also expressed in the dom-

inance profile as in Fig. 8-c. That is, if the Stokes sector Dn includes the following
profile,

[
m1 · · · mI−1 mI 6mI+1 · · · 6mk−1 6mk

]
∈ Dn, (4.25)

then the boundary condition can be read as

Ψorth(t; ζ) =

I∑

j=1

x(n)
mj

Ψ̃(mj)
n (t; ζ), x(n)

mI
6= 0. (4.26)

By imposing this boundary condition

X(n) = Sn X
(n+1), X(n+6) = X(n), (4.27)

with the Stokes matrix (2.54) of Z2 symmetry condition (2.59), one obtains

(
0

x
(0)
2

)
=

(
0

x
(1)
2

)
,

(
0

x
(1)
2

)
=

(
x
(2)
1 + βx

(2)
2

x
(2)
2

)
,

(
x
(2)
1

x
(2)
2

)
=

(
x
(3)
1

γx
(3)
1

)
,

(
x
(3)
1

0

)
=

(
x
(4)
1

0

)
,

(
x
(4)
1

0

)
=

(
x
(5)
1

βx
(5)
1 + x

(5)
2

)
,

(
x
(5)
1

x
(5)
2

)
=

(
γx

(0)
2

x
(0)
2

)
, (4.28)

which results in

β2 = 1, γ2 = 1, 1 + βγ = 0,

x
(2)
1 = x

(3)
1 = x

(4)
1 = x

(5)
1 = γx

(0)
2 6= 0, x

(5)
2 = x

(0)
2 = x

(1)
2 = x

(2)
2 = γx

(3)
1 6= 0. (4.29)

Therefore, the solutions consistent with the Hermiticity condition (2.63) and monodromy
free condition (2.66) are given as

α ∈ iR, β = −γ = ±1. (4.30)

Consequently, the solution to the multi-cut boundary condition in the two-cut case has a
real continuum parameter. However, another additional constraint for non-perturbative
stability of semi-classical background completely fixes the Stokes multipliers. This is
based on the Riemann-Hilbert approach and is discussed in Section 5.

4.2.2 The multi-cut boundary-condition recursions (r = 2)

From here, we solve the multi-cut boundary condition for an arbitrary number of cuts,
k. In order to solve the constraints, we use the symmetric Stokes sectors (See Def. 8),

Ψorth(t; ζ) ≃
asym

Ψ̃2rl(t; ζ)X
(2rl), ζ →∞ ∈ D2rl, (l = 0, 1, 2, · · · , k − 1), (4.31)

and its Stokes matrices, S
(sym)
2rl = Γ−l S

(sym)
0 Γl. For sake of simplicity, however, we here

focus on the r = 2 cases, and therefore k = 5, 7, 9, · · · .20 Some of the results can be
generalized to the general r cases.

20Here k = 3 is special because k < 2r = 4. This case is also separately calculated in Appendix D.
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We first read the boundary condition in terms of the dominance profile. We first see
the 5-cut cases:

The 5-cut case

D0 :




· · · 5 2
· · · 4 2
· · · 2 64
· · · 1 64
· · · 4 1
· · · 3 1



,

-

-

D4 :




· · · 1 3
· · · 5 3
· · · 3 65
· · · 2 65
· · · 5 2
· · · 4 2



,

-

-

D8 :




· · · 2 4
· · · 1 4
· · · 4 61
· · · 3 61
· · · 1 3
· · · 5 3



,

-

-

D12 :




· · · 3 5
· · · 2 5
· · · 5 62
· · · 4 62
· · · 2 4
· · · 1 4



,

-

-

D16 :




· · · 4 1
· · · 3 1
· · · 1 63
· · · 5 63
· · · 3 5
· · · 2 5



.

-

-

(4.32)

Therefore, the general k-cut cases are given as

The general k-cut cases

k = 4k0 + 1 D2rn : k = 4k0 + 3 D2rn :



... n+ k+5
2

+ ⌊k−3
4
⌋ n+ ⌊k+3

4
⌋

... n+ k+3
2

+ ⌊k−3
4
⌋ n+ ⌊k+3

4
⌋

... n+ ⌊k+3

4
⌋ 6n + k+3

2
+ ⌊k−3

4
⌋

... n+ ⌊k−1

4
⌋ 6n + k+3

2
+ ⌊k−3

4
⌋

...
...

... n+ k+5
2

n+ 2

... n+ k+3
2

n+ 2

... n+ 2 6n+ k+3
2

... n+ 1 6n+ k+3
2

... n+ k+3
2

n+ 1

... n+ k+1
2

n+ 1




,

-

-

-




... n+ ⌊k+7

4
⌋ 6n+ k+3

2
+ ⌊k−3

4
⌋

... n+ ⌊k+3

4
⌋ 6n+ k+3

2
+ ⌊k−3

4
⌋

... n+ k+3
2

+ ⌊k−3
4
⌋ n+ ⌊k+3

4
⌋

... n+ k+1
2

+ ⌊k−3
4
⌋ n+ ⌊k+3

4
⌋

...
...

... n + k+5
2

n+ 2

... n + k+3
2

n+ 2

... n+ 2 6n+ k+3
2

... n+ 1 6n+ k+3
2

... n + k+3
2

n+ 1

... n + k+1
2

n+ 1




.

-

-

-

(4.33)

Equivalently, the components of X(4n) (r = 2 and k ≥ 5) is given as

x
(4n)
n+i 6= 0 (i = 1, 2, · · · ,

⌊k + 3

4

⌋
),

x
(4n)

n+ k+1
2

+i
= 0 (i = 1, 2, · · · ,

⌊k + 1

4

⌋
). (4.34)

It is convenient to introduce another vector Y (4n) =
(
yn,j
)k
j=1
≡ ΓnX(4n), and in the
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vector form, they are given as

X(4n) =




...

x
(4n)
n+1 6= 0

...

x
(4n)

n+⌊k+3
4

⌋
6= 0

...

x
(4n)

n+ k+3
2

= 0

...

x
(4n)

n+ k+3
2

+⌊k−3
4

⌋
= 0

...




, Y (4n) =




yn,1 6= 0
...

yn,⌊k+3
4

⌋ 6= 0
...

yn, k+3
2

= 0
...

yn, k+3
2

+⌊k−3
4

⌋ = 0
...




. (4.35)

Therefore, in terms of the vector Y (4n), the boundary condition can be expressed in the
uniform way. Also note that

X(4n) = X(4(n+k)), Y (4n) = Y (4(n+k)), (4.36)

and therefore the periodicity of index n follows: yn+k,j = yn,j. Here we also mention the
boundary condition for general r (= 2, 3, · · · ) in terms of the dominance profile:

D2r(n−1) ⊃




...
...

A2 n+ 1
A3 n+ 1

n+ 1 6A(n)
2r−1

n+ 1 6A(n)
2r−3 6A(n)

2r−1

n+ 1 6A(n)
2r−5 6A(n)

2r−1 6A(n)
2r−3

. .
.

. .
.

. .
. ...

n+ 1 6A(n)
5 6A(n)

2r−1

...

n+ 1 6A(n)
3 6A(n)

2r−1

...

n 6A(n)
2r−1 6A(n)

3

...

n 6A(n)
2r−3 6A(n)

3

...
. . .

. . .
. . .

...

n 6A(n)
7 6A(n)

3 6A(n)
5

n 6A(n)
5 6A(n)

3

n 6A(n)
3

A
(n)
3 n
A2 n




,

-

-

(4.37)

where A
(n)
i ≡ A2r(n−1)+i of Eq. (3.39), and A

(n)
1 = n and A

(n)
2r+1 = n + 1 (See Cor. 1).

Basically if the Stokes sector Dn includes the following indices

A
(n)
i (i = 3, 5, · · · , 2r − 1), (4.38)
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in the profiles, then we impose

x
(n)

A
(n)
i

= 0 (i = 3, 5, · · · ) and xn+i 6= 0 (i = 0, 1, · · · ). (4.39)

The ending points of these series depend on how Dn includes these profiles. This general
classification is a little tedious, and therefore kept remained for the future study. In
addition to this, the set of indices (a1, a2, · · · , ak) in Def. 10 for the Zk symmetric (p̂, q̂) =
(1, 1) critical points is given as

(a1, a2, · · · , ak) = (1, 2, · · · , k). (4.40)

Note that this ordering is generally different in other critical points.
Let us come back to the r = 2 cases. With the multi-cut boundary condition (4.35),

the constraints on the Stokes multipliers are expressed with Eq. (4.11) as

X(4n) = S
(sym)
4n X(4(n+1)) ⇔ Y (4n) =

(
S
(sym)
0 Γ−1

)
Y (4(n+1)), (4.41)

and, in terms of components, we obtain the following recursive relations for yn,i:

yn,i = yn+1,i−1 +

k∑

j=1

s
(sym)
0,i,j yn+1,j−1, yn+k,j = yn,j. (4.42)

This is the central equations for the multi-cut boundary condition. After imposing the
boundary condition, all the components {yn,i} and then the vectors Y (n) are expressed
only by {yn,1}. For instance, the k = 5, 7, 9 and 11 cases are expressed as

k = 5 : Y (n) =




yn,1
yn+1,1

−s(sym)
0,4,2 yn,1
0

s
(sym)
0,5,2 yn+1,1




, k = 7 : Y (n) =




yn,1
yn+1,1

yn+2,1

−s(sym)
0,5,2 yn,1
0
0

s
(sym)
0,7,2 yn+1,1 + s

(sym)
0,7,3 yn+2,1




,

k = 9 : Y (n) =




yn,1
yn+1,1

yn+2,1

yn+3,1 + s
(sym)
0,4,3 yn+2,1

−s(sym)
0,6,2 yn,1
0
0

s
(sym)
0,8,3 yn+2,1

s
(sym)
0,8,3 yn+3,1 + s

(sym)
0,9,3 yn+2,1 + s

(sym)
0,9,2 yn+1,1




,

37



k = 11 : Y (n) =




yn,1
yn+1,1

yn+2,1

yn+3,1

yn+4,1 + s
(sym)
0,5,3 yn+2,1 + s

(sym)
0,5,4 yn+3,1

−s(sym)
0,7,2 yn,1
0
0
0

s
(sym)
0,10,3 yn+2,1 + s

(sym)
0,10,4 yn+3,1

s
(sym)
0,10,3 yn+3,1 + s

(sym)
0,10,4 yn+4,1 + s

(sym)
0,11,2 yn+1,1 + s

(sym)
0,11,3 yn+2,1




, (4.43)

where we divided the components of the vectors into four categories:

(I) 1 ≤ i ≤
⌊k + 3

4

⌋
, (II)

⌊k + 3

4

⌋
+ 1 ≤ i ≤ k + 1

2
,

(III)
k + 1

2
+ 1 ≤ i ≤

⌊3k + 3

4

⌋
, (IV)

⌊3k + 3

4

⌋
+ 1 ≤ i ≤ k. (4.44)

The general cases are also similarly expressed and denoted as

yn,i = yn,i
(
{ym,1}m∈Z

)
, Y (n)

(
{ym,1}m∈Z

)
≡
(
yn,i
(
{ym,1}m∈Z

))k
i=1

, (4.45)

which are shown in Appendix C. As is shown in Appendix C, however, the following
components,

yn,1, yn, k+1
2

(4.46)

have two different expressions with {yn,1}. This fact results in two recursive equations
for {yn,1}. Several examples are shown below:

k = 5

F5[yn,1] ≡ yn+2,1 + s1,3,2 yn+1,1 + s3,4,2 yn,1 = 0,

G5[yn,1] ≡ s0,5,2 yn+2,1 + s2,1,2 yn+1,1 − yn,1 = 0,

k = 7

F7[yn,1] ≡ yn+3,1 + s3,4,3 yn+2,1 + s1,4,2 yn+1,1 + s3,5,2 yn,1 = 0,

G7[yn,1] ≡ s2,7,3 yn+3,1 + s0,7,2 yn+2,1 + s2,1,2 yn+1,1 − yn,1 = 0,

k = 9

F9[yn,1] ≡ yn+4,1 + s1,4,3 yn+3,1 + s3,5,3 yn+2,1 + s1,5,2 yn+1,1 + s3,6,2 yn,1 = 0,

G9[yn,1] ≡ s0,8,3 yn+4,1 + s2,9,3 yn+3,1 + s0,9,2 yn+2,1 + s2,1,2 yn+1,1 − yn,1 = 0,

k = 11

F11[yn,1] ≡ yn+5,1 + s3,5,4 yn+4,1 + s1,5,3 yn+3,1 + s3,6,3 yn+2,1 + s1,6,2 yn+1,1 + s3,7,2 yn,1 = 0,

G11[yn,1] ≡ s2,10,4 yn+5,1 + s0,10,3 yn+4,1 + s2,11,3 yn+3,1 + s0,11,2 yn+2,1 + s2,1,2 yn+1,1 − yn,1 = 0.
(4.47)
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Generally one can show the following recursion equations for yn,1:

Fk[yn,1] = yn+ k−1
2

,1 +

⌊k−1
4

⌋∑

j=1

s1, k−1
2

+2−j,1+j × yn+2j−1,1 +

⌊k+1
4

⌋∑

j=1

s3, k−1
2

+3−j,1+j × yn+2j−2,1 = 0,

Gk[yn,1] = −yn,1 +
⌊k−1

4
⌋∑

j=1

s0,k+1−j,1+j × yn+2j,1 +

⌊k+1
4

⌋∑

j=1

s2,k+2−j,1+j × yn+2j−1,1 = 0. (4.48)

Note that the indices are understood as modulo k, say s2,i,j = s2,i+k,j. These two equa-
tions provide a non-trivial constraints on {yn,1}. A brief proof for these equations is also
shown in Appendix C. Note that all the Stokes multipliers in this expression are fine
Stokes multipliers.

