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Abstract

We formulate maximally supersymmetric Yang-Mills theory in five dimensions in

light-cone superspace. The light-cone Hamiltonian is of the quadratic form and the

theory can be understood as an oxidation of the N = 4 Super Yang-Mills Theory in

four dimensions. We specifically study three-point counterterms and show how these

counterterms vanish on-shell. This study is a preliminary to set up the technique in

order to study possible four-point counterterms.
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1 Introduction

The maximally supersymmetric field theories have been shown to have unique quantum

properties. The fact that the N = 4 Super Yang-Mills (SYM) theory in d = 4 is finite

in perturbation theory has been known for a long time [1, 2]. It was a surprising result

but the fact that the coupling constant is dimensionless made it possible. The N = 8

Supergravity theory in d = 4 has on the contrary a dimensionful coupling constant, and

it has been believed from the beginning that its perturbation theory should diverge at

some loop order. This was the status some thirty years ago and the issue became more

academic when the Superstring theory soon afterwards was argued to be a finite quantum

gravity theory. However, in recent times, the breakdown in the perturbation expansion

for the N = 8 Supergravity theory has been questioned and in a very impressive series

of papers Bern et al. [3, 4] have shown that the S-matrix elements are indeed finite up to

and including the fourth order loops. They have also shown that the amplitudes satisfy

generalized KLT relations [5, 6], in that the amplitudes are essentially the square of the

corresponding S-matrix elements for the N = 4 Yang-Mills theory. Can this fact also be

valid at higher loops?

This is a very nagging question. There have been a number of papers over the years

arguing that possible counterterms could appear at some loop order [7–12]. Presently

the conjecture is at the seventh loop order [13–16]. If it is indeed finite it must mean

there are structures in these theories that we do not understand. We believe that we

understand all the symmetries of the theory, but there could be further symmetries that

we have so far not discovered. It could also be some other kind of algebraic structure

at work that we have not fully comprehended. In light-cone superspace, the N = 8

theory and the N = 4 theory share many formal similarities: both are described by a

chiral constrained superfield, and the light-cone Hamiltonians are expressed in terms of a

quadratic form based on algebraic relations between the dynamical supersymmetry and

the Hamiltonian [17,18]. We will discuss the quadratic form later. It is clear that we have

not fully understood its dynamical consequence. At any rate, it is important to try to

settle the question about counterterms or possible finiteness and to attack it with different

formalisms. Here we will use the light-cone superspace formulation to describe the issue

in an alternative formulation.

In order to show how the light-cone superspace formulation can be helpful we will study

a simpler theory in this paper, the N = 4 Yang-Mills theory in d = 5. This theory has a

dimensionful coupling constant and it has been argued [19] that the four-point function

first diverges in d = 4 + 6/L dimensions (where L is the loop number). This formula is

supposed to continue so that at five loops it should diverge in 26/5 dimensions and at 6

loops in 5 dimensions. So six loops is the first five-dimensional divergence that is expected.

This theory is also interesting since it is a dimensional reduction of the elusive d = 6 (2, 0)
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theory. It has been argued [20] that some divergences in d = 5 maximally supersymmetric

Yang-Mills are difficult to make sense of in the related d = 6 (2, 0) theory.

In this paper we set up the maximally supersymmetric Yang-Mills Theory in d = 5 in

light-cone superspace requiring closure of the SuperPoincaré algebra. In superspace, the

basic ingredients are the dynamical supersymmetries and we work out the algebra with

the dynamical supersymmetries in great detail. We find that the quadratic form of the

Hamiltonian agrees with the “oxidation” technique introduced in [21]. We then look for

possible generalizations of the three-point coupling. Since we now have a dimensionful

coupling constant we will show that the SuperPoincaré algebra does allow for an infinity

of such terms with an ever increasing order of derivatives. However, we will argue that

all of those terms can be eliminated by a field redefinition at the level of the equations

of motion. The fact that there are no three-point counterterms for this theory is an old

result and we do it here in detail to show how our formalism works for these questions.

We find that the crucial generator to study counterterms is the dynamical supersymmetry

generator and the non-existence of such terms for this generator implies non-existence of

possible counterterms for the Lagrangian too.

2 Lightcone formulation in five dimensions

2.1 Notation: Symplectic spinors

In five dimensions, there are three transverse directions x1, x2, x3. We denote the coordi-

nates by

x =
1√
2
(x1 + ix2), x̄ =

1√
2
(x1 − ix2), x3,

∂̄ =
1√
2
(∂1 − i∂2), ∂ =

1√
2
(∂1 + i∂2), ∂3, (2.1)

and the light-cone coordinates by

x± =
1√
2
(x0 ± x4) ; ∂∓ =

1√
2
(−∂0 ∓ ∂4) = −∂±, (2.2)

so that

∂−x+ = −1 = ∂+x−, ∂x̄ = 1 = ∂̄x = ∂3x
3. (2.3)

We choose x+ as an evolution parameter (the light-cone time). Without loss of generality,

one can set x+ = 0.

In order to formulate the maximally supersymmetric Yang-Mills theory in a superspace

whose R-symmetry is SO(5)R ≈ Sp(4)R and the little group is SO(3) ≈ SU(2), we

introduce a symplectic Grassmann variable θiα such that

θ̄iα = θjβCjiǫβα, (2.4)
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where α, β, . . . = 1, 2 are the SU(2)spin indices and the SU(2) invariant tensor ǫαβ satisfies

ǫαβ = ǫαβ , ǫαβǫβγ = −δαγ , (ǫ12 = ǫ12 = 1), (2.5)

and the SO(5) spinor indices are labelled by i, j, . . . = 1, 2, 3, 4. The charge conjugation

Cjk matrix1 is antisymmetric, Cjk = −Ckj, and satisfies

Cjk = Cjk, (Cij)† = −Cij CjkCkl = −δj l. (2.6)

It follows that the consistency condition is easily checked

θiα = θ̄iα = (θjβ)Cjiǫβα = θkγCkjǫγβC
jiǫβα = θiα. (2.7)

The commutation relations among θiα and their derivatives are given by

{θiα, θjβ} = 0

{

∂

θiα
,
∂

θjβ

}

= 0

{

θiα,
∂

θjβ

}

= δijδ
α
β. (2.8)

