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Abstract

In a recent paper published in this journal, Bazeia and collaborators [Phys. Lett. B 671, (2009)

402] analyze braneworld models with nonstandard dynamics. It was found that the generalized

braneworld scenario is classically stable and capable of localize gravity. In this present work, we

complete the analyze of the above research, we will focus our attention on the matter energy

density, energy of system and the Ricci scalar. Additionally, as a natural extension, we address

the issue of fermion localization of fermions on a thick brane constructed from one scalar field

with nonstandard kinetic terms coupled with gravity. The contribution of the nonstandard kinetic

terms in the problem of fermion localization is analyzed. It is found that the simplest Yukawa

coupling ηΨ̄φΨ support the localization of fermions on the thick brane. It is shown that the zero

mode for left-handed and right-handed fermions can be localized on the thick brane depending on

the values for the coupling constant η and the brane model parameters. Furthermore, we present

an argument that could jeopardize the results of previous work on massive modes.
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I. INTRODUCTION

In the past decade, the braneworld scenario has attracted a lot of interests for it gives an

effective way to solve the hierarchy problem by introducing two 3-branes which are embedded

in a five-dimensional anti-de Sitter (AdS5) space-time [1]. As another attractive property,

the Newtonian law of gravity with a correction is also given in this braneworld scenario [2].

In the Randall-Sundrum model [1], we can further add scalar fields [3] with usual dynamics

and allow them to interact with gravity in the standard way. In this scenario, the smooth

character of the solutions generate thick brane with a diversity of structures [4]-[7]. In the

braneworld scenarios, an important issue is how gravity and different observable matter

fields of the Standard Model of particle physics are localized on the brane. It has been

shown that, in the Randall-Sundrum model in 5-dimensional space-time, graviton and spin

0 field can be localized on a brane with positive tension [2],[8]-[9]. And moreover spin

1/2 and 3/2 can be localized on a negative-tension brane [9]. The localization problem of

spin-1/2 fermions on thick branes is interesting and important [8]-[26]. In order to achieve

localization of fermions on a brane with positive tension, it seems that additional interactions

except the gravitational interaction must be including in the bulk. On the other hand, the

first recent observations [27]-[28] have led us with the intriguing fact that the Universe

is presently undertaking accelerated expansion. These information directly contributed to

establish some important advances in cosmology, one of them being the presence of dark

energy. The presence of dark energy has opened some distinct routes of investigations.

In recent years, there appeared some interesting models with noncanonical dynamics with

focus on early time inflation or dark energy [29]-[32], as for instance, the so-called k-fields,

first introduced in the context of inflation [32] and the k-essence models, suggested to solve

the cosmic coincidence problem [31],[33]. The interaction between dark energy and fermion

fields has already a precedent in the cosmology context [34]. We believe that the conditions

for obtaining normalizable zero modes on brane model with generalized dynamics deserve

to be more explored.

In this paper, we reinvestigate braneworld model with nonstandard dynamics. The model

L = K(X) − V (φ), where K = X + α|X|X (type I model in Ref. [29]), is considered, we

will focus our attention on the matter energy, energy of system and the Ricci scalar. As the

model is classically stable and capable of localize gravity, additionally we address the issue
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of fermion localization on a thick brane constructed from one scalar field with nonstandard

kinetic terms coupled with gravity. We use the analytical expressions for small α and we

investigate the contribution of this nonstandard kinetic terms in the problem of fermion

localization. We find that the simplest Yukawa coupling ηΨ̄φΨ, where η is the coupling

constant, allowed left-handed or right-handed fermions to posses a zero mode that localize

on the thick brane under some conditions on the value for the coupling constant η and the

brane model parameters. The organization of this paper is as follows: in Sec. II, we present

a review of brane models with generalized dynamics (type I model)[29]. In Sec. III, we

study the localization of spin-1/2 fermion for this model, we analyze the essential conditions

for the localization with the simplest Yukawa coupling and we present an argument that

could jeopardize the results of previous work on massive modes. Finally, our conclusions are

presented in Sec. IV.

II. REVIEW OF SYSTEMS WITH GENERALIZED DYNAMICS

The action for this kind of system is described by [29]

S =

∫

d5x
√

| g|
[

−1

4
R + L(φ,X)

]

, (1)

where g ≡ Det(gab) and X = 1
2
∇aφ∇aφ. The line element of the five-dimensional space-time

can be written as

ds2 = gabdx
adxb = e2A(y)ηµνdx

µdxν − dy2, (2)

where we are using the five-dimensional Newton constat 4πG(5) = 1, y = x4 is the extra

dimension (the Latin indices run from 0 to 4), ηµν is the Minkowski metric with signature

(+,−,−,−) and e2A is the so-called warp factor (the Greek indices run from 0 to 3). We

suppose that A = A(y) and φ = φ(y).