Therefore, solving the multi-cut boundary condition means finding out the solutions
{yn,1} to the recursive relations (4.48) with properly choosing the Stokes multipliers which
satisfy the basic three constraints discussed in Section 3.4. This is the non-perturbative
completion problem in this non-critical string theory.

4.3 Ansatz and solutions in the general k-cut cases

Before solving the boundary conditions, we here summarize the equations we solve: After
imposing the Zk symmetry condition (3.57),

Zk symmetry: S
(sym)
2rl = Γ−l S

(sym)
0 Γl (4.49)

the system becomes

Multi-cut BC recursion: Y (4n) =
(
S
(sym)
0 Γ−1

)
Y (4(n+1)) (4.50)

Monodromy free condition:
(
S
(sym)
0 Γ−1

)k
= Ik, (4.51)

Hermiticity condition: S∗
n = ∆ΓS−1

(2r−1)k−n Γ
−1∆. (4.52)

First of all, we focus on the monodromy free condition (4.51). Let us assume that

one can diagonalize the matrix S
(sym)
0 Γ−1, then the eigenvalues of the matrix S

(sym)
0 Γ−1,

λj (j = 1, 2, · · · , k), satisfy

(λj)
k = 1, S

(sym)
0 Γ−1 ∼= diagj(λj). (4.53)

Here ∼= indicates equality up to a similarity transformation. This means that the eigen-
values of this matrix are the k-th roots of unity. However, conversely if one cannot
diagonalize the matrix S

(sym)
0 Γ−1, then the matrix is generally given as the Jordan nor-

mal form,

S
(sym)
0 Γ−1 ∼= Λ + T, Λ = diagj(λj), (4.54)

with a proper triangular matrix T . Therefore, the matrix S
(sym)
0 Γ−1 cannot satisfy the

monodromy free condition (4.51). Hence, the monodromy free condition is rephrased as

Monodromy free condition (4.51)

⇔ S
(sym)
0 Γ−1 is diagonalizable with eigenvalues λj of λk

j = 1. (4.55)
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For later convenience, we introduce the characteristic equation of the matrix S
(sym)
0 Γ−1:

H(x) ≡ det
(
xIk − S

(sym)
0 Γ−1

)
= 0. (4.56)

According to the basic theorem of linear algebra, if the minimal polynomial of a matrix
A,

Hminimal(A) = 0, (4.57)

has no degenerate root, then the matrix A is diagonalizable. In particular, if all the
eigenvalues of A are different, then the matrix A is diagonalizable and the minimal
polynomial is the characteristic equation.

If one tries to solve the multi-cut boundary conditions with some direct analysis in
several cases, one observes that this system has several solutions. Here we derive special
solutions which can be generalized to the cases with an arbitrary number of cuts. In
order to simplify the system, we impose a few ansatz for this system.

First we assume the following ansatz for the vector Y (4n):

Ansatz 1: Y (4(n+1)) = y × Y (4n) ⇔ yn,i = yn × y0,i. (4.58)

This immediately results in yk = 1 because the boundary condition recursion (4.50) with

this ansatz becomes an eigenvalue equation for the matrix S
(sym)
0 Γ−1:

(
S
(sym)
0 Γ−1

)
Y (4n) = y−1 Y (4n) ⇔ H(y−1) = 0, (4.59)

and the monodromy free condition (4.55) concludes that y−1 is a k-th root of unity. As
a result, the recursion equations (4.48) for yn,1 turn out to be the following two algebraic
equations in y:

Fk(y) ≡
Fk[yn,1 → yn × y0,1]

yn × y0,1
= 0, Gk(y) ≡

Gk[yn,1 → yn × y0,1]

yn × y0,1
= 0, (4.60)

and actually they are related to each other by complex conjugation:

[
Fk(y)

]∗
= −y−⌊k

2
⌋Gk(y), (4.61)

with taking into account the Hermiticity condition (4.52) and yk = 1. Therefore, the
boundary conditions are given as the following algebraic equation system:

Fk(y) = H(y−1) = 0, y = ωn, ∃n ∈ Z. (4.62)

Secondly, we assume that all the solutions to the boundary-condition algebraic equa-
tion Fk(y) = 0 are k-th roots of unity. That is,

Ansatz 2: Fk(y) = H(y−1) = 0, y = ωnj , (j = 1, 2, · · · ,
⌊k
2

⌋
). (4.63)

This ansatz fixes a half of not-yet-determined Stokes multipliers, with keeping the consis-
tency with the boundary conditions and the Hermiticity conditions. By using the relation
between roots and coefficients in (4.48), one obtains

sl,i,j = (−1)l−1σLl,i,j
({−ω(−1)l−1nj}⌊

k
2
⌋

j=1), (4.64)
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Here σn({xi}) is the symmetric polynomials among {xi}Ni=1 of degree n:21

σn({xi}Ni=1) =
∑

1≤i1<i2<···<in≤N

xi1xi2 · · ·xin , (4.65)

and the integer Ll,i,j is defined as

0 ≤ Ll,i,j < k, Ll,i,j ≡ (−1)l−1(i− j) mod k. (4.66)

The above formula is applied for the indices (i, j) which satisfy

k = 4k0 + 1 : Ll,i,j +
⌊ l − 1

2

⌋
∈ 2Z+ 1; k = 4k0 + 3 : Ll,i,j +

⌊ l
2

⌋
∈ 2Z. (4.67)

In terms of the dominance profile, it is easy to see that they are a half of the Stokes
multipliers. We show the right hand side of J (sym)

k,2 :

... k − 1) (4 k−1

2
) (k+7

2
k) (3 k+1

2
) (k+5

2
1) (2 k+3

2
)

... (4 k− 1) (k+7
2

k−1
2
) (3 k) (k+5

2
k+1
2
) (2 1) k+3

2

... k−3

2
) (k+7

2
k − 1) (3 k−1

2
) (k+5

2
k) (2 k+1

2
) (k+3

2
1)

... (k+7
2

k−3
2
) (3 k− 1) (k+5

2
k−1
2
) (2 k) (k+3

2
k+1
2
) 1




: 3
: 2
: 1
: 0

.

(4.68)

The numbers in the bold type correspond to the Stokes multipliers satisfying the con-
straints (4.67). It is worth mentioning the plot of the number Ll,i,j on this profile:

· · · k−11
2

)( k−9

2
)( k−7

2
)( k−5

2
)( k−3

2
)( k−1

2
)

· · · )( 5 )( 4 )( 3 )( 2 )( 1 )
· · · k−11

2
)( k−9

2
)( k−7

2
)( k−5

2
)( k−3

2
)( k−1

2
)

· · · )( 5 )( 4 )( 3 )( 2 )( 1 )




: 3
: 2
: 1
: 0

. (4.69)

Therefore, the numbers, Ll,i,j = 1, 2, · · · , ⌊k
2
⌋(= k−1

2
), are arranged in the increasing (or

decreasing) order. It is also convenient to introduce the following notation for the fine
Stokes multipliers:

(j|i) ∈ J (sym)
k,2 satisfying Eq. (4.67) : sl,i,j =

{
θLl,i,j

(l = 1, 3)
−θ∗Ll,i,j

(l = 0, 2)
, (4.70)

and then for the complementary cases:

(j|i) ∈ J (sym)
k,2 not satisfying Eq. (4.67) : sl,i,j =

{
θ̃Ll,i,j

(l = 1, 3)

−θ̃∗Ll,i,j
(l = 0, 2)

. (4.71)

Therefore, under our assumption, we need to fix a half of Stokes multipliers which can
be written by θ̃n. Below we provide two kinds of solutions to the multi-cut boundary
condition.

21Here σn stands for the symmetric polynomials. Do not be confused with the Pauli matrices.
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4.3.1 Discrete solutions and configurations of avalanches

As we have seen in Eqs. (4.68), our ansatz fixes a half of the Stokes multipliers with the
formula (4.64). That is, we have assumed that there are ⌊k

2
⌋ eigenvectors of the matrix

S
(sym)
0 Γ−1 which satisfy the boundary condition (4.35). The concrete expression for the

eigenvectors is given by (4.45) as

Yj ≡ Y (0)
(
{ym,1 → ωmnjy0,1}

)
, S

(sym)
0 Γ−1Yj = ω−njYj . (4.72)

The ⌊k
2
⌋ vectors {Yj}⌊

k
2
⌋

j=1 turn out to be distinct if the following set of integers:

N ≡
(
n1, n2, · · · , n⌊k

2
⌋

)
, (4.73)

are distinct up to modulo k.
Actually there is a similar way to fix another half of the Stokes multipliers, which is

similar to the multi-cut boundary condition (4.35). Therefore, we consider another type
of “boundary condition”:

yn,i = 0 (i = 1, 2, · · · ,
⌊k + 3

4

⌋
),

yn, k+1
2

+i 6= 0 (i = 1, 2, · · · ,
⌊k + 1

4

⌋
), (4.74)

which is referred to as complementary boundary condition. Of course, this condition has
nothing to do with the boundary condition (4.35), however it is useful to obtain the
following solutions to the non-perturbative completion. As is discussed in Appendix C.3,
with this boundary condition, one can obtain similar algebraic equations to Eqs. (4.60):

F̃k(y) ≡
F̃k[yn, k+3

2
→ yn × y0, k+3

2
]

yn × y0, k+3
2

= 0, G̃k(y) ≡
G̃k[yn, k+3

2
→ yn × y0, k+3

2
]

yn × y0, k+3
2

= 0

(4.75)

which are also related to each other by complex conjugation:

[
F̃k(y)

]∗
= −y−⌊k

2
⌋G̃k(y), (4.76)

with the Hermiticity condition (4.52) and yk = 1. Therefore, by imposing another ansatz
for the solution:

Ansatz 3: F̃k(y) = H(y−1) = 0, y = ωñj , (j = 1, 2, · · · ,
⌊k
2

⌋
), (4.77)

one obtains the following expression for the other half of the Stokes multipliers:

sl,i,j = (−1)l−1σLl,i,j

(
{−ω(−1)l−1ñj}⌊

k
2
⌋

j=1

)
, (4.78)

with the indices (j|i) ∈ Jl satisfying

k = 4k0 + 1 : Ll,i,j +
⌊ l − 1

2

⌋
∈ 2Z; k = 4k0 + 3 : Ll,i,j +

⌊ l
2

⌋
∈ 2Z+ 1. (4.79)
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This formula also guarantees existence of another ⌊k
2
⌋ eigenvectors which is expressed

with (C.29) as

Ỹj ≡ Ỹ (0)
(
{ỹm, k+3

2
→ ωmñjy0, k+3

2
}
)
, S

(sym)
0 Γ−1Ỹj = ω−ñj Ỹj. (4.80)

The ⌊k
2
⌋ vectors {Ỹj}⌊

k
2
⌋

j=1 turn out to be distinct if the following set of integers:

Ñ ≡
(
ñ1, ñ2, · · · , ñ⌊k

2
⌋

)
, (4.81)

are distinct up to modulo k. By construction, these vectors {Ỹj}⌊
k
2
⌋

j=1 are independent

vectors from the other vectors {Yj}⌊
k
2
⌋

j=1. Therefore, these expressions for the Stokes mul-
tipliers are characterized by the following k − 1 integers