The kinematical supersymmetries, the spectrum generating parts of supersymmetry, are

represented as

qiα = − ∂

∂θ̄iα
+

i√
2
θiα∂+,

q̄iα =
∂

∂θiα
− i√

2
θ̄iα∂

+ = −qjβCjiǫβα, (2.9)

and satisfy

{qiα, q̄jβ} = i
√
2∂+δij δ

α
β, (2.10)

or equivalently

{qiα, qjβ} = −i
√
2∂+Cij ǫαβ. (2.11)

2.2 Little group

The SU(2) little group generators are easily defined by introducing

xαβ = xβα :=
1√
2
ǫαγ (x · σ)γ β (2.12)

where ǫαγ = i(σ2)αγ . In terms of matrix form, it reads

(

x11 x12

x21 x22

)

=

(

x − 1√
2
x3

− 1√
2
x3 −x̄

)

. (2.13)

1One can also think of it as the invariant tensor of Sp(4)
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The corresponding transverse derivatives are then given by

∂αβ = ∂βα := − 1√
2
(∂ · σ)α γ ǫγβ =

(

∂̄ − 1√
2
∂3

− 1√
2
∂3 −∂

)

, (2.14)

such that

[ ∂αβ , x
γρ ] = δγ (αδ

ρ
β), (2.15)

or

∂11x
11 = 1, ∂22x

22 = 1, ∂12x
12 =

1

2
. (2.16)

The indices are raised and lowered by ǫαβ and ǫαβ, and thus

∂αβ = ǫαγǫβρ∂γρ =

(

−∂ 1√
2
∂3

1√
2
∂3 ∂̄

)

. (2.17)

The orbital angular momenta are represented by

L1 =
[

(x11 + x22)∂12 + x12(∂11 + ∂22)
]

,

L2 = i
[

x12(∂11 − ∂22)− (x11 − x22)∂12
]

,

L3 =
(

x11∂11 − x22∂22
)

= x∂̄ − x̄∂. (2.18)

The raising and lower operators

L+ = L1 + iL2 =
√
2(x3∂ − x∂3),

L− = L1 − iL2 = −
√
2(x3∂̄ − x̄∂3), (2.19)

satisfy L+
† = L− and

[L+, L−] = 2L3, [L3, L+] = +L+, [L3, L−] = −L−. (2.20)

The SU(2)spin generators are constructed in terms of the kinematical supersymmetry

generators (2.9) by contracting the SO(5) indices

Sα
β =

1

2i
√
2∂+

(

qiαq̄iβ − 1

2
δαβq

iγ q̄iγ

)

, (2.21)

which obey

[Sα
β , S

γ
ρ] = δγβS

α
ρ − δαρS

γ
β . (2.22)
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The raising and lowering operators are given by

S+ = S1
2 =

1

2i
√
2 ∂+

qi1q̄i2, (2.23)

S− = S2
1 =

1

2i
√
2 ∂+

qi2q̄i1, (2.24)

S3 =
1

2
(S1

1 − S2
2) =

1

4i
√
2 ∂+

(qi1q̄i1 − qi2q̄i2), (2.25)

satisfying S+
† = S− as well as the SU(2) commutation relations

[S+, S−] = 2S3, [S3, S+] = +S+, [S3, S−] = −S−. (2.26)

Together with (2.18) and (2.19), one can form the full SU(2) little group generators as

M+ =
√
2(x3∂ − x∂3) + S+,

M− = −
√
2(x3∂̄ − x̄∂3) + S−, (2.27)

M3 = x∂̄ − x̄∂ + S3.

In a similar way, the SO(5)R ≈ Sp(4)R R-symmetry generators Rij are expressed as

quadratic operators

Rij = Rji =
1

i
√
2∂+

qiαǫαβq
jβ, (2.28)

which obey

[Rij, Rkl] = CjkRil + CjlRik + CikRjl +CjlRik. (2.29)

2.3 New notation

Since θi2 is related to the complex conjugate of θi1, it suffices to use one kind of Grassmann

variable

θi ≡ θi1, θ̄i ≡ θ̄i1 (= Cijθ
j2), (2.30)

and thus
{

θi,
∂

∂θj

}

= δij =
{

θ̄j,
∂

∂θ̄i

}

. (2.31)

It follows that the kinematical supersymmetry generators are written as

qi = − ∂

∂θ̄i
+

i√
2
θi∂+, q̄i =

∂

∂θi
− i√

2
θ̄i∂

+, (2.32)

satisfying

{qi, q̄j} = i
√
2∂+δij , (2.33)
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and the SU(2)spin generators are

S+ =
1

2i
√
2 ∂+

qkCklq
l,

S− =− 1

2i
√
2 ∂+

q̄kC
klq̄l, (2.34)

S3 =
1

4i
√
2 ∂+

(qj q̄j − q̄jq
j).

The chiral field which captures all the physical degrees of freedom reads

φa(y) =
1

∂+
Aa(y) +

i

∂+
θkχ̄a

k(y) +
i√
2
θkCklθ

lAa
3(y) +

i√
2
θk(CγI)klθ

lDa
I (y)

+

√
2

6
θiθjθkǫijklχ

l a(y) +
1

12
ǫijklθ

iθjθkθl∂+Āa(y), (2.35)

where a is the gauge index, I = 1, . . . 5, and the chiral (light-cone) coordinate y is defined

as

y = (x, x̄, x3, x
+, y− ≡ x− − i√

2
θiθ̄i). (2.36)

The component fields representing bosonic degrees of freedom are associated with even

powers of the Grassmann variables, while the fields representing fermionic degrees of free-

dom are associated with odd powers of the Grassmann variables. For instance, the three

vector degrees of freedom are denoted by Aa, its complex conjugate Āa, and real Aa
3; the

five scalars are by Da
I which are also real. The eight fermionic degrees of freedom are

denoted by χ̄a
k and χk a.