One can determine the static equations of motion for the above system

(LX + 2XLXX)φ
′′ − (2XLXφ − Lφ) = −4LXA

′φ′, (3)

A′′ + 2A′ 2 =
2

3
L , (4)

A′ 2 =
1

3
(L − 2XLX) , (5)
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where prime stands for derivate with respect to y. From eqs. (4) and (5), we obtain

A′′ =
4

3
XLX . (6)

The matter energy density is given by

ρ(y) = −e2A(y)L , (7)

and the scalar curvature is given by

R = −4
(

5A′ 2 + 2A′′
)

. (8)

Let us consider the Lagrange density as

L = K(X)− V (φ), (9)

for this case, from Eqs. (3), (5) and (6) the equations of motion can be expressed as

(K ′ + 2XK ′′)φ′′ − Vφ = −4K ′A′φ′, (10)

A′′ =
4

3
XK ′, (11)

A′ 2 =
1

3
(K − V − 2XK ′) , (12)

Now, we consider an explicit example for K(X).

A. The model: K(X) = X + α|X|X

This model is consider in [29], here α is a real, non-negative parameter and X = −1
2
φ′ 2.

For this case, the equations of motion becomes

φ′′ + 4A′φ′ − Vφ = −α (3φ′′ + 4φ′A′)φ′ 2, (13)

A′′ = −2

3
φ′ 2

(

1 + αφ′ 2
)

, (14)

A′ 2 =
1

6

(

1 +
3

2
αφ′ 2

)

φ′ 2 − 1

3
V , (15)

we can rewrite (14) and (15) as

A′′ + 2A′ 2 = −1

3
φ′ 2

(

1 +
α

2
φ′ 2

)

− 2

3
V , (16)
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this equation is the static equation of motion (4). Using the expression

A′ = −1

3
W (φ) , (17)

we can recast the Eq. (14) as

φ′ + αφ′ 3 =
1

2
Wφ . (18)

The real solution for (18) is given by

φ′ =
m(Wφ)

6α
− 2

m(Wφ)
, (19)

where

m(Wφ) =
(

54α2Wφ + 6
√
3
(

16α3 + 27α4W 2
φ

)1/2
)1/3

. (20)

Substituting (17) in (15), we get

V (φ) =
1

2
φ′ 2 +

3

4
αφ′ 4 − 1

3
W (φ)2 , (21)

where φ′ is given by (19).

On the other hand, we can define a functional as [4]

E [A, φ] =

∫

dy (−Lsystem) , (22)

where Lsystem =
√

|g| (−R/4 + L). For this case (22) becomes

E [A, φ] =

∫

dy e4A
{

1

2
φ′ 2 − 3A′ 2 +

α

4
φ′ 4 + V

}

, (23)

the functional E [A, φ] furnishes the static equations of motion (13) and (16). This functional

is associated with the energy of system, as reported in [35].

In this point, it is instructive to analyze the matter energy, from (7) and (9) we obtain

Eφ =

∫

dy e2A
{

1

2
φ′ 2 +

α

4
φ′ 4 + V

}

, (24)

substituting (21) in (24), we get

Eφ =

∫

dy e2A
{

φ′ 2 + αφ′ 4 − 1

3
W 2

}

, (25)

using (14) and (17) and integrating, we obtain

Eφ =
1

2

(

W e2A
)+∞

−∞
, (26)
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this is the value of the matter energy for all α. Note that the matter energy depends on the

asymptotic behavior of the warp factor (e2A). In the same way, we can analyze the energy

of system, from (21) and (23) and using (17) we get

E [A, φ] =

∫

dy e4A
{

φ′ + αφ′ 4 − 6A′ 2
}

, (27)

substituting (14) and (17) in (27) and integrating, we obtain

E [A, φ] =
1

2

(

W e4A
)+∞

−∞
, (28)

one more time, the asymptotic behavior of the warp factor plays a leading role in the value

of the functional E [A, φ].