(N; Ñ) ≡
(
n1, n2, · · · , n⌊k

2
⌋; ñ1, ñ2, · · · , ñ⌊k

2
⌋

)
(4.82)

which satisfy the following condition:

0 < n1 < n2 < · · · < n⌊k
2
⌋ ≤ k; 0 < ñ1 < ñ2 < · · · < ñ⌊k

2
⌋ ≤ k, (4.83)

up to some re-ordering of the integers.
From the above construction, we fixed k−1 eigenvalues of the matrix S

(sym)
0 Γ−1. The

last eigenvalue can be read with taking into account the following fact:

det
(
S
(sym)
0 Γ−1

)
= 1, (4.84)

therefore the remaining eigenvector is given as the following value:

ω−n0, n0 ≡ −
⌊k
2
⌋∑

j=1

(nj + ñj), (4.85)

and then the characteristic equation (4.56) is expressed as

H(x) =
(
x− ω

∑⌊ k
2 ⌋

j=1 (nj+ñj)
) ⌊k

2
⌋∏

i=1

(
x− ω−ni

)(
x− ω−ñi

)
= 0. (4.86)

Consequently, in order for the matrix S
(sym)
0 Γ−1 to be diagonalizable, the following con-

dition is sufficient:

(n; ñ) : −
⌊k
2
⌋∑

j=1

(
nj + ñj

)
= n0 6≡ ni, ñi mod k (i = 1, 2, · · · ,

⌊k
2

⌋
), (4.87)

since the last eigenvalue is distinct from the others. Actually, as is shown in Appendix
C.4, this condition is also the necessary and sufficient condition. Essence of the proof is
follows: The non-trivial situation is when the condition (4.87) is not satisfied. However,
if we assume the situation and also assume that there exists an eigenvector of the last
eigenvalue, then such an eigenvector is shown to be given by a linear combination of the
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vectors Yj and/or Ỹj. Therefore, the eigenvectors are not sufficient to diagonalize the

matrix S
(sym)
0 Γ−1, and this case is not a solution. This proves the statement. Below, we

consider the meaning of this condition.
First of all, the following transformation does not break the condition (4.87) and maps

a solution to a different solution:

(
n1, n2, · · · , n⌊k

2
⌋; ñ1, ñ2, · · · , ñ⌊k

2
⌋

)

→
(
n1 + 1, n2 + 1, · · · , n⌊k

2
⌋ + 1; ñ1 + 1, ñ2 + 1, · · · , ñ⌊k

2
⌋ + 1

)
, (4.88)

since this also maps n0 as

n0 → n0 + 1, (4.89)

and therefore forms the Zk group. Therefore, we choose the following representative of
this Zk transformation:

n0 = −
⌊k
2
⌋∑

j=1

(
nj + ñj

)
≡ 0 mod k, (4.90)

for the solutions. Under this condition, the condition (4.87) (with (4.90)) is rephrased as
the following equivalent expression of the conditions:

(N; Ñ) :

⌊k
2
⌋∑

j=1

(
nj + ñj

)
≡ 0,

{
1 ≤ n1 < n2 < · · · < n⌊k

2
⌋ ≤ k − 1,

1 ≤ ñ1 < ñ2 < · · · < ñ⌊k
2
⌋ ≤ k − 1

. (4.91)

We also introduce the following transformation which is called dual:

(
n1, n2, · · · , n⌊k

2
⌋; ñ1, ñ2, · · · , ñ⌊k

2
⌋

)

→
(
k − n1, k − n2, · · · , k − n⌊k

2
⌋; k − ñ1, k − ñ2, · · · , k − ñ⌊k

2
⌋

)
, (4.92)

which also maps a solution to a solution with fixing the condition (4.91). Also the
following is called reflection:

(
n1, n2, · · · , n⌊k

2
⌋; ñ1, ñ2, · · · , ñ⌊k

2
⌋

)
→

(
ñ1, ñ2, · · · , ñ⌊k

2
⌋;n1, n2, · · · , n⌊k

2
⌋

)
. (4.93)

Below we show several examples. Since N and Ñ basically share the same sets of indices,
we only show the N side with the following notation:

N|N| ≡
(
n1, n2, · · · , n⌊k

2
⌋

)
n1+n2+···+n

⌊ k
2 ⌋

. (4.94)

Therefore, a solution is given as a pair of these indices,

(
N|N|;N

′
|N′|

)
, (4.95)
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which satisfies |N|+|N′| ≡ 0 mod k. For instance, the following indices are the solutions
in the 5 and 7-cut cases:

k = 5 :

(1, 4)0, (2, 3)0; (2, 4)1; (3, 4)2; (1, 2)3; (1, 3)4,

k = 7 :

(1, 2, 4)0, (3, 5, 6)0;

(1, 2, 5)1, (1, 3, 4)1, (4, 5, 6)1; (1, 2, 3)6, (2, 5, 6)6, (3, 4, 6)6;

(1, 2, 6)2, (1, 3, 5)2, (2, 3, 4)2; (1, 5, 6)5, (2, 4, 6)5, (3, 4, 5)5;

(1, 3, 6)3, (1, 4, 5)3, (2, 3, 5)3; (1, 4, 6)4, (2, 3, 6)4, (2, 4, 5)4. (4.96)

It is convenient to introduce a Young-diagram notation for expressing these indices.
We here show it by examples (solutions in the 11-cut case). The indices N is denoted as

N = (n1, n2, n3, n4, n5) = (1, 2, 4, 6, 9) ⇔ 1
2
4
6
9

. (4.97)

Therefore, the i-th row from the bottom has ni boxes in the diagram. We also draw
⌊k
2
⌋ × k total boxes for later convenience. In particular, the upper-left Young diagram

(written with ) is referred to as sky and the lower-right Young diagram (written with
) is as snow. In this terminology, the dual transformation (4.92) exchanges the sky and

snow in a Young digram:

1
2
4
6
9

→ 2
5
7
9

10

. (4.98)

The pair (N; Ñ) is denoted as

(N; Ñ) = (n1, n2, n3, n4, n5; ñ1, ñ2, ñ3, ñ4, ñ5) = (1, 2, 4, 6, 9; 3, 5, 7, 8, 10)

⇔ 1
2
4
6
9

3
5
7
8
10

. (4.99)

The rules to draw the Young diagrams are as follows:

1. The number of the boxes (amount of snow) is always multiplied by k, and the
following configurations are allowed solutions in the 7-cut case:

2
4
6

1
3
5

, 4
5
6

3
4
6

. (4.100)
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2. ni and ñi (i = 1, 2, · · · , ⌊k
2
⌋) cannot take 0 and k, therefore the following configu-

rations are not allowed:

forbidden: 2
4
6

0
3
6

, 4
5
6

4
5
7

.
(4.101)

3. The solutions cannot have vertical cliffs, therefore the following configurations are
not allowed:

forbidden: 3
4
6

2
3
3

, 4
4
6

3
5
6

.
(4.102)

One of the ways to exhaust the solutions is first to take the most steepest configurations:

5
6
7
8
9

4
5
6
8
9

, (4.103)

and then to consider possible ways for snow to slide on the surface with satisfying the
condition (4.91), for example,

3
5
8
9
10

2
4
7
9
10

. (4.104)

Therefore, the discrete solutions to the non-perturbative completion are labeled by con-
figurations of avalanches in terms of Young diagram. Note that one can also move some
snow on the one side to the other side.

4.3.2 Continuum solutions

Next we consider another solutions replacing the third ansatz (4.77). A simple way to

solve the monodromy free condition is to require that the matrix S
(sym)
0 Γ−1 has k different

eigenvectors. Therefore, we assume that the characteristic equations are given as

Ansatz 4: H(x) = det
(
xIk − S

(sym)
0 Γ−1

)
= xk − 1. (4.105)
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Since the characteristic equation is written with the Stokes multipliers, one can obtain
several constraint equations. Here are several examples:

The 5-cut case:

H(x) = −1 + x5 + x (−s1,3,2 + s0,5,2s2,3,5 − s3,1,5) +

+ x2 (s0,3,4s0,5,2 − s1,1,4 + s2,1,2s2,3,5 − s1,3,2s3,1,5 − s3,4,2)+

+ x3 (−s0,5,2 − s1,1,4s1,3,2 + s0,3,4s2,1,2 − s2,3,5 − s3,1,5s3,4,2) +

+ x4 (−s0,3,4 − s2,1,2 − s1,1,4s3,4,2) ,

The 7-cut case:

H(x) = −1 + x7 + x (−s1,7,6 + s0,3,6s2,7,3 − s3,4,3) +

+ x2 (s0,3,6s0,7,2 − s1,4,2 + s2,4,6s2,7,3 − s3,1,6 − s1,7,6s3,4,3)+

+ x3 (−s1,1,5 − s1,4,2s1,7,6 + s0,3,6s2,1,2 + s0,7,2s2,4,6 + s0,4,5s2,7,3 − s3,1,6s3,4,3 − s3,5,2) +

+ x4 (−s0,3,6 + s0,4,5s0,7,2 + s2,1,2s2,4,6 − s2,7,3 − s1,4,2s3,1,6 − s1,1,5s3,4,3 − s1,7,6s3,5,2)+

+ x5 (−s0,7,2 − s1,1,5s1,4,2 + s0,4,5s2,1,2 − s2,4,6 − s3,1,6s3,5,2) +

+ x6 (−s0,4,5 − s2,1,2 − s1,1,5s3,5,2) . (4.106)

These equations become simpler if one uses the notation given in Eqs. (4.70) and (4.71).
One can read the general formula:

H(x) = xk − 1 +

⌊k
2
⌋∑

n=1

xn
[ n∑

i=1

θ∗
⌊k
2
⌋+1−i

θ̃∗
⌊k
2
⌋−n+i

−
n∑

i=0

θiθ̃n−i

]
+

+

⌊k
2
⌋∑

n=1

xk−n
[ n∑

i=0

θ∗i θ̃
∗
n−i −

n∑

i=1

θ⌊k
2
⌋+1−iθ̃⌊k

2
⌋−n+i

]
, (4.107)

where we have introduced θ0 ≡ 1. Therefore, the constraints are expressed as

0 = θ∗
⌊k
2
⌋
θ̃∗
⌊k
2
⌋
− θ1 − θ̃1,

0 = θ∗
⌊k
2
⌋
θ̃∗
⌊k
2
⌋−1

+ θ∗
⌊k
2
⌋−1

θ̃∗
⌊k
2
⌋
− θ2 − θ1θ̃1 − θ̃2,

0 = θ∗
⌊k
2
⌋
θ̃∗
⌊k
2
⌋−2

+ θ∗
⌊k
2
⌋−1

θ̃∗
⌊k
2
⌋−1

+ θ∗
⌊k
2
⌋−2

θ̃∗
⌊k
2
⌋
− θ3 − θ2θ̃1 − θ1θ̃2 − θ̃3,

0 = θ∗
⌊k
2
⌋
θ̃∗
⌊k
2
⌋−3

+ θ∗
⌊k
2
⌋−1

θ̃∗
⌊k
2
⌋−2

+ θ∗
⌊k
2
⌋−2

θ̃∗
⌊k
2
⌋−1

+ θ∗
⌊k
2
⌋−3

θ̃∗
⌊k
2
⌋
− θ4 − θ3θ̃1 − θ2θ̃2 − θ1θ̃3 − θ̃4,

· · · . (4.108)

Here we used Mathematica and checked these formulae up to k = 23. Since we assume
the second ansatz, the half of the Stokes multipliers are given as (4.63), that is,

sl,i,j = θLl,i,j
for (j|i) ∈ J (sym)

k,2 and Eq. (4.67)

with θm = σm({−ωnj}⌊
k
2
⌋

j=1), (4.109)

therefore this solution is also labeled by ⌊k
2
⌋ distinct integers:

(n1, n2, · · · , n⌊k
2
⌋) : 1 ≤ n1 < n2 < · · · < n⌊k

2
⌋ ≤ k. (4.110)
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With noting the following relation:22

σ∗
⌊k
2
⌋
σn = σ∗

⌊k
2
⌋−n

⇔ θ∗
⌊k
2
⌋
θn = θ∗

⌊k
2
⌋−n

, (4.111)

the forth ansatz (4.105) results in the following solution:

sl,i,j = θ̃Ll,i,j
for (j|i) ∈ J (sym)

k,2 and Eq. (4.79)

with θ̃n ≡ Sn
(
{σm}m∈Z

)
+ θ̃∗

⌊k
2
⌋−n+1

σ∗
⌊k
2
⌋
,

(
n = 1, 2, · · · ,

⌊k
2

⌋)
. (4.112)