The superfield is (anti-) chiral:

diφ(y) = 0,
(

d̄iφ̄(ȳ) = 0,
)

(2.37)

where the (anti-) chiral derivatives are given by

di = − ∂

∂θ̄i
− i√

2
θi∂+,

(

d̄i =
∂

∂θi
+

i√
2
θ̄i∂

+,

)

(2.38)

satisfying

{di, d̄j} = −i
√
2∂+δij , {di, qj} = 0 = {di, q̄j}. (2.39)

The superfield is subject to the inside-out constraint

didjφa =
1

2
ǫijkld̄kd̄lφ̄

a. (2.40)

This inside-out constraint naturally relates Aa and Āa by complex conjugation, and leads

to

Cij =
1

2
ǫijklC

kl, (2.41)
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implying that the totally antisymmetric tensor ǫijkl is proportional to a linear combination

of quadratic C’s and thus yielding

ǫijkl = CijCkl + CjkCil + CikCjl. (2.42)

All the symmetry generators are then defined on the chiral superfield. There are

kinematical and dynamical generators. Kinematical generators Qkin act linearly,

δQkin
φa = Qkin φ

a. (2.43)

For example, the kinematical supersymmetry transformations are

δqφ
a = q φa, δq̄φ

a = q̄ φa. (2.44)

It is straightforward to see that
(

qi

Cij q̄j

)

(2.45)

forms a doublet under SU(2).

[δq, δM3
]φa =

1

2
δqφ

a, [δq̄, δM3
]φa = −1

2
δq̄φ

a, (2.46)

where we have used

δS3
φ =

1

4i
√
2 ∂+

[qi, q̄i]φ =

(

−1 +
1

2
θiq̄i

)

φ. (2.47)

It is instructive to see how the component fields transform under S+. First, we observe

δS+
φ = S+φ =

i√
2
∂+θCθ

( 1

∂+
A+ · · ·

)

. (2.48)

and notice that the transformation can also directly act on the component fields

δS+
φ =

1

∂+
(δS+

A) + · · · . (2.49)

We then compare (2.49) to (2.48) to obtain

δS+
A = 0, δS+

A3 = A, δS+
Ā = −2A3,

δS+
χ̄i = 0, δS+

χi = Cijχ̄j, δS+
DI = 0. (2.50)

This shows that A,A3, Ā form a triple of SU(2) representing physical degrees of freedom

of a gauge field in five dimensions. Five scalars DI are SU(2) singlet. The fermions form

a doublet under the SU(2)
(

Cijχ̄j

χi

)

. (2.51)
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3 Interacting Hamiltonian

3.1 Dynamical supersymmetry transformations

To build the free dynamical supersymmetry generators which transform as the 2 of SU(2),

we start with the highest weight ∂ of the triple made out of the transverse momenta

[M+, ∂] = 0. (3.1)

Together with qi, one can construct the highest weight state with spin 3/2, ∂qi. We apply

M− on this, to find the state of spin 1/2

−
√
2∂3q

i + ∂Cij q̄j. (3.2)

The highest weight state for the dynamical supersymmetry transformations then can be

constructed by switching the relative sign and with a proper normalization factor

− 1√
2
∂3q

i − ∂Cij q̄j. (3.3)

Yet another simpler way is to take the antisymmetric product of the kinematical su-

persymmetry generator qi transforming as 2 under SU(2) and the transverse derivatives

∂αβ transforming as 3. This leads to the same result

ǫαβ∂βγq
iγ −→ − 1√

2
∂3q

i − ∂Cij q̄j. (3.4)

Therefore, we can introduce the (free) dynamical supersymmetry generators as

Qiαφa = −ǫ
αβ∂βγq

iγ

∂+
φa. (3.5)

It is convenient to define the free dynamical supersymmetry generators as

q̄−i ≡ Qi2 =
∂

∂+
q̄iφ

a − ∂3√
2∂+

Cijq
j ,

qi− ≡ Qi2 =
∂̄

∂+
qiφa − ∂3√

2∂+
Cij q̄j (3.6)

so that, upon dimensional reduction to d = 4, they reproduce the same expressions for the

dynamical supersymmetry transformations in four dimensions. These generators satisfy

the supersymmetry commutation relation

{qi−, q̄−j} = i
√
2δij

1

∂+

(

∂∂̄ +
∂23
2

)

. (3.7)

For the interaction part, the same analysis can be applied as in [17]. It is then straight-

forward to see that the interaction part of the dynamical supersymmetry transformations
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does not depend on the transverse derivatives. This means that the form of the interacting

dynamical supersymmetry transformations in d = 5 is the same as that of d = 4 Super

Yang-Mills. Therefore, the full dynamical supersymmetry transformations for d = 5 Super

Yang-Mills are given by

δεq̄−φ
a = δfreeεq̄− φa + δintεq̄−φ

a

= εiq̄−iφ
a − gfabc

1

∂+
(εiq̄iφ

b∂+φc),

= εi
[

∂

∂+
q̄iφ

a − ∂3√
2∂+

Cijq
jφa − gfabc

1

∂+
(q̄iφ

b∂+φc)

]

, (3.8)

where g is the coupling constant. It follows from the inside-out constraint (2.40) that

δε̄q−φ
a = ε̄i

[

∂̄

∂+
qiφa − ∂3√

2∂+
Cij q̄jφ

a − gfabc
d(4)

2∂+3
(qiφ̄b∂+φ̄c)

]

, (3.9)

where d(4) = 1
4!ǫijkld

idjdkdl. The full dynamical supersymmetries transform as a highest

weight under the little group SU(2)

[δq̄− , δM+
]φa = 0, [δq̄− , δM3

]φa = +
1

2
δq̄−φ

a. (3.10)

Note that in (3.8) there cannot be a term of involving

Cijq
j φ̄b∂+φc + · · · , (3.11)

where · · · refers to the terms ensuring chirality. It is because such a term would lead

to a transformation that is not highest weight. This really shows the uniqueness of the

non-linear term.

It is also worth noting that the full dynamical supersymmetry transformations can

also be written in the form of a covariant derivative

δεq̄−φ
a = εi

1

∂+

[

(Dab)γ q̄iγφ
b
]

, (3.12)

where

(Dab)γ = δab∂1γ + gfabc∂+φcǫ2γ . (3.13)

Such covariant derivative structure was already observed in [17]. We note that this suggests

that the dynamical supersymmetry transformations for the maximally supersymmetric

Yang-Mills in other dimensions may also be written in terms of a covariant derivative. The

existence of the covariant derivative reflects the residual light-cone gauge symmetry [16]2.