We follow the same procedure of Ref. [29] and let us focus our study in the case of α

very small. The solution of (18) becomes

φ′ =
1

2
Wφ −

α

8
W 3

φ . (29)

Substituting (29) in (21), we get

V (φ) =
1

8
W 2

φ − α

64
W 4

φ − 1

3
W 2 . (30)

The solution for (29) becomes

φ(y) = φ0(y)−
α

4
Wφ(φ0(y))W (φ0(y)) , (31)

where φ0(y) is the solution when α = 0. From (17) and (31), we obtain

A(y) = A0(y) +
α

12
W (φ0(y))

2, (32)

where A0(y) represents A(y) when α = 0. The energy density given by (7) is

ρ = e2A(y)

(

1

4
W 2

φ − 1

3
W 2 − α

16
W 4

φ

)

. (33)

Substituting (31) and (32) in (33), we obtain

ρ = ρ0 −
α

48
e2A0(y)

(

6WφφW
2
φW − 10W 2W 2

φ + 3W 4
φ +

8

3
W 4

)

φ=φ0

, (34)

where

ρ0 = e2A0(y)

(

1

4
W 2

φ − 1

3
W 2

)

φ=φ0

, (35)
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note that the matter energy density (34) is a little bit different from that given in Ref. [29].

We consider that the superpotential W (φ) can be written as [6],[29]

W (φ) = 3a sin(bφ) , (36)

where a and b are real parameters. The classical solutions for (31) and (32) are given by

φ(y) =
1

b
arcsin

[

tanh

(

3

2
ab2 y

)]

− 9a2bα

4
tanh

(

3

2
ab2 y

)

sech

(

3

2
ab2 y

)

, (37)

and

A(y) =
2

3b2
ln

[

sech

(

3

2
ab2 y

)]

+
3a2α

4
tanh2

(

3

2
ab2 y

)

. (38)

The profiles of the matter energy density is shown in Fig. 1 for some values of α, as in

[29] the numerical study gives full support to the analytical expressions for α very small.

The Fig. 1 clearly shows that the brane is localized at y = 0, because the region has a

positive matter energy density. The contribution of the nonstandard kinetic term modifies

the profile without altering the symmetrical form of matter energy density, as noted in Fig.

1. It known that the α-parameter, which indicates the strength of fourth-order kinetic term,

used to modify the dynamics of the scalar field contributes to thicker the brane, as reported

in [29]. The profiles of the matter energy density and the Ricci scalar are shown in Fig.

2 for α = 0.1. Note that the presence of regions with positive Ricci scalar is connected

with the localization of the brane and it reinforces the conclusion of the analyzes from the

matter energy density. Also note that far from the brane R tends to a negative constant,

characterizing the AdS5 limit from the bulk, as reported in [23]. An similar behavior is

obtained for α = 1 and α = 10. The profiles of the warp factor is shown in Fig. 3 for some

values of α. The Fig. 3 shows that e2A → 0 as y → ±∞, therefore, the matter energy (26)

and the energy of system (28) both are zero, this result is independent of α.

III. FERMION LOCALIZATION

The action for a Dirac spinor field coupled with the scalar fields by a general Yukawa

coupling is

S =

∫

d5x
√

| g|
[

iΨ̄ΓM∇MΨ− ηΨ̄F (φ)Ψ
]

, (39)
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FIG. 1: The profiles of the energy density for a = 1, b =
√

2/3, α = 0.1 (dot line), α = 1 (dashed

line) and α = 10 (thin line).
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1

FIG. 2: The profiles of the matter energy density (thin line) and Ricci scalar (thick line) for a = 1,

b =
√

2/3 and α = 0.1.

where η is the positive coupling constant between fermions and the scalar field. Here we

consider the field φ as a background field. The equation of motion is obtained as

iΓM∇MΨ− ηF (φ)Ψ = 0. (40)

In this stage, it is useful to consider the current. The conservation law for JM follows

from the standard procedure and it becomes

∇MJ
M = Ψ̄

(

∇MΓM
)

Ψ , (41)

where JM = Ψ̄ΓMΨ. Thus, if

∇MΓM = 0 , (42)
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e2 A

FIG. 3: The profiles of the warp factor for a = 1, b =
√

2/3, α = 0.1 (dot line), α = 1 (dashed

line) and α = 10 (thin line).

then four-current will be conserved. The condition (42) is the purely geometrical assertion

that the curved-space gamma matrices are covariantly constant.

Using the same line element (2) and the representation for gamma matrices ΓM =
(

e−Aγµ,−iγ5
)

, the condition (