Here the polynomials Sn
(
{xm}m∈Z

)
are defined by the following recursion relation:

Sn
(
{xm}m∈Z

)
= −

n∑

i=1

xi Sn−i

(
{xm}m∈Z

)
, S0

(
{xm}m∈Z

)
= 1. (4.113)

The concrete expression is given as

θ̃1 =
(
−σ1

)
+ θ̃∗

⌊k
2
⌋
σ∗
⌊k
2
⌋
,

θ̃2 =
(
−σ2 + σ2

1

)
+ θ̃∗

⌊k
2
⌋−1

σ∗
⌊k
2
⌋
,

θ̃3 =
(
−σ3 + 2σ1σ2 − σ3

1

)
+ θ̃∗

⌊k
2
⌋−2

σ∗
⌊k
2
⌋
,

θ̃4 =
(
−σ4 + σ2

2 − 3σ2
1σ2 + 2σ1σ3 + σ4

1

)
+ θ̃∗

⌊k
2
⌋−3

σ∗
⌊k
2
⌋
,

θ̃5 =
(
−σ5 + σ4σ1 − 3σ2

1σ3 + σ2σ3 + 4σ3
1σ2 − 3σ1σ

2
2 − σ5

1

)
+ θ̃∗

⌊k
2
⌋−4

σ∗
⌊k
2
⌋
. (4.114)

It is worth mentioning the relation to the Schur polynomials Pn

(
{xm}m∈Z

)
:

Sn
(
{xm}m∈Z

)
= Pn

(
{ym}m∈Z

)
, xn = Pn

(
{−ym}m∈Z

)
, (4.115)

where the Schur polynomials Pn

(
{xm}m∈Z

)
are defined as

∞∑

n=0

znPn

(
{xm}m∈Z

)
= exp

[ ∞∑

n=1

znxn

]
. (4.116)

Note that these solutions includes ⌊k
2
⌋ real parameters. Sometimes, eigenvalues of the ma-

trix S
(sym)
0 Γ−1 of the discrete solutions are distinct. In this case, such a discrete solution

is a special case of the continuum solution. However generally these solutions do not in-
clude the discrete solutions in Section 4.3.1, since the discrete solutions generally include
degeneracy of eigenvalues which cannot be resolved by these continuum parameters.

5 Non-perturbative stability of backgrounds

In this section, we briefly review the Riemann-Hilbert approach and the Deift-Zhou
method [81–83], and also discuss its physical interpretations in non-critical string the-
ory. In particular, we argue that this procedure implies an additional physical requirement

22Below we use the following short notation: σn ≡ σn

(
{−ωnj}j

)
.
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about non-perturbative stability of classical backgrounds. We will see that this constraint
results in the proper Stokes multipliers expected in the two-cut (1, 2) critical point. Clas-
sical background here means the spectral curves which appear as semi-classical (large N)
solutions of matrix models.

The role of the Riemann-Hilbert approach is to obtain the t dependence of physical
amplitudes (for example, asymptotic expansion in t) by using an integration expression
which can be derived from the ODE system in ζ . For references of the Riemann-Hilbert
approach, the authors recommend to read the review article [85].

Roughly speaking, in the Riemann-Hilbert approach, we first discard the analytic
continuity of the canonical solutions (2.38) and keep the form of asymptotic expansion
(2.25) in the complex plane C. In practice, we introduce some Stokes sectors (here we

consider fine Stokes sectors) Dn and canonical solutions on them, Ψ̃n(t; ζ). As it has been
reviewed in Section 2, these canonical solutions have the same asymptotic expansion in
each Stokes sector (2.38) and the difference of these canonical solutions is expressed by
Stokes matrices (2.39). Therefore, we introduce a semi-infinite straight line from the
origin, Kn,

Kn = {ζ = u eiχn; u ∈ R+} with ∃χn ∈ [0, 2π) s.t. Kn ⊂ Dn ∩Dn+1, (5.1)

and define the following new partially analytic function ΨRH(t; ζ) in ζ ∈ C \⋃n Γn:

ΨRH(t; ζ) = Ψ̃n(t; ζ) ζ ∈ D(χn;χn−1), (n = 1, 2, · · · ), (5.2)

which has the following uniform asymptotic expansion in ζ ∈ C \⋃nKn:

ΨRH(t; ζ) ≃
asym

Ψ̃asym(t; ζ) = Ỹ (t; ζ) eϕ̃(t;ζ), ζ →∞ ∈ C \
⋃

n

Kn. (5.3)

The lines K is referred to as discontinuity lines, and examples are shown in Fig. 9. Note
that the function ΨRH(t; ζ) has enough information to recover all the canonical solutions
simply by analytically continuing the argument ζ .

An essence of the Deift-Zhou method for the Riemann-Hilbert problem [83] is in-
troduction of the following k × k function g(t; ζ) which we shall call (off-shell) string
background:

g(t; ζ) = diag
(
g(1)(t; ζ), · · · , g(k)(t; ζ)

)
,

with g(i)(t; ζ) ≡
r∑

n=1

t(i)n ζn + t
(i)
0 ln ζ +

∞∑

n=0

1

n
g(i)n ζ−n. (5.4)

If one focuses on the aspect of algebraic curves, the function g(t; ζ) is referred to as (off-
shell) background spectral curve. We then obtain the following seting of the Riemann-
Hilbert problem:

Lemma 2 [Setting of the Riemann-Hilbert problem] There exists the set of parameters

t
(i)
n (i = 1, 2, · · · , k; n = 1, 2, · · · , r) which satisfies

Z(t; ζ) ≡ ΨRH(t; ζ)e
−g(t;ζ) → Ik,

(
ζ →∞ ∈ C \

⋃

n

Kn

)
. (5.5)
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-

(1,2)

(2,3)

(3,1)(1,2)

(2,3)

(3,1)

(1,2)
(2,3)

(3,1)(1,2)

(2,3)

(3,1)

(a)

ζ

0
-
-

-
-

--

-

-

-

-

- -

(1,2)

(2,3)

(3,1)(1,2)

(2,3)

(3,1)

(1,2)
(2,3)

(3,1)(1,2)

(2,3)

(3,1)

(b)

Figure 9: These are examples in the 3-cut (1, 1) critical point. a) The coarse Stokes sectors (shadowed
domains) and the discontinuity lines K (dashed lines). Basically, any lines in the intersections D3n ∩
D3(n+1) are allowed. b) The discontinuity lines K (dashed lines) with respect to the fine Stokes sectors.
They are related to the lines in (a) by continuous deformations which do not cross any divergence in the
Riemann-Hilbert integral (5.10).

The k × k matrix function Z(t; ζ) then satisfies the following discontinuity relation:

Z+(t; ζ) = Z−(t; ζ)G(t; ζ), Gn(t; ζ) ≡ eg(t;ζ)Sne
−g(t;ζ), along ζ ∈ Kn, (5.6)

where n = 1, 2, · · · and we define Z±(t; ζ) ≡ lima→0 Z(t; ζ ± aǫ) with a vector ǫ which
directs the left hand side of the line Kn.

In general, the parameters t
(i)
n (i = 1, 2, · · · , k; n = 1, 2, · · · , r) are the integrable de-

formations of the k-component KP hierarchy [90]. These are then given by the Lax
equations:

gstr
∂

∂t
(i)
n

Ψ̃(t; ζ) =
[
P̃(i)

−n ζ
n + P̃(i)

−n+1(t) ζ
n−1 + · · ·+ P̃(i)

0

]
Ψ̃(t; ζ) ≡ P̃(i)(t; ζ) Ψ̃(t; ζ). (5.7)

This information is understood as given information of the system and non-normalizable
string moduli space which should not be minimized by the string dynamics [78]. Note
that the Stokes matrices are invariants of these integrable deformation:

∂Sm

∂t
(i)
n

= 0,
(
i = 1, · · · , k; n = 1, 2, · · · , r; m = 1, 2, · · ·

)
, (5.8)

and therefore the multipliers are integration constants (initial conditions) of these defor-
mations. In this sense, they are also understood as non-normalizable string moduli space
of the dynamics in the strong-coupling region of string theory.

Since the Stokes multipliers are integration constants of the system, we can uniquely
obtain all the information by identifying the deformation parameters t

(i)
n (i = 1, 2, · · · , k; n =

1, 2, · · · , r) and the Stokes multipliers. The fact is given in the form of the following the-
orem:
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Theorem 5 [The Riemann-Hilbert problem (see [85])] For a given analytic function
G(t; ζ) on the discontinuity line ζ ∈ K ≡ ⋃nKn,

G(t; ζ) = Gn(t; ζ) ≡ eg(t;ζ)Sne
−g(t;ζ) ζ ∈ Kn (n = 1, 2, · · · ), (5.9)

there exists a unique holomorphic function Z(t; ζ) which satisfies Eqs. (5.5) and (5.6),
and then Z(t; ζ) is given as

Z(t; ζ) = Ik +

∫

K

dλ

2πi

ρ(λ)(G(λ)− Ik)

λ− ζ

= Ik +
∑

n,i,j

sn,i,j

∫

Kn

dλ

2πi

ρ(λ)Ei,j

λ− ζ
eg

(i)(t;λ)−g(j)(t;λ), (5.10)

with ρ(ζ) ≡ Z−(ζ) on ζ ∈ K =
⋃

nKn.

By using the Riemann-Hilbert solution (5.10), one can obtain the canonical solutions to
the ODE system (defined in (5.3)) as a function of t:

ΨRH(t; ζ) = Z(t; ζ) eg(t;ζ) ≃
asym

Ψ̃asym(t; ζ) = Ỹ (t; ζ) eϕ̃(t;ζ), ζ →∞ ∈ C \ K. (5.11)

Note that the “density function ρ(ζ)” is given by Z(t; ζ) itself, and then the function ρ(ζ)
satisfies the following integral equation:

ρ(ζ) = Ik +

∫

K

dλ

2πi

ρ(λ)(G(λ)− Ik)

λ− ζ + ǫ
, ζ ∈ K. (5.12)

Therefore, one can recursively solve it and the solution is given as the following infinite
sum of integrals:

Z(t; ζ) = Ik +
∞∑

n=1

n∏

i=1

[∫

K

dλi

2πi

] n∏

j=2

[
G(λj)− Ik

λj − λj−1 + ǫ

]
G(λ1)− Ik
λ1 − ζ

, (5.13)

with the assumption that
∫

K

dλ

2πi

(
G(λ)− Ik

)
, (5.14)

is sufficiently small. Note that we use the following multiplication rule of matrices:∏n
j=1Aj ≡ AnAn−1 · · ·A1. In terms of componets, this is expressed as

Z(t; ζ) = Ik +
∑

n,i,j

sn,i,jEi,j

∫

Kn

dλ1

2πi

eg
(i)(t;λ1)−g(j)(t;λ1)

λ1 − ζ
+

+
∑

n1,n2,i,j,l

sn2,i,lsn1,l,jEi,j

∫

Kn1

dλ1

2πi

∫

Kn2

dλ2

2πi

eg
(i)(t;λ2)−g(l)(t;λ2)+g(l)(t;λ1)−g(j)(t;λ1)

(λ2 − λ1 − ǫ)(λ1 − ζ)
+ · · · .

(5.15)

This expression is meaningful if the integral can be small enough to have convergence. In
this case, one can evaluate the leading contribution by truncating higher terms (the so-
called Born approximation). It is worth mentioning that this integral is quite similar to
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the D-instanton operator formalism in the free-fermion formulation [30,31] by interpreting

g(i)(t; ζ) as the free boson operator ϕ
(i)
0 (ζ) in the system.

An important point here is that, in the Riemann-Hilbert approach, the string back-
ground g(t; ζ) is arbitrary except for the parameters t

(i)
n (i = 1, 2, · · · , k; n = 1, 2, · · · , r),

and then generally is different from the semi-classical resolvent amplitudes ϕ̃(t; ζ) of
Eq. (2.32) which is obtained as a solution to the equation of motion (or loop equations)
in the large N limit of the matrix models. As one can see in Theorem 5, the role of
the string background g(t; ζ) is a reference background in the Riemann-Hilbert problem.
Therefore, from the string-theory viewpoints, the string backgrounds g(t; ζ) are generally
understood as off-shell backgrounds of string theory and in this sense the Riemann-Hilbert
approach realizes an off-shell background independent formulation of string theory.