2 We thank Pierre Ramond for pointing out this residual gauge symmetry.
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The Hamiltonian transformation on the superfield δP−φ can be obtained from the

supersymmetry algebra

[ δε̄q− , δεq̄− ]φa =
√
2 ε̄ · ε δP−φa. (3.14)

The free Hamiltonian transformation is

δfreeP−
φa = −i 1

∂+

(

∂∂̄ +
∂23
2

)

φa, (3.15)

as expected. The interacting Hamiltonian transformation is also obtained in the same way

δintP−φ
a = [ δfreeε̄q− , δintεq̄− ]φa + [ δintε̄q− , δ

free
εq̄− ]φa + [ δintε̄q− , δ

int
εq̄− ]φa, (3.16)

where the interacting dynamical supersymmetries are given in (3.8) and (3.9). It is tedious

but straightforward; one needs to repeatedly use (2.42) and the inside-out constraints

(2.40). The interacting Hamiltonian transformation to order g is then given by

δintP−φ
a =− igfabc

[

1

∂+
(∂̄φb∂+φc) +

d(4)

2∂+3
(∂φ̄b∂+φ̄c)

]

+
g

2
fabc

1

∂+2

[

∂+∂3φ
bd̄Cd̄φc + 2Crsd̄r∂

+φbd̄s∂3φ
c +

∂3
∂+

d̄Cd̄φb∂+2φc
]

+O(g2), (3.17)

where d̄Cd̄ = d̄rC
rsd̄s.

3.2 Hamiltonian and generalized transverse derivatives

Super Yang-Mills theories in various dimensions in the light-cone superspace share many

similarities. One of the most salient features is that the light-cone Hamiltonian is of

quadratic form. It was first noticed in d = 4, N = 4 Super Yang-Mills [17] and then also

confirmed for d = 3, N = 8 BLG theory [22]. Higher dimensional theory also respect such

structure. For example, the Hamiltonian for d = 10, N = 1 Super Yang-Mills is still of

the quadratic form [23]3.

In [21] it was discussed that N = 4 Super Yang-Mills in four dimensions can be easily

oxidized to higher dimension by replacing the transverse derivatives in the interaction

terms with generalized transverse derivatives ∇. The essence of ∇ and ∇ is that they are

covariant under the Lorentz little group and their forms are quadratic in the (anti-) chiral

derivatives. Since the transverse derivatives appear only in the three-point interaction

terms, the quartic interaction terms remain unaltered through the oxidation procedure.

3We thank D. Belyaev for informing us the quadratic form of N = 1 Super Yang-Mills in ten dimensions.
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We show that it is true in five dimensions as well and the form of the generalized transverse

derivatives is given by

∇ = ∂ +
i

8

∂3
∂+

dkCkld
l, (3.18)

∇ = ∂̄ +
i

8

∂3
∂+

d̄kC
kld̄l. (3.19)

To see this, let us recall the quadratic form of the light-cone Hamiltonian in [17].

The quadratic form basically dictates the fact that the Hamiltonian is the square of the

dynamical supersymmetries. In other words, the fully interacting Hamiltonian H can be

expressed as a quadratic form of the dynamical supersymmetries

H =
1

2
√
2
(Wa

i ,Wa
i ) ≡

i√
2

∫

d13zWa
i

1

∂+
Wa

i , (3.20)

where d13z = d5x d4θ d4θ̄ and εiWa
i = δεq̄−φ

a

Wa
i =

∂

∂+
q̄iφ

a − ∂3√
2∂+

Cijq
jφa − gfabc

1

∂+
(q̄iφ

b∂+φc),

Wa
i =

∂̄

∂+
qiφ̄a − ∂3√

2∂+
Cij q̄jφ̄

a − gfabc
1

∂+
(qiφ̄b∂+φ̄c). (3.21)

Because of the inside-out constraint (2.40), the free Hamiltonian is written as

Hfree =
i√
2

∫

d13z
( ∂̄

∂+
qj − ∂3√

2∂+
Cjkq̄k

)

φ̄a
1

∂+

( ∂

∂+
q̄j −

∂3√
2∂+

Cjlq
l
)

φa

= − i

2
√
2

∫

d13zφ̄a
( ∂∂̄

∂+3
+

∂3
2∂+3

)

{qk, q̄k}φa

=

∫

d13z φ̄a
(2∂∂̄

∂+2
+

∂3
∂+2

)

φa, (3.22)

where the cross term involving ∂∂3 (or ∂̄∂3) vanishes by itself due to {q̄j , q̄k} = 0 (or

{qj , qk} = 0). The three-point interacting Hamiltonian can be expressed in a simple form

if we use two nontrivial identities

fabc
∫

d13z
∂

∂+
q̄iφ

a 1

∂+2
(qiφ̄b∂+φ̄c) = −4i

√
2

3
fabc

∫

d13z
1

∂+
φaφ̄b∂φ̄c, (3.23)

and

fabc
∫

d13z
∂3
∂+

qiφaCij
1

∂+2
(qjφ̄b∂+φ̄c)

=
1

3
fabc

∫

d13z

(

1

∂+
φaφ̄b

diCijd
j

∂+
∂3φ̄

c +
1

2
φaφ̄b

diCijd
j

∂+2
∂3φ̄

c

)

. (3.24)
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The detailed proof of these identities is presented in Appendix A. The three-point inter-

acting Hamiltonian H(3) is then

H(3) = −i g√
2
fabc

∫

d13z

{

( ∂

∂+
q̄iφ

a − ∂3√
2∂+

Cijq
jφa
) 1

∂+2
(qiφ̄b∂+φ̄c) + c.c.