In order to understand g(t; ζ) as off-shell backgrounds of string theory, it is worth
mentioning the interpretation of the position of cuts. Taking into account the consider-
ation given around Eq. (4.21), we can define the cuts on the off-shell background as a
combination of general Stokes lines:

Re
(
g(i)(t; ζ)− g(j)(t; ζ)

)
= 0, (5.16)

which is obtained by an analytic deformation of the matrix contour ω1/2C(k) (so that it
realizes Eq. (4.15) in the leading of ζ → ∞). Note that this consideration is possible
after imposing proper Stokes phenomena which solve the multi-cut boundary condition,
as it is carried out in Section 4.

This viewpoint also provides the following consideration: If one chooses g(t; ζ) as a
semi-classical resolvent function ϕ̃(t; ζ), then the evaluation of Eqs. (5.11) and (5.10) in
gstr → 0,

ΨRH(t, ζ) = Z(t; ζ) eg(t;ζ) =
[
Ik + · · ·

]
eg(t;ζ), (5.17)

is calculation of quantum corrections from the background spectral curve g(t; ζ) which
is given by the semi-classical resolvent. Therefore, if the resolvent background is a stable
vacuum of this system, the non-perturbative corrections should be exponentially small.
This is the additional constraint for the Stokes multipliers and is referred to as small-
instanton condition.

5.1 The small-instanton condition for the 2-cut critical point

Here we consider the small-instanton condition in the 2-cut (1, 2) critical point. Mathe-
matically, the Riemann-Hilbert problem in this case has been evaluated in [82,83,86–89]
in the larger classes of Stokes multipliers (See the review [85]). In particular, according to
the Deift-Zhou procedure [83], one first deforms the discontinuity lines K to anti-Stokes
lines. The concept of anti-Stokes lines depends on saddle points of the string background
g(t; ζ):

saddle points ζ∗ = ζ
(n)
i,j :

∂

∂ζ

[
g(i)(t; ζ∗)− g(j)(t; ζ∗)

]
= 0, (i, j = 1, 2, · · · , k).

(5.18)
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Definition 11 [Anti-Stokes lines] Anti-Stokes lines ASL
(n)
i,j are defined for each pair of

(i, j) as

ASL
(n)
i,j =

{
ζ ∈ C; Im

[
g(i,j)(t; ζ)

]
= Im

[
g(i,j)(t; ζ

(n)
i,j )
]}

, (5.19)

where ζ
(n)
i,j is a saddle point of the function g(i,j)(t; ζ) ≡ g(i)(t; ζ)− g(j)(t; ζ).

In the procedure of the Deift-Zhou method, one can choose the string background g(t; ζ),
however, we know that the 2-cut (1, 2) critical point has two phases with respect to the
sign of t cosmological constant [41]. Therefore, we choose the string background according
to the actual phase appearing in the two-cut matrix model:23

g(t; ζ) = σ3

[1
3
ζ3 + tζ + · · ·

]
=





σ3

[1
3

(
ζ2 + 2t

)3/2]
: two-cut phase (t > 0)

σ3

[1
3
ζ3 + tζ

]
: one-cut phase (t < 0)

. (5.20)

Since we know that these curves are realized in the critical point as its stable vacua, these
perturbative vacua should satisfy the small-instanton condition. Below we separately
consider each case. We skip the calculation which is the same as [85].

The two-cut phase (t > 0) There are three saddle points of the function g(1,2)(t; ζ) ≡
g(1)(t; ζ)− g(2)(t; ζ):

ζ = ζ
(n)
1,2 : ζ

(0)
1,2 = 0, ζ

(±1)
1,2 = ±i

√
2t, (5.21)

and the values of the function at these saddle points are

g(1,2)(t; ζ
(0)
1,2) =

2

3

(
2t
)3/2

, g(1,2)(t; ζ
(±1)
1,2 ) = 0. (5.22)

Note the saddle-point value of the function g(2,1)(t; ζ) = −g(1,2)(t; ζ) is opposite of them.
They are understood as instanton actions for the saddle points. The deformation of
discrete lines K to the DZ curves is given in Fig. 10.

On the DZ curves, we then evaluate the integral (5.15) at saddle points [85]. The

small-instanton condition becomes relevant when the saddle point ζ
(0)
1,2 = 0 of g(1,2)(t; ζ)

contributes in the Riemann-Hilbert integral (5.15). This happens in the integral on the
curve K3. The relevant part is given as

Z(t; ζ) = αE1,2

∫

K3

dλ

2πi

eg
(1,2)(t;ζ)

λ− ζ
+ · · · . (5.23)

23Note that we are here imposing a physical requirement, by taking into account the Deift-Zhou
method [83]. In the Deift-Zhou procedure, one considers an arbitrary Stokes multipliers, and the function
g(t; ζ) is a function which we choose so that there is no divergence in the RH calculation. In this way,
we can obtain the asymptotic form in t for these arbitrary Stokes multipliers. In this section, on the
other hand, we impose a physical constraint in which the physical background g(t; ζ) obtained from the
matrix models is non-perturbatively stable. Therefore, this constraint picks up the special and physical
Stokes multipliers.
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Figure 10: The discontinuity lines and the DZ curves in the two-cut (1, 2) critical point of the two-cut
phase. a) The discontinuity lines K. There are two kinds of lines: the one kind is the lines K2n+1 on

which the integral (5.15) only includes the contributions from the exponent eg
(1,2)(ζ). The other kind is

the lines K2n on which the integral (5.15) only includes the contributions from the exponent eg
(2,1)(ζ). b)

The DZ curves which are obtained from analytic deformation of the original lines K. A large D-instanton
effect appears around the origin on the line K3. Therefore, we require α = 0 so that this large instanton
vanishes. c) The resulting DZ lines with α = 0. Two lines along the real axes K̃0± come from the

Stokes matrices on the lines K̃U and K̃D. Saddle point approximation on each line gives ZZ branes in the
Liouville theory, however contributions from these lines are the same and canceled by the Z2 symmetry.

The parameter α is the Stokes multipliers of this system (2.59). Therefore, in order to
satisfy the small-instanton condition, the following condition is necessary and sufficient:

α = s0 = s3 = 0, (5.24)

otherwise this perturbative vacuum (5.20) breaks down (or decays into some stable vac-
uum) by the large non-perturbative effects. Consequently, the solutions to the non-
perturbative completion are finally given as

α = 0, β = ±1 = −γ, (5.25)

which is known as the Hastings-McLeod solution in the Painlevé II equation [84]. As it
has been calculated in [84], the final result is given as24

f(t) = −2β
√
2t+ · · · with β = ±1, (5.26)

especially, the instanton effect which comes from a single ZZ-brane at the origin ζ = 0
vanishes in this phase.

24In this calculation, we use the local Riemann-Hilbert problems. Since the evaluation of the Riemann-
Hilbert problem is not our purpose, we here skip the calculation. See the review [85]. An intuitive reason
for vanishing the D-instanton effects (or physical interpretation of the mathematical result) is cancellation
due to the Z2 symmetry of the system. For example, if one introduces the formal monodromy (as
mentioned around (2.64), i.e. adding D0-brane charges in the background) then the instanton effect from
the origin ζ = 0 appears.

54



The one-cut phase (t < 0) There are two saddle points of the function g(1,2)(t; ζ) ≡
g(1)(t; ζ)− g(2)(t; ζ):

ζ = ζ
(n)
1,2 : ζ

(±1)
1,2 = ±

√
−t, (5.27)

and the values of the function at these saddle points are

g(1,2)(t; ζ
(±1)
1,2 ) = ∓4

3
(−t)3/2. (5.28)

The deformation of discrete lines K to the DZ curves is given in Fig. 11. Note that
existence of this phase also requires the same constraint α = 0. By taking into account
the solution to the non-perturbative completion (5.25), the Riemann-Hilbert integral
(5.15) becomes the following simple contour integrals:

Z(t; ζ) = Ik + βE1,2

∫

K1,2

dλ

2πi

eg
(1,2)(t;λ)

λ− ζ
− βE2,1

∫

K2,1

dλ

2πi

eg
(2,1)(t;λ)

λ− ζ
+ · · · ,

= Ik +
β

2πi

[
i

√
π

2
√
−t

E1,2√
−t− ζ

− i

√
π

2
√
−t

E2,1

−
√
−t− ζ

]
e−

4
3
(−t)3/2 + · · · , (5.29)

therefore the asymptotic expression of f(t) is given as

f(t) = − β√
2π
√
−t

e−
4
3
(−t)3/2 + · · · with β = ±1. (5.30)

See Eq. (2.48). It is worth mentioning that a similar expression was found in the 2-cut
(1, 2) critical points [70] which comes from an explicit expression of fermion state within
the free-fermion formulation [24, 30, 31, 68], although the expression there is given by an
infinite sum of super-matrix integrals.

5.2 The small-instanton condition for the k-cut critical points

Here we consider the small-instanton constraint in the k-cut (1, 1) critical points. Since
we here focus on the additional constraint, we only study the saddle point actions for
the semi-classical string background and evaluation of the Riemann-Hilbert integrals is
remained for future investigation. The classical backgrounds in these cases are calculated
in [45] and given in terms of parameter z as

g(t; ζ) = diag
(
g(1)(t; ζ), · · · , g(k)(t; ζ)

)
, g(j)(t; ζ) =

∫ ω−(j−1)ζ

y(z) dx(z),

with x(z) = t
k

√(
z − c

)l(
z − b

)k−l
, y(z) = t

k

√(
z − c

)k−l(
z − b

)l
, (5.31)

with 0 = c l+b (k−l). The index l (= 0, 1, 2, · · · , k−1) labels generally different solutions.
The classical background g(t; ζ) is then expressed as

g(j)(t; ζ) = g(1)
(
t;ω−(j−1)ζ

)
, g(1)

(
t; x
)
=

1

2

(
z(x)

)2 − (c+ b) z(x). (5.32)
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Figure 11: The discontinuity lines and the DZ curves in the two-cut (1, 2) critical point of the one-cut
phase. a) The discontinuity lines K which is the same as two-cut phase. b) The DZ curves which are
obtained from analytic deformation of the original lines K. A large D-instanton effect appears around the
saddle point ζ = +

√
t on the line K0, and around the saddle point ζ = −

√
t on the line K3. Therefore, we

require α = 0 so that these large instantons vanishes. c) The resulting DZ lines with α = 0. By taking
into account the sign of the Stokes multipliers, one observes that the integral (5.15) along connected

lines K̃2 and K̃4 (and also K̃1 and K̃5 in the same way) can be considered as an integral on the single
contour. Saddle point approximation on each line gives ZZ branes in the Liouville theory of the one-cut
phase.

Here z(x) is the inverse of the function x(z) in Eq. (5.31). The saddle points for
g(i,j)(t; ζ) = g(i)(t; ζ)− g(j)(t; ζ) are given as

d

dζ
g(i,j)(t; ζ) = 0 ⇔ ωi−1x(z) = ωj−1x(z′), ω−(i−1)y(z) = ω−(j−1)y(z′), (5.33)

and then this can be solved as

z′ = z
(n)
i,j ≡

(
b e

i
2
χ
(n)
i,j + c e−

i
2
χ
(n)
i,j

2 cos
(
χ
(n)
i,j /2

)
)
, z = z

(−n)
j,i ≡

(
b e−

i
2
χ
(n)
i,j + c e

i
2
χ
(n)
i,j

2 cos
(
χ
(n)
i,j /2

)
)
, (5.34)

with χ
(n)
i,j ≡ 2π (i−j)+nk

k−2l
, (n = 1, 2, · · · ). Substituting these values in Eq. (5.32), we obtain

the saddle point action:

g(i,j)
(
t; ζ

(n)
i,j

)
=

1

2

(
(z

(n)
i,j )

2 − (z
(−n)
j,i )2

)
− (b+ c)

(
z
(n)
i,j − z

(−n)
j,i

)

= i
c2 − b2

2
tan
(χ(n)

i,j

2

)
∈ iR. (5.35)

This means that the saddle point action always contributes order O(g0str) and then iden-
tified as perturbative corrections (not as instantons). Therefore, there is no additional
(small-instanton) constraints on the solutions obtained in Section 4.