}

= −4

3
gfabc

∫

d13z

{

1

∂+
φaφ̄b

(

∂ +
i

8

∂3
∂+

dkCkld
l
)

φ̄c +
1

∂+
φ̄aφb

(

∂̄ +
i

8

∂3
∂+

d̄kC
kld̄l

)

φc

+
i

16
φaφ̄b

∂3
∂+2

dkCkld
lφ̄c +

i

16
φ̄aφb

∂3
∂+2

d̄kC
kld̄lφ

c

}

, (3.25)

where the last two terms are canceled each other due to the inside-out constraint and the

antisymmetry of fabc. For instance, the last term is rewritten as

fabcφ̄aφb
∂3
∂+2

d̄kC
kld̄lφ

c = −fabcφ̄bφa ∂3
∂+2

dkCkld
lφ̄c (3.26)

and thus cancels out the third term. Hence, we have

H(3) = −4

3
gfabc

∫

d13z

(

1

∂+
φaφ̄b∇φ̄c + 1

∂+
φ̄aφb∇φc

)

, (3.27)

where ∇ and ∇ are given in (3.18) and (3.19), respectively.

The four point interacting Hamiltonian does not contain any transverse derivatives and

thus its form is the same as for N = 4 SYM in four dimensions. It is, in fact, true in all

other dimensions as well. We remark as was done in [17], that it is crucial that fabc must

satisfy the Bianchi identity. In order to show that the order g2 terms from the quadratic

form is indeed the same as the four point interaction terms this condition follows. This

confirms that fabc is indeed a structure constant of Lie algebras. Combining all terms, we

obtain that the full Hamiltonian is

H =

∫

d13zH, (3.28)

where

H = φ̄a
2∂∂̄ + ∂3

2

∂+2
φa − 4

3
gfabc

( 1

∂+
φ̄aφb∇φc + 1

∂+
φaφ̄b∇φ̄c

)

+ g2fabcfade
( 1

∂+
(φb∂+φc)

1

∂+
(φ̄d∂+φ̄e) +

1

2
φbφ̄cφdφ̄e

)

, (3.29)

which agrees with the result of [21]. The Lagrangian is then

L =− φ̄a
�

∂+2
φa +

4

3
gfabc

( 1

∂+
φ̄aφb∇φc + 1

∂+
φaφ̄b∇φ̄c

)

− g2fabcfade
( 1

∂+
(φb∂+φc)

1

∂+
(φ̄d∂+φ̄e) +

1

2
φbφ̄cφdφ̄e

)

. (3.30)
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4 Three-point on-shell counterterms

When the full superPoincaré algebra was constructed for the d = 4 maximally symmetric

theory it was easy to see that the construction was indeed unique. However, for the d = 5

theory with a dimensionful coupling constant there could be other non-linear terms in the

dynamical generators where higher order in the transverse derivatives are compensated

by higher powers of the coupling constant g. Such terms could be interpreted as pos-

sible counterterms. In this section, we will hence extend our construction of dynamical

supersymmetry transformations to also include such possible terms.

In supersymmetric theories, the Hamiltonian is not a fundamental quantity. It is rather

the dynamical supersymmetry that is fundamental since the Hamiltonian can be obtained

from it. Especially in light-cone superspace, the Hamiltonian is of a quadratic form written

in terms of the dynamical supersymmetries. If the full superPoincaré algebra is unbroken

at quantum level, it is then natural to search for possible counterterms in the dynami-

cal supersymmetry transformations. This means that the full dynamical supersymmetry

transformations would be split into

δfullq̄− φ = δclq̄−φ+ δctq̄−φ, (4.1)

where δclq̄−φ are dynamical supersymmetry transformations that yield the classical action

and δctq̄−φ are the terms which account for counterterms via the quadratic form

Hfull = Hcl +Hct, (4.2)

or equivalently,

Lfull = Lcl + Lct. (4.3)

This may leads to a better understanding of the quantum property of a given theory.

As a first attempt, we consider three-point counterterms. To this end, it is useful to in-

troduce the coherent state-like form [18, 24] which is not only a way to sustain chirality

of the transformations but also the most general expression that commutes with all kine-

matical symmetry generators. Let us first examine three-point one-loop counterterms. To

construct possible one-loop counterterms in the dynamical supersymmetry generator, we

introduce one transverse derivative as well as a kinematical supersymmetry generator in

an SU(2) invariant way as in (3.5). This means that we may have terms of the form

g3fabc
ǫαβ∂βγ
∂+

qiγφbφc, or g3fabc
ǫαβ∂βγ
∂+

qiγφbφ̄c. (4.4)

By checking (3.10), however, it is easy to see that such terms cannot be highest weight of

SU(2), irrespective of the location of ∂+. We note that the same reasoning holds for all

odd loop counterterms. To see this, recall that odd loop counterterms in the dynamical

14



supersymmetry transformations require an odd number of transverse derivatives. Then

the SU(2) invariance enforces that at least one index in the transverse derivatives ∂αβ must

be contracted. This means that the effects of such derivatives over the one in (4.4) are

nothing but an SU(2) singlet since ∂αβ∂βγ = 1
2∂

βρ∂βρδ
α
γ . The remaining index structure

is then of the same form as in (4.4), and thus not of heightest weight.

On the other hand, even loop three-point counterterms in the dynamical supersymme-

try transformation have different characteristics compared to the odd loop counterterms,

because they are associated with the even number of transverse derivatives and the SU(2)

indices can be contracted among themselves. For instance, a possible two loop three-point

counterterm is comprised of two transverse momenta with the fifth power of the coupling

constant and thus it should be of the form

δctq̄−φ
a ∼ g5fabc

1

∂+(2M+1)

(

q̄i∂
αβ∂+Mφb∂αβ∂

+(M+1)φc
)

+ · · · , (4.5)

to be a highest weight under SU(2). The integer M will not be not determined until we

check the commutation relations with other dynamical transformations, e.g, [δctq̄− , δJ− ]φ =

0. However, the exact value here is not relevant for the discussion below. For simplicity,

we choose M = 0:

δctq̄−φ
a ∼ g5fabc

1

∂+
(

q̄i∂
αβφb∂αβ∂

+φc
)

+ · · · . (4.6)

By requiring that these counterterms must satisfy all the commutation relations with the

kinematical Super-Poincaré generators, one finds that they should be only of the form