6 Conclusion and discussions

In this paper, we give concrete solutions to the non-perturbative completion in the k-cut
two-matrix models by a quantitative study of Stokes phenomena. The non-perturbative
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completion problem consists of the multi-cut boundary condition for the orthonormal
polynomial systems and the non-perturbative stability condition for the semi-classical
spectral curves in the large N limit. By carrying out these procedures, we demonstrated
two classes of solutions, which are referred to as discrete and continuum solutions. Inter-
estingly, the solutions possess kind of “charges” in terms of Young diagram representation.

We note that the continuum solutions to the non-perturbative completion still include
continuous free parameters, although the two-cut cases have been completely fixed. It
is conceivable that we might need to rely on further independent physical arguments to
reduce these degrees of freedom, here we would like to interpret these free parameters
as physical moduli parameters in the non-perturbative region of the string theory. Since
the strong-coupling dual theory of the multi-cut matrix models seems to be non-critical
M theory [43], these continuous parameters would correspond to the non-perturbative

(non-normalizable) moduli space of M theory,M(non−norm.)
M-theory which is a distinct parameter

space from the string-theory moduli space,M(non−norm.)
string andM(norm.)

string . Below we provide
a list of issues which deserve further exploration.

• In this paper, we have solved Stokes phenomena in Zk-symmetric critical points. It
is also interesting to consider similar program in the fractional-superstring critical
points [42]. In particular,we would like to see the emargence of the non-critical M
theory from the k →∞ limit [43].

• Our procedure is directly related to Riemann-Hilbert calculus. It is useful to ex-
amine higher order instanton sectors and generalize the results in [76].

• In this paper, we focus on the cases with p̂ = 1 and small q̂. In order to extend this
procedure to the general q̂ cases, one should resolve several complexities as shown
in Eq. (4.37). It is of great interest to obtain the Stokes multipliers in higher (p̂, q̂)
critical points. In particular, evaluation in the bosonic cases would clarify the issue
raised in [60]. Also we have to take into account the smoothing of the cuts as shown
in [51] (also see Appendix A).

• It is interesting to investigate whether the Riemann-Hilbert representation can be
written in language of matrix models? This resembles the supermatrix models
[70] which appear by evaluating tau-function in terms of free fermions. Also it is
interesting to compare it with Kontsevich type matrix models [96] and also with
the non-perturbative topological string-theory block recently proposed in [97].

• The Riemann-Hilbert representation is a background independent formulation, which
allows us to introduce general off-shell background in string theory. Therefore, it is
interesting to study physics in off-shell backgrounds and general concept of back-
ground independence in matrix models/string theory.

• In the multi-cut matrix models, there are two kinds of perturbative string vacua [43]:
One is perturbatively isolated sectors (perturbative superselection sectors) which
are decoupled with other sectors in all-order perturbation theory. This phenomenon
is an origin of the extra-dimension in M theory. The other is perturbative vacua
in the string-theory moduli space. For survey for the second vacua, the Riemann-
Hilbert representation is even more powerful, since the off-shell moduli space is
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understand as the space of off-shell string-theory backgrounds. Furthermore, the
Zk symmetric critical points in the multi-cut matrix models have several pertur-
bative vacua which satisfy loop equations. Therefore, it is interesting to study
non-perturbative string-theory landscape from the Riemann-Hilbert approach. In
particular, it might be possible to identify which observables are suitable for a
discription of a potential picture in the moduli space.

• We obtained several solutions to Stokes phenomena which are characterized by
several charges carried by Young diagrams. What is the physical meaning of our
solutions? Any relation to W-symmetry or WZNW?

• Our solutions are natural generalizations of the Hastings-McLeod solution in the
Painlevé II equation. The Hastings-McLeod solution is known to have several
special features, for instance analyticity of the solution (See also [85]). Therefore,
it is mathematically interesting to understand the standing point of our solutions
in general solutions of the string equations.

• As is well-known, the integrable deformations in the usual integrable system corre-
spond to the moduli space of worldsheet conformal field theory. On the other hand,
non-trivial deformations of our solutions can be interpreted as non-perturbative in-
tegrable deformations in physical solutions of string equations. Therefore, these
deformations are related to the moduli space of the dynamical degree of freedom
in the strong coupling region, i.e. degree of freedom in non-critical M theory. It
is interesting if there is a comprehensive understanding of these non-perturbative
integrable deformations.
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A Stokes phenomenon in the Airy function

The non-perturbative relations between the resolvent and the orthonormal polynomials
are first studied in [51] in the (2, 1) critical point of bosonic minimal string. Since this
study also uncovers another aspect of cuts in the resolvent curves for the cases of p̂ ≥ 2,
we here briefly review the results and summarize the key points.

In the bosonic (2, 1) critical point, the orthonormal polynomials satisfy the following
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differential equation:

ζΨorth(t; ζ) =
(
∂2 + u(t)

)
Ψorth(t; ζ), (A.1)

gstr
∂

∂ζ
Ψorth(t; ζ) = ∂Ψorth(t; ζ). (A.2)

By taking into account the definition ∂ ≡ gstr∂t, one can show that the orthonormal
polynomial is given as Airy function:

0 =
(
g2str

∂2

∂ζ2
− ζ − t

)
Ψorth(t; ζ), Ψorth(t; ζ) = Ai(ζ + t). (A.3)

Here we have concluded u(t) = −t by imposing the integrability condition of (A.1)
and (A.2), and also have chosen the damping solution (Airy function) as the physical
solution [51]:

Ψorth(t; ζ)→ 0, ζ →∞. (A.4)

As it is well-known, the asymptotic behavior of the orthonormal polynomial Ψorth(t; ζ)
(i.e. the Airy function) around the real axes, ζ → ±∞, is given as

Ψorth(t; ζ) ≃
asym

( gstrπ

(ζ + t)1/2

)1/2
e
− 2

3gstr
(ζ+t)3/2

+ · · · , (A.5)

in ζ →∞ with the angle, | arg(ζ)| < π, and

Ψorth(t; ζ) ≃
asym

( gstrπ

(ζ + t)1/2

)1/2 [
e
− 2

3gstr
(ζ+t)3/2

+ ie
2

3gstr
(ζ+t)3/2

]
+ · · · , (A.6)

in ζ → eπi × ∞ with the angle, | arg(−ζ)| < 2π/3. Note that both two expressions
in the intersections, π/3 < | arg(ζ)| < π, have common asymptotic expansions, and
therefore, the appearance/disappearance of different exponents in different asymptotic
regions is understood as the Stokes phenomenon. As a consequence, the resolvent in the
weak coupling limit gstr → 0 is smooth in ζ with arg(ζ) < π, and the discontinuity only
appears along ζ ∈ (−∞,−t), that is,

lim
ǫ→±0

[
lim

gstr→0
Ψorth(t; ζ + iǫ)

]
∼ e

∓ 2
3gstr

(ζ+t)3/2
, ζ ∈ (−∞,−t). (A.7)

An important point in [51] is that the resolvent curve itself has a cut around ζ → ∞.

However the explicit cuts are smeared by the superposition of the exponents e(ζ+t)3/2 and
e−(ζ+t)3/2 .

B Lax operators in the multi-cut matrix models

Here we summarize the Lax operators used in this paper.
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B.1 The Zk symmetric (1, 1) critical points

This class of critical points are characterized by the following Lax operators:

P (t; ∂) = Γ∂ +H(t),

Q(t; ∂) =
(
Γ−2(t; ∂)P (t; ∂)

)
+
− µ

(
Γ−1(t; ∂)

)
+

= Γ−1∂ − Γ−1HΓ−1 − µΓ−1. (B.1)

Note that the Zk symmetry requires

H(t) =




0 ∗
0 ∗

. . .
. . .

0 ∗
∗ 0




, (B.2)

and the Lax operator Γ(t; ∂) is defined as

Γ(t; ∂) = Γ +

∞∑

n=1

Sn(t) ∂
−n,

(
Γ(t; ∂)

)k
= Ik,

[
Γ(t; ∂),P (t; ∂)

]
= 0. (B.3)

From these operators, one can calculate the operator Q(t; ζ) (see Eq. (2.14)) which is
given as

Q(t; ζ) = Γ−2ζ − Γ−1
(
{Γ−1, H}+ µ

)
. (B.4)

The coefficients of the asymptotic expansion (2.18) are then calculated as

ϕ(ζ) =
(Γ−1ζ)2

2
− µΓ−1ζ +O(1/ζ),

Y (ζ) = Ik +
1

ζ
adj−1(Γ−2)

[
Γ−1{Γ−1, H(t)}

]
+O(1/ζ2), (B.5)

where adj−1 is the inverse operator of adj(A)[B] = AB−BA. In the k = 3 case, by using
the formula, adj−1(Γ−1)[X ] = [Γ−1, X ]/3, one can show

Y1(t) =
1

3

(
H(t)− Γ−1H(t)Γ

)
. (B.6)

Here we have checked that ϕ0(t) = 0 is true for first cases k = 3, 4, 5 and this is consistent
with our solutions.

B.2 Fractional-superstring (p̂, q̂) = (1, 2) critical points (r = 3)

In this case, we only study k = 2 case, but generally one can calculate as follows: The
Lax operators in these cases are

P (t; ∂) = Γ∂ +H(t), Q(t; ∂) =
(
Γ−1(t; ∂)P 2(t; ∂)

)
+
− µ

(
Γ−1(t; ∂)

)
+

= Γ ∂2 +H(t) ∂ − S2(t)− µΓ−1 (B.7)
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Therefore, the operator Q(t; ζ) is given as

Q(t; ζ) = Γ−1 ζ2 − Γ−1H(t) ζ − ∂H(t)− S2(t)− µΓ−1, (B.8)

or

Q−3(t) = Γ−1, Q−2(t) = −Γ−1H(t), Q−1(t) = −∂H(t)− S2(t)− µΓ−1. (B.9)

Here S2(t) satisfies

[
Γ, S2(t)

]
+ Γ∂H = 0, {Γ(k−1), S2(t)}+ {Γ(k−2), H(t), H(t)} = 0. (B.10)

In the k = 2 case, S2(t) is given as

S2(t) =
1

2

(
σ1f

2(t)− iσ2 ∂f(t)
)
, H(t) = iσ2f(t). (B.11)

The coefficients of the asymptotic expansion are given as

ϕ(ζ) =
(ζ3
3
− µζ

)
Γ−1 +O(1/ζ),

Y (ζ) = Ik −
1

ζ
adj−1(Γ−1)

[
H(t)

]
+O(1/ζ2) (B.12)

Here we have checked that ϕ0(t) = 0 is true for first cases k = 3, 4, 5 and this is consistent
with our solutions.

C Calculation for the boundary-condition recursions

In this appendix, we prove the general recursive equations for the boundary conditions
(4.48) from the original form (4.42). First we divide the indices i of yn,i into four cate-
gories:

(I) 1 ≤ i ≤
⌊k + 3

4

⌋
=: A, (II) B :=

⌊k + 3

4

⌋
+ 1 ≤ i ≤ k + 1

2
,

(III)
k + 1

2
+ 1 ≤ i ≤

⌊3k + 3

4

⌋
=: C, (IV) D :=

⌊3k + 3

4

⌋
+ 1 ≤ i ≤ k, (C.1)

with respect to the boundary condition (4.35), which is expressed as

yn,i 6= 0 i ∈ (I), and yn,i = 0 i ∈ (III). (C.2)

To read the Stokes multipliers, we also show the profile of dominance J (sym)
k,2 in the general

k-cut cases. Details are shown in Section 3.3. The left-hand sides of the profile J (sym)
k,2

61



are given as

k = 4k0 + 1 :

J (sym)
k,2 =



B (D D + 1) (A B + 1) (C D + 2) (A− 1 B + 2) (C− 1 · · ·
(D B) (A D + 1) (C B + 1) (A− 1 D + 2) (C− 1 B + 2) · · ·
D (A B) (C D + 1) (A− 1 B + 1) (C− 1 D + 2) (A− 2 · · ·
(A D) (C B) (A− 1 D + 1) (C− 1 B + 1) (A− 2 D + 2) · · ·

k = 4k0 + 3 :

J (sym)
k,2 =



D (B B + 1) (C D + 1) (A B + 2) (C− 1 D + 2) (A− 1 · · ·
(B D) (C B + 1) (A D + 1) (C− 1 B + 2) (A− 1 D + 2) · · ·
B (C D) (A B + 1) (C− 1 D + 1) (A− 1 B + 2) (C− 2 · · ·
(C B) (A D) (C− 1 B + 1) (A− 1 D + 1) (C− 2 B + 2) · · ·

(C.3)

and the right-hand sides of J (sym)
k,2 are the same expression for both cases of k:

· · · k − 1) (4 k−1
2
) (k+7

2
k) (3 k+1

2
) (k+5

2
1) (2 k+3

2
)

· · · (4 k − 1) (k+7

2

k−1
2
) (3 k) (k+5

2

k+1
2
) (2 1) k+3

2

· · · k−3
2
) (k+7

2
k − 1) (3 k−1

2
) (k+5

2
k) (2 k+1

2
) (k+3

2
1)

· · · (k+7

2

k−3
2
) (3 k − 1) (k+5

2

k−1
2
) (2 k) (k+3

2

k+1
2
) 1




: J3

: J2

: J1

: J0

.

(C.4)

The numbers in the bold type are the number relevant to the boundary condition, (I)
and (III). From this dominance profile, one can see the following facts:

1. There are only four Stokes multipliers of the following type:

s
(sym)
0,i,∗ , i ∈ (I) or (III), (C.5)

which are given as

s
(sym)

0,1, k+3
2

, s
(sym)
0,1,2 , s

(sym)

0,1, k+5
2

and s
(sym)

0, k+3
2

,2
. (C.6)

2. The difference between symmetric Stokes multipliers and fine Stokes multipliers
happens only as

s
(sym)
0,1,2 = s2,1,2 + s1,1, k+3

2
s3, k+3

2
,2, s

(sym)

0, k+1
2

,2
= s1, k+1

2
,2 + s0, k+1

2
, k+3

2
s3, k+3

2
,2, (C.7)

or equivalently,

s2,1,2 = s
(sym)
0,1,2 − s

(sym)

0,1, k+3
2

s
(sym)

0, k+3
2

,2
, s1, k+1

2
,2 = s

(sym)

0, k+1
2

,2
− s

(sym)

0, k+1
2

, k+3
2

s
(sym)

0, k+3
2

,2
. (C.8)

The others are related by a simple linear relation: sl,i,j = s
(sym)
0,i,j .

Taking into account these facts, we see how the coefficients {yn,i} are expressed by {yn,1}
with using Eq. (4.42).
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C.1 Expressions in terms of yn,1

Region I:
(
1 ≤ i ≤

⌊k + 3

4

⌋
= A

)
The first equation (i = 1) in (I) is special and given

as

yn,1 = yn+1,k + s
(sym)

0,1, k+3
2

× yn+1, k+1
2

+ s
(sym)
0,1,2 × yn+1,1. (C.9)

The first term is in the region (IV) and the second term is in the region (II). The other
equations are simply given as

yn,i = yn+1,i−1 6= 0, (i = 2, 3, · · · ,
⌊k + 3

4

⌋
= A), (C.10)

which is equivalent to

yn,i
(
{ym,1}m∈Z

)
= yn+i−1,1, i ∈ (I). (C.11)

We often use these equations in the following discussions without mentioning it.

Region II
(
B =

⌊k + 3

4

⌋
+ 1 ≤ i ≤ k + 1

2

)
In this case, the equations depend on k of

modulo 4. The first equation (i = B = ⌊k+7
4
⌋)25 is given as

yn,B =

{
yn+A,1 + s

(sym)
0,B,A × yn+A−1,1 (k ≡ 1 mod 4),

yn+A,1 (k ≡ 3 mod 4).
(C.12)

This is written only with yn,1. The other equations, except for the last one (i =
k+1
2
), are

given as

yn,B+j =






yn+1,B+j−1 + s
(sym)
0,B+j,A−j × yn+A−j−1,1 + s

(sym)
0,B+j,A−j+1 × yn+A−j,1

(k ≡ 1 mod 4)

yn+1,B+j−1 + s
(sym)
0,B+j,A−j+1 × yn+A−j,1 + s

(sym)
0,B+j,A−j+2 × yn+A−j+1,1

(k ≡ 3 mod 4)

,

for j = 1, 2, · · · ,
(k + 1

2
− B

)
− 1. (C.13)

Note that this expression is written with yn,1 except for the first term, yn+1,B+j−1. The
first term is resolved by recursively using Eqs. (C.13). We finally obtain the expression
with yn,1:

yn,B+j = yn,B+j

(
{ym,1}m∈Z

)

≡ yn+A+j,1 +

j−ǫ(k)∑

a=0

s
(sym)
0,B+j−a,A−j+a+ǫ(k) × yn+A−j−1+2a+ǫ(k),1+

+

j−1∑

a=0

s
(sym)
0,B+j−a,A−j+a+1+ǫ(k) × yn+A−j+2a+ǫ(k),1. (C.14)

25Note that the k = 5 case is special and we should only see Eq. (C.16) and skip s0,3,3 which is not
allowed.
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Here we introduced ǫ(k) as

ǫ(k) =

{
0 (k = 4k0 + 1)
1 (k = 4k0 + 3)

, (C.15)

and the last equation (i = k+1
2
) is given as

yn, k+1
2

= yn+1, k−1
2

+ s
(sym)

0, k+1
2

, k+3
2

× yn+1, k+1
2

+ s
(sym)

0, k+1
2

,2
× yn+1,1 + s

(sym)

0, k+1
2

,3
× yn+2,1. (C.16)

This is not the equation to express yn, k+1
2

by yn,1. Such an equation is provided by the

first equation in the next region III.

Region III
(k + 1

2
+ 1 ≤ i ≤

⌊3k + 3

4

⌋
= C

)
The first equation (i = k+3

2
) is special

and is given as

0 = yn, k+3
2

= yn+1, k+1
2

+ s
(sym)

0, k+3
2

,2
× yn+1,1. (C.17)

This is the equation for expressing yn+1, k+1
2

by yn,1:

yn, k+1
2

= yn, k+1
2

(
{ym,1}m∈Z

)
≡ −s(sym)

0, k+3
2

,2
× yn,1. (C.18)

The other equations are simply give as

yn,i = yn+1,i−1 = 0 (i =
k + 3

2
+ 1, · · · ,

⌊3k + 3

4

⌋
= C). (C.19)

Region IV
(
D =

⌊3k + 3

4

⌋
+1 ≤ i ≤ k

)
The first equation (i = D = ⌊3k+7

4
⌋) depends

on k of modulo 4 and is given as

yn,D =

{
s
(sym)
0,D,A × yn+A−1,1 (k ≡ 1 mod 4),

s
(sym)
0,D,A × yn+A−1,1 + s

(sym)
0,D,A+1 × yn+A,1 (k ≡ 3 mod 4),

(C.20)

The others are given as

yn,D+j = yn+D+j−1,1 + s
(sym)
0,D+j,A−j × yn+A−j−1,1 + s

(sym)
0,D+j,A−j+1 × yn+A−j,1,

for j = 1, 2, · · · , (k −D) (C.21)

Therefore, in the same way that we performed in the region II, we obtain the following
expression:

yn,D+j = yn,D+j

(
{ym,1}m∈Z

)

≡
j∑

a=0

s
(sym)
0,D+j−a,A−j+a × yn+A−j−1+2a,1 +

j−1+ǫ(k)∑

a=0

s
(sym)
0,D+j−a,A−j+a+1 × yn+A−j+2a,1.

(C.22)
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C.2 The recursion equations for yn,1

The recursion equation Fk[yn,1] = 0 The recursion equation Fk[yn,1] = 0 in (4.48)
originates from Eq. (C.16). First of all, by using Eq. (C.18), one obtains

−s(sym)

0, k+3
2

,2
× yn,1 = yn+1, k−1

2
+
(
s
(sym)

0, k+1
2

,2
− s

(sym)

0, k+1
2

, k+3
2

s
(sym)

0, k+3
2

,2

)
× yn+1,1 + s

(sym)

0, k+1
2

,3
× yn+2,1.

(C.23)

Note that the difference between symmetric Stokes multipliers and fine Stokes multipliers
(shown in Eq. (C.8)) only appears in Eq. (C.23) and the equation becomes

−s3, k+3
2

,2 × yn,1 = yn+1, k−1
2

+ s1, k+1
2

,2 × yn+1,1 + s3, k+1
2

,3 × yn+2,1. (C.24)

By substituting (C.14), one obtains the recursive equation:

Fk[yn,1] = yn+ k−1
2

,1 +

⌊k−1
4

⌋∑

j=1

s1, k−1
2

+2−j,1+j × yn+2j−1,1 +

⌊k+1
4

⌋∑

j=1

s3, k−1
2

+3−j,1+j × yn+2j−2,1 = 0.

(C.25)

The recursion equation Gk[yn,1] = 0 The recursion equation Gk[yn,1] = 0 in (4.48)
originates from Eq. (C.26). Here we also by using Eq. (C.18) obtain:

yn,1 = yn+1,k +
(
s
(sym)
0,1,2 − s

(sym)

0,1, k+3
2

s
(sym)

0, k+3
2

,2

)
× yn+1,1

= yn+1,k + s2,1,2 × yn+1,1. (C.26)

Therefore, in the same way as below, by substituting Eq. (C.22) one obtains the recursive
equation:

Gk[yn,1] = −yn,1 +
⌊k−1

4
⌋∑

j=1

s0,k+1−j,1+j × yn+2j,1 +

⌊k+1
4

⌋∑

j=1

s2,2−j,1+j × yn+2j−1,1 = 0. (C.27)

C.3 The complementary boundary condition

Recursive equations in this Appendix C are based on the boundary condition (C.2) which
has been discussed in Section 4. In this subsection, we consider a complementary “bound-
ary condition” which is expressed by

yn,i = 0 i ∈ (I), and yn,i 6= 0 ∈ (III). (C.28)

This complementary boundary condition uncovers several interesting structures of the
recursive equation (4.42) for the Stokes multipliers in the Zk symmetric critical points.
By using this complementary condition, one can perform the same procedure shown in
Section C.1 and C.2. Here we consider expressions with yn, k+3

2
, i.e.

Ỹ (n)
(
{ym, k+3

2
}m∈Z

)
=
(
ỹj,n
(
{ym, k+3

2
}m∈Z

))k
j=1

, (C.29)

in the following ordering: III→ I→ II→ IV.
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C.3.1 Expression in terms of yn, k+3
2

Region III
(k + 1

2
+ 1 ≤ i ≤

⌊3k + 3

4

⌋
= C

)
The first equation (i = k+3

2
) is given as

yn, k+3
2

= yn+1, k+1
2
. (C.30)

We interpret that this is an equation to express yn+1, k+1
2

in terms of yn, k+3
2
:

yn, k+1
2

= ỹn, k+1
2

(
{ym, k+3

2
}m∈Z

)
≡ yn−1, k+3

2
. (C.31)

The other equations are simply give as

yn,i = ỹn,i
(
{ym, k+3

2
}m∈Z

)
= yn+i− k+3

2
, k+3

2

(
i =

k + 3

2
+ 1, · · · ,

⌊3k + 3

4

⌋
= C

)
.

(C.32)

Therefore, we use these relations to rewrite all the yn,i i ∈ (III) in terms of {ym, k+3
2
}m∈Z.

Region I:
(
1 ≤ i ≤

⌊k + 3

4

⌋
= A

)
The first equation (i = 1) in (I) is given as

0 = yn,1 = yn+1,k + s
(sym)

0,1, k+3
2

× yn, k+3
2

+ s
(sym)

0,1, k+5
2

× yn+1, k+3
2
. (C.33)

This is an equation for the recursive equation in {ym, k+3
2
}m∈Z. The other equations are

simply given as

yn,i = yn+1,i−1 = 0, (i = 2, 3, · · · ,
⌊k + 3

4

⌋
= A). (C.34)

Region II
(
B =

⌊k + 3

4

⌋
+ 1 ≤ i ≤ k + 1

2

)
The first equation (i = B = ⌊k+7

4
⌋)

depends on k of modulo 4 and is given as

yn,B =

{
s
(sym)
0,B,C × yn+C− k+3

2
, k+3

2
+ s

(sym)
0,B,C+1 × yn+C+1− k+3

2
, k+3

2
(k ≡ 1 mod 4),

s
(sym)
0,B,C × yn+C− k+3

2
, k+3

2
(k ≡ 3 mod 4).