δctq̄−φ
a ∝ g5fabc

1

∂+

(

∂αβ∂αβ
q̄i

2∂+2
φb∂+2φc − q̄i∂

αβφb∂αβ∂
+φc + q̄iφ

b ∂
αβ∂αβ
2

φc
)

,

which can be written as a coherent state-like form

δctq̄−φ
a = c g5fabc

(

∂

∂wαβ

∂

∂wαβ

)

1

∂+

(

Eq̄i∂
+φbE−1∂+2φc

) ∣

∣

∣

wαβ=0
, (4.7)

where c is a constant and

E = exp

[

wαβ∂αβ
∂+

]

. (4.8)

We note that the coherent state-like forms are, in fact, closely related to equations of

motion. To see this, introduce a combination of two chiral superfields

AφbBφc, (4.9)

where A and B are some bosonic/fermionic operators acting on the fields which are not

explicitly dependent on the coordinates. Now we take a d’Alembertian on (4.9)

�(AφbBφc) = (−2∂+∂− − ∂αβ∂αβ)(Aφ
bBφc), (4.10)
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where ∂αβ∂αβ = −2∂∂̄ − ∂23 . Implementing the equations of motion

∂−φa = −∂
αβ∂αβ
2∂+

φa + δintP−φ
a, (4.11)

we find that

�(AφbBφc) = (
∂αβ∂αβ
∂+

Aφb∂+Bφc)− 2(∂αβAφb∂αβBφ
c)

+ (∂+Aφb
∂αβ∂αβ
∂+

Bφc)− 2∂+δintP−(Aφ
bBφc). (4.12)

Notice that the last term in (4.12) is of higher order in the field φa. It is then obvious that

the terms quadratic in the field φa are exactly of the form of the coherent state-like form

above. Hence, the equations of motion enable us to express a d’Alambertian operator

acting on two chiral fields in terms of a coherent state-like form

�(AφbBφc) =
∂

∂wαβ

∂

∂wαβ

(

E∂+AφbE−1∂+Bφc
) ∣

∣

∣

w=0
+O(g). (4.13)

This means that using the equations of motion, we can rewrite (4.7) as

δctq̄−φ
a = g5fabc

�

∂+

(

q̄iφ
b∂+φc

)

+O(g6), (4.14)

or by reintroducing M ,

δctq̄−φ
a = g5fabc

�

∂+(2M+1)

(

q̄i∂
+Mφb∂+(M+1)φc

)

+O(g6). (4.15)

Moreover, the counterterm (4.7) can be generalized to all even loop orders.

δctq̄−φ
a =

∑

l, even

cl g
1+2lfabc

(

∂

∂wαβ

∂

∂wαβ

)l/2 1

∂+(2M+1)

(

Eq̄i∂
+(M+1)φbE−1∂+(M+2)φc

) ∣

∣

∣

wαβ=0
. (4.16)

Checking the full super-Poincaré algebra we can see that they are indeed representations

of the full algebra and hence possible counterterms. We are, however, here interested in

counterterms that survive on the mass shell and hence we check if we can rewrite them

as we have done with the two-loop counterterm in (4.14). Indeed, using the mass shell

condition we find that

δctq̄−φ
a =

∑

l, even

cl g
1+2lfabc

�
l/2

∂+(2M+1)

(

q̄i∂
+Mφb∂+(M+1)φc

)

+ higher point functions.

(4.17)

We now show that these counterterms will lead to counterterms that can be eliminated

in the Hamiltonian. Consider the calculation of the Hamiltonian variation δintP−
φa in (3.16).

If we introduce δctq̄−φ
a from (4.17) into (3.16), we find
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δctP−φ
a =

∑

l, even

cl g
1+2l

�
l/2 δĩntP−φ

a + higher point functions, (4.18)

where δĩntP−
φa is a term of a similar structure as (3.17) which has the undetermined power

M but no structure constant g. Again, the precise form of δĩntP−φ
a is irrelevant for our

discussion. The equations of motion then become

�φa = −2δintP−∂
+φa − 2

∑

l, even

cl g
1+2l

�
l/2 ∂+δĩntP−φ

a + higher point functions. (4.19)

We can so make a field redefinition

φ′a = φa − 2
∑

l, even

cl g
1+2l

�
l/2−1 δĩntP−∂

+φa. (4.20)

to obtain the new equation of motion where we have dropped the prime on the field.

�φa = −2∂+δintP−φ
a + higher point functions. (4.21)

We have hence shown that all the possible three-point counterterms can be eliminated (or

rather pushed up to higher point functions) when we use the mass-shell condition.

We must also check if there could be some other ansätze for the dynamical supersym-

metry transformation in terms of φa. However, as we pointed out before, there is no other

starting point that can be of highest weight under SU(2) without derivatives. The only

way to introduce space derivatives is to let the indices saturate each other. Hence the

net effect of introducing space derivatives into an expression would not change the overall

transformation under SU(2) and we conclude that there are no possible counterterms for

the three-point interaction.

5 Conclusion and discussions

In this paper, we have constructed the maximally supersymmetric Yang-Mills theory in

five dimensions in light-cone superspace by introducing symplectic Majorana spinors. We

found that this theory shares many similarities with N = 4 Super Yang-Mills in four

dimensions: The dynamical supersymmetry transformations possess a covariant derivative

structure which encodes the full interactions as seen in theN = 4 theory in four dimension.

The Hamiltonian is of a quadratic form which is the same as that of N = 4 theory. We

also showed that the theory can be easily seen as an oxidation from d = 4 to d = 5 via

generalized transverse derivatives in the light-cone superspace.

This theory is supposed to diverge at the six-loop order for the four-point function.

We have examined here possible three-point counterterms. In this formalism which is
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equivalent to the light-cone gauge, we found that there are no possible odd loop three-

point counterterms. For even loops, we showed how all possible three-point counterterms

can be absorbed into the kinetic term by implementing the equations of motion and making

a field redefinition. Our method is a practical hands-on way to study possible counterterms

and in a forthcoming paper we will study possible four-point counterterms.
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Appendix

A Useful identities

Chiral functions and superfields

A chiral function f(y) can be written as

f(y) = e
i

√

2
θmθ̄m∂+

f(x), (A.1)

It is then easy to see that

dmf(y) = 0, d̄mf(y) = i
√
2 θ̄m∂

+f(y),

qmf(y) = i
√
2 θm∂+f(y) , q̄mf(y) = 0. (A.2)

By complex conjugation, one easily finds similar relations for an antichiral function. For

superfields, (anti-) chiral condition, dφ = 0 (d̄φ̄ = 0), yields

∂

∂θ̄
φ = − i√

2
θ∂+φ,

∂

∂θ
φ̄ = − i√

2
θ̄∂+φ̄, (A.3)

or

qmφ = i
√
2θm∂+φ, q̄mφ̄ = −i

√
2θ̄m∂

+φ̄. (A.4)

The following commutation relations are useful when one finds the form of the interaction

terms from the quadratic forms of the light-cone Hamiltonian:

[ d̄i, θ
∂

∂θ
+ θ̄

∂

∂θ̄
] = q̄i, (A.5)

18



and

[d̄i, θ
kCkl

∂

∂θ̄l
] = −Cijd

j . (A.6)

Identity

For a chiral combination Xc,

fabc
∫

1

∂+2
φ̄aφbXc = 0. (A.7)

This can be easily seen by implementing the inside-out constraint on φb. In a similar way,

one also finds that

fabcCij

∫

1

∂+2
qiφaqjφ̄bY c = 0, (A.8)

where Y c is either chiral or antichiral. Another useful identity involves two chiral deriva-

tives

fabc
∫

(diφ̄aCijd
j φ̄b)Xc = 0, (A.9)

which is due to the antisymmetric property of Cij and fabc.

First 3-point function identity

As shown in [17], the identity

−fabc
∫

∂

∂+
q̄iφ

a 1

∂+2
(qiφ̄b∂+φ̄c) =

4i
√
2

3
fabc

∫

1

∂+
φaφ̄b∂φ̄c (A.10)

is an important identity that is crucial to see the quadratic form of the light-cone Hamil-

tonian. Here we prove it with more details.

Perform the partial integral with respect to q̄i and then use (A.4) to obtain

−fabc
∫

∂

∂+
q̄iφ

a 1

∂+2
(qiφ̄b∂+φ̄c) = i

√
2fabc

∫

φa
∂

∂+2
(θ̄i

∂

∂θ̄i
φ̄b∂+φ̄c). (A.11)

The integrations by parts with respect to ∂
∂θ̄i

allow us to express (A.11) as

4i
√
2fabc

∫

1

∂+2
φa∂(φ̄b∂+φ̄c)

− i
√
2fabc

∫

1

∂+2
θ̄
∂

∂θ̄
φa∂(φ̄b∂+φ̄c)− i

√
2fabc

∫

1

∂+2
φa∂(φ̄bθ̄

∂

∂θ̄
∂+φ̄c). (A.12)

Using (A.7), we see that the first term of (A.12) becomes

4i
√
2fabc

∫

1

∂+2
φa∂φ̄b∂+φ̄c. (A.13)
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The second term of (A.12) is

−i
√
2fabc

∫

1

∂+2
θ̄
∂

∂θ̄
φa∂φ̄b∂+φ̄c − i

√
2fabc

∫

1

∂+2
θ̄
∂

∂θ̄
φaφ̄b∂+∂φ̄c. (A.14)

The integrations by part with respect to ∂+ acting on φ̄c on the last term of (A.12) yield

− i
√
2fabc

∫

1

∂+2
φa∂(φ̄bθ̄

∂

∂θ̄
∂+φ̄c) (A.15)

= i
√
2fabc

∫

1

∂+
φa∂φ̄bθ̄

∂

∂θ̄
φ̄c +

∂

∂+2
φa∂∂+φ̄bθ̄

∂

∂θ̄
φ̄c − ∂

∂+2
φaφ̄bθ̄

∂

∂θ̄
∂∂+φ̄c.

Combining the second term of (A.14) and the last two terms of (A.15), we find that

−i
√
2fabc

∫

θ̄
∂

∂θ̄

(

1

∂+2
φaφ̄b∂∂+φ̄c

)

= 0, (A.16)

thanks to (A.7). The remaining terms are then (the integral symbol
∫

is omitted from

here on)

4i
√
2fabc

1

∂+2
φa∂φ̄b∂+φ̄c − i

√
2fabc

1

∂+2
θ̄
∂

∂θ̄
φa∂φ̄b∂+φ̄c − i

√
2fabcθ̄

∂

∂θ̄
φ̄b

1

∂+
φa∂φ̄c

≡ I + II + III ,

which we call I, II, and III respectively.

We now work on the I term: the integration by parts with respect to ∂+ (acting on

φ̄c) yields

I = 4i
√
2fabc

1

∂+
φaφ̄b∂φ̄c − 4i

√
2

1

∂+2
φaφ̄c∂+∂φ̄b

= 4i
√
2fabc

1

∂+
φaφ̄b∂φ̄c, (A.17)

where we used (A.7) in the last step.

For the II term, it follows from4 (A.3) that

II = −i
√
2fabc

1

∂+2

∂

∂θ̄i
φa (θ̄i∂

+φ̄b) ∂φ̄c = −i
√
2fabc

1

∂+
θiφa

∂

∂θi
φ̄b∂φ̄c

= −i
√
2fabcθ

∂

∂θ
φ̄b

1

∂+
φa∂φ̄c. (A.18)

Combining II and III, we obtain

II + III = −i
√
2fabc(θ

∂

∂θ
+ θ

∂̄

∂θ̄
)φ̄b

1

∂+
φa∂φ̄c. (A.19)

This can be further simplified, if we use

[ d̄i, θ
∂

∂θ
+ θ̄

∂

∂θ̄
] = q̄i, (A.20)

4There is a typo in [17]: (B.30) of [17] should be of the form (A.18) above.
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and the inside-out relations on φc, as

II + III = −i
√
2fabc

d̄4

2

[

(θ
∂

∂θ
+ θ̄

∂̄

∂θ̄
)φ̄b

1

∂+
φa
]

∂

∂+2
φc

= −i
√
2fabc

[

ǫijkl

2 · 3! q̄iφ̄
b d̄jkl
∂+

φa + (θ
∂

∂θ
+ θ̄

∂̄

∂θ̄
)φ̄b∂+φ̄a

]