(C.35)

This is written only with yn,1. The other equations, except for the last one (i =
k+1
2
), are

given as

yn,B+j = yn+1,B+j−1 + s
(sym)
0,B+j,C−j × yn+C−j− k+3

2
, k+3

2
+ s

(sym)
0,B+j,C−j+1 × yn+1+C−j− k+3

2
, k+3

2
,

for j = 1, 2, · · · ,
(k + 1

2
− B

)
− 1, (C.36)

Therefore, by recursively using Eqs. (C.36), we obtain the expression with {ym, k+3
2
}m∈Z:

yn,B+j = ỹn,B+j

(
{ym,1}m∈Z

)

≡
j∑

a=0

s
(sym)
0,B+j−a,C−j+a × yn+C−j− k+3

2
+2a, k+3

2
+

+

j−ǫ(k)∑

a=0

s
(sym)
0,B+j−a,C−j+a+1 × yn+C−j+2a+1− k+3

2
, k+3

2
. (C.37)
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The last equation (i = k+1
2
) is given as

yn, k+1
2

= yn+1, k−1
2

+ s
(sym)

0, k+1
2

, k+3
2

× yn+1, k+1
2

+ s
(sym)

0, k+1
2

, k+5
2

× yn+1, k+3
2
. (C.38)

This is an equation for the recursive equation in {ym, k+3
2
}m∈Z.

Region IV
(
D =

⌊3k + 3

4

⌋
+1 ≤ i ≤ k

)
The first equation (i = D = ⌊3k+7

4
⌋) depends

on k of modulo 4 and is given as

yn,D =

{
yn+D− k+3

2
, k+3

2
(k ≡ 1 mod 4),

yn+D− k+3
2

, k+3
2

+ s
(sym)
0,D,C × yn+C− k+3

2
, k+3

2
(k ≡ 3 mod 4),

(C.39)

The others are given as

yn,D+j =





yn+D+j−1,1 + s
(sym)
0,D+j,C−j+1 × yn+C−j+1− k+3

2
, k+3

2
+

+s
(sym)
0,D+j,C−j+2 × yn+C−j+2− k+3

2
, k+3

2
, (k ≡ 1 mod 4)

yn+D+j−1,1 + s
(sym)
0,D+j,C−j × yn+C−j− k+3

2
, k+3

2
+

+s
(sym)
0,D+j,C−j+1 × yn+C−j+1− k+3

2
, k+3

2
, (k ≡ 3 mod 4)

,

for j = 1, 2, · · · , (k −D) (C.40)

Therefore, we obtain the following expression:

yn,D+j = ỹn,D+j

(
{ym,1}m∈Z

)

≡ yn+D+j− k+3
2

, k+3
2

+

j−1∑

a=0

s
(sym)
0,D+j−a,C−j+a+1−ǫ(k) × yn+C−j+a+1−ǫ(k)− k+3

2
, k+3

2
+

+

j−1+ǫ(k)∑

a=0

s
(sym)
0,D+j−a,C−j+a+2−ǫ(k) × yn+C−j+a+2−ǫ(k)− k+3

2
, k+3

2
. (C.41)

C.3.2 The recursion equations for yn, k+3
2

Here we extend the recursive equations in Section C.2 to this complementary boundary
condition. If we can find solutions to these recursive equations, then this means that
the original recursive equations (4.42) are consistent with the complementary boundary
condition.

The recursion equation F̃k[yn, k+3
2
] = 0 Here we consider the first recursion equation

F̃k[yn, k+3
2
] = 0 which is similar to the equation Fk[yn, k+3

2
] = 0 in (4.48). This equation

originates from Eq. (C.33), and is given as

F̃k[yn, k+3
2
] ≡ yn+ k−1

2
, k+3

2
+

⌊k−1
4

⌋∑

j=1

s3,k+2−j, k+3
2

+j × yn+2j−1, k+3
2
+

+

⌊k+1
4

⌋∑

j=1

s1,k+2−j, k+1
2

+j × yn+2j−2, k+3
2

= 0. (C.42)
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The recursion equation G̃k[yn, k+3
2
] = 0 The second recursion equation G̃k[yn, k+3

2
] = 0

is similar to Gk[yn, k+3
2
] = 0 in (4.48). This equation originates from Eq. (C.38), and is

given as

G̃k[yn, k+3
2
] = −yn, k+3

2
+

⌊k−1
4

⌋∑

j=1

s2, k+3
2

−j, k+3
2

+j × yn+2j, k+3
2
+

+

⌊k+1
4

⌋∑

j=1

s0, k+3
2

−j, k+1
2

+j × yn+2j−1, k+3
2

= 0. (C.43)

It is worth mentioning that the change of positions of the Stokes multipliers (which

appear in these recursive equations, F̃k and G̃k) in the dominance profile. We show the

right hand side of J (sym)
k,2 :

... k− 1) (4 k−1
2
) (k+7

2
k) (3 k+1

2
) (k+5

2
1) (2 k+3

2
)

... (4 k − 1) (k+7

2

k−1

2
) (3 k) (k+5

2

k+1

2
) (2 1) k+3

2

... k−3
2
) (k+7

2
k− 1) (3 k−1

2
) (k+5

2
k) (2 k+1

2
) (k+3

2
1)

... (k+7

2

k−3

2
) (3 k − 1) (k+5

2

k−1

2
) (2 k) (k+3

2

k+1

2
) 1




: 3
: 2
: 1
: 0

.

(C.44)

The numbers in the bold type correspond to the Stokes multipliers appearing in the
recursive equations in the complementary boundary condition. As one can see from
Eq. (4.68), the Stokes multipliers here are complement to the Stokes multipliers appearing
in the usual boundary condition Eq. (4.67).

C.4 General recursion equations and the third eigenvector

As one may notice in the calculations in the previous section, the procedures with the
boundary condition and with the complementary boundary condition are almost the
same. Therefore, the vector Y (n) in the recursion equations (4.42) are generally solved as

Y
(n)
general

(
{ym,1, ym, k+3

2
}m∈Z

)
≡ Y (n)

(
{ym,1}m∈Z

)
+ Ỹ (n)

(
{ym, k+3

2
}m∈Z

)
, (C.45)

with the constraints:

Fk[yn,1] + G̃k[yn, k+3
2
] = 0, Gk[yn,1] + F̃k[yn, k+3

2
] = 0. (C.46)

This formula also enables us to obtain the general solutions to the eigenvalue problem
of the matrix S

(sym)
0 Γ−1. Here, however, we focus on the discrete solutions discussed in

Section 4.3.1. If one assumes the discrete solution with the indices

(
n1, n2, · · · , n⌊k

2
⌋; ñ1, ñ2, · · · , ñ⌊k

2
⌋

)
, (C.47)

then generally eigenvectors with the eigenvalues ω−ni (or ω−ñi) are given by

Y
(0)
general

(
{ym,1 → ωna, ym, k+3

2
→ ωnb}m∈Z

)
, (C.48)
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the dimension of the eigenspace is give as

dim
[
Y

(0)
general

(
{ym,1 → ωn(m−1)a, ym, k+3

2
→ ωn(m−1)b}m∈Z

)]
=

⌊k
2
⌋∑

j=1

(
δn,nj

+ δn,ñj

)
. (C.49)

Therefore, if the indices do not satisfy Eq. (4.87), then the number of distinct eigenvalues

is k − 1, i.e. the matrix S
(sym)
0 Γ−1 is not diagonalizable.

On the other hand, if the condition Eq. (4.87) is satisfied, then the last eigenvector is
given by Eq. (C.48) with

Fk(η)a+ G̃k(η)b = 0, η ≡ ω−
∑⌊ k

2 ⌋

j=1 (nj+ñj). (C.50)

Interestingly, if nj = ñj (j = 1, 2, · · · , ⌊k
2
⌋) then the vector is given as

Y
(0)
general

(
{ym,1 → ηm−1, ym, k+3

2
→ ηm−1(−1)⌊k

2
⌋η1/2}m∈Z

)

= t
(
1, η, · · · , η⌊k−1

4
⌋, 0, · · · , 0, (−1)⌊k

2
⌋η1/2, · · · , (−1)⌊k

2
⌋η1/2+⌊k−3

4
⌋, 0, · · · , 0

)
. (C.51)

D Calculation in the 3-cut (1, 1) critical point (r = 2)

The specialty of the 3-cut (1, 1) critical point is that the symmetric Stokes sectors D4n

(see Eq. (3.15)) do not cover the whole plane C. Therefore, we consider doubling of the
sectors

D2n, S
(sym)
2n ≡ S2nS2n+1, (n = 0, 1, · · · , 5), (D.1)

and express the boundary condition (4.35) as follows:

Y (4n) =




y4n,1
y4n,2
y4n,3



 ≡ ΓnX(4n) =



x
(4n)
n+1 6= 0

x
(4n)
n+2

x
(4n)
n+3 = 0


 ,

Y (4n+2) =



y4n+2,1

y4n+2,2

y4n+2,3


 ≡ ΓnX(4n+2) =




x
(4n+2)
n+1

x
(4n+2)
n+2 6= 0

x
(4n+2)
n+3 = 0


 , (D.2)

with

X(2n) = S
(sym)
2n X(2n+2), (n = 0, 1, · · · , 5). (D.3)

This is then written as

Y (4n) = S
(sym)
0 Y (4n+2), Y (4n+2) =

(
S
(sym)
2 Γ−1

)
Y (4n+4),

⇔





y4n,i = y4n+2,i +
∑

j

[
s
(sym)
0,i,j × y4n+2,j

]
,

y4n+2,i = y4n+4,i−1 +
∑

j

[
s
(sym)
2,i,j × y4n+4,j−1

]
.

(D.4)
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These recursion relations are expressed as

y4n,3 = y4n+2,3 = 0, y4n,1 = y4n+2,1 6= 0,

y4n,2 = y4n+2,2 6= 0, y4n+2,2 = y4n+4,1 6= 0, (D.5)

and the following two recursion equation for y4n,1

y4n,1 = s2,1,2 × y4n+4,1, y4n+4,1 = −s3,3,2 × y4n,1. (D.6)

As one may notice, this equation itself is the same as Eq. (4.48). The solution to this
boundary condition is easily solved as

y4n,1 = ωnl, s3,3,2 = −ωl, s2,1,2 = ω−l, (l = 0, 1, 2), (D.7)

and the general solution is given as

s0,2,3 = −ω−l + ωls1,1,3, (D.8)

with Eq. (D.7). This provides the first case of the continuum solution (4.112).

E Calculation in the 4-cut (1, 1) critical point

Here we calculate the 4-cut (1, 1) critical point as an example in which the coprime
condition of Eq. (3.7) is violated:

(k, r) = (4, 2). (E.1)

In this case, the leading exponents are degenerate:

ϕ(1)(t; ζ) ∼ ϕ(3)(t; ζ), ϕ(2)(t; ζ) ∼ ϕ(4)(t; ζ), (E.2)

and consider the subleading Stokes lines:

Re
[(
ϕ
(1)
−r+1 − ϕ

(3)
−r+1

)
ζr−1

]
= 0, Re

[(
ϕ
(2)
−r+1 − ϕ

(4)
−r+1

)
ζr−1

]
= 0. (E.3)

The dominance profile in the ζ plane is shown in Fig. 12.
Here we use the fine Stokes sectors Dn (calculated in the leading Stokes lines) which

are defined as

Dn ≡ D
((n− 1)π

4
;
nπ

4

)
, n = 0, 1, 2, 3. (E.4)

All fine Stokes matrices can be expressed in terms of S0 as

Sn = Γ−nS0Γ
n, S0 =




1
α 1 β
ǫ 1
γ δ 1


 . (E.5)
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Figure 12: The dominance profile in the 4-cut (1, 1) case in terms of ζ. The bold lines express the
leading Stokes lines with degeneracy ϕ(1) ∼ ϕ(3) and ϕ(2) ∼ ϕ(4). The dashed lines express the sub
leading Stokes lines for (1, 3) and (2, 4).

Then the multi-cut boundary condition is given as

Y (n) ≡ ΓnX(n) =




yn,1 6= 0
yn,2 = 0
yn,3 = 0
yn,4 6= 0


 . (E.6)

The recursive equations are expressed as

yn,1 = yn+1,4, 0 = ǫ× yn+1,4, yn+1,1 + α× yn,1 = 0, γ × yn+1,1 − yn,1 = 0
(E.7)

and the solutions are given as

α = −ωl, γ = ω−l, ǫ = 0, yn,1 = ωnl (l = 0, 1, 2, 3). (E.8)

By directly solving the monodromy free condition, the other Stokes multipliers are also
fixed and the solution is given as

S0 =




1
−ωl 1 −ω−l

0 1
ω−l ωl 1


 , (l = 0, 1, 2, 3). (E.9)
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