∂

∂+2
φc. (A.21)

The use of the inside-out constraint and (A.4) yields that

II + III = −i
√
2fabc

[

i√
2
q̄iφ̄

bdiφa + (θ
∂

∂θ
+ θ̄

∂̄

∂θ̄
)φ̄b∂+φ̄a

]

∂

∂+2
φc

= −2i
√
2fabc

[

(θ
∂

∂θ
+ θ̄

∂̄

∂θ̄
)φ̄b∂+φ̄a

]

∂

∂+2
φc. (A.22)

Since the first term vanishes by itself due to (A.3) and the antisymmetric property of fabc

−2i
√
2fabc θ

∂

∂θ
φ̄b∂+φ̄a

∂

∂+2
φc = 2 θiθ̄i(f

abc∂+φ̄b∂+φ̄a)
∂

∂+2
φc = 0, (A.23)

which leads that

II + III = −2i
√
2fabcφa

∂

∂+2

(

θ̄
∂

∂θ̄
φ̄b∂+φ̄c

)

. (A.24)

Hence,

I + II + III = 4i
√
2fabc

1

∂+
φaφ̄b∂φ̄c − 2i

√
2fabcφa

∂

∂+2

(

θ̄
∂

∂θ̄
φ̄b∂+φ̄c

)

, (A.25)

which should be the same as (A.11) and thus yields that

i
√
2fabc

∫

φa
∂

∂+2
(θ̄i

∂

∂θ̄i
φ̄b∂+φ̄c) =

4

3
i
√
2fabc

∫

1

∂+
φaφ̄b∂φ̄c, (A.26)

This proves the identity (A.10).

Second 3-point function identity

Another useful identity is

fabc
∫

∂3
∂+

qiφaCij
1

∂+2
(qj φ̄b∂+φ̄c)

=
1

3
fabc

∫
(

1

∂+
φaφ̄b

diCijd
j

∂+
∂3φ̄

c +
1

2
φaφ̄b

diCijd
j

∂+2
∂3φ̄

c

)

. (A.27)

To prove this identity, we first use (A.4) to write the LHS of (A.27) as

−i
√
2fabc

∫

∂3
∂+2

φaθiCij
∂

∂θ̄j
φ̄b∂+φ̄c. (A.28)
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The integrations by parts with respect to ∂
∂θ̄j

then yield

i
√
2fabc

∫

θiCij
∂

∂θ̄j

∂3
∂+2

φaφ̄b∂+φ̄c + i
√
2fabc

∫

∂3
∂+2

φaφ̄b∂+θiCij
∂

∂θ̄j
φ̄c ≡ IV + V. (A.29)

Applying the inside-out constraint on φ̄c followed by integrations by parts with respect to

d̄′s, we find that the first term of (A.29), IV, can be rewritten as (dropping the integral

symbols and fabc)

IV =
i
√
2

2 · 4!ǫ
ijkl
(

d̄id̄j d̄kd̄lθ
∂

∂θ̄

∂3
∂+2

φa
)

φ̄b
1

∂+
φ̄c

= −d
iCijd

j

2

∂3
∂+

φ̄aφ̄b
1

∂+
φc + i

√
2θ

∂

∂θ̄
∂3φ̄

aφ̄b
1

∂+
φc, (A.30)

where θ ∂
∂θ̄

= θiCij
∂
∂θ̄j

.

We now consider the second term of (A.29), V. The integration by parts with respect

to ∂+ acting on φ̄c yields

V = −i
√
2
∂3
∂+

φaφ̄bθ
∂

∂θ̄
φ̄c − i

√
2
∂3
∂+2

φa∂+φ̄bθ
∂

∂θ̄
φ̄c. (A.31)

Recognize that the last term is the same as (A.28) with the opposite sign and thus this

term adds to (A.28). We then perform the integration by parts with respect to ∂3 to

rewrite the first term of (A.31) as

i
√
2
1

∂+
φa∂3φ̄

bθ
∂

∂θ̄
φ̄c + i

√
2
1

∂+
φaφ̄bθ

∂

∂θ̄
∂3φ̄

c, (A.32)

Using the inside-out constraint on φ̄b and (A.6), we find that the first term of (A.32) is

written as

i
√
2∂+φ̄aθ

∂

∂θ̄
φ̄c

∂3
∂+2

φb − 1

2
φaφ̄c

∂3
∂+2

dkCkld
lφ̄b − 1

2

1

∂+
φaφ̄c

∂3
∂+

dkCkld
lφ̄b, (A.33)

where the first term is also of the same form as (A.28) and thus adds to (A.28).

Since the second term of (A.32) is cancelled by the last term of (A.30), we hence obtain

that

IV + V =2i
√
2
∂3
∂+2

φaθiCij
∂

∂θ̄j
φ̄b∂+φ̄c − diCijd

j ∂3
∂+

φ̄aφ̄b
1

∂+
φc

− 1

2

1

∂+
φaφ̄c

∂3
∂+

dkCkld
lφ̄b, (A.34)

and this leads to the identity (A.27).

B Spinors and bilinears in spinor space for SO(5)

For an SO(5), one can choose five 4× 4 γ-matrices satisfying

{γI , γJ} = 2δIJ , I = 1, 2, . . . 5. (B.1)
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These γ-matrices are all hermitian. However, they have different symmetry properties

under interchange of their spinor indices. We can then find a matrix, C, which is anti-

symmetric and makes

CγI antisymmetric 5

CγIJ symmetric 10

CγIJK = ǫIJKLMCγLM symmetric

CγIJKL = ǫIJKLMCγM antisymmetric

CγIJKLM = ǫIJKLMC antisymmetric

We take a Lorentz transformation of a 4-component spinor to be

δψ =
1

2
γIJψ. (B.2)

We see easily that we can form Lorentz covariant expression from two spinors as

ψ̄ γI...Lλ, ψ̄ ≡ ψ†. (B.3)

There is, however, another type of covariant expression we can form

ψCγI...Lλ. (B.4)

A specific representation of the matrix C is

Cij = Cij =













1

1

−1

−1













. (B.5)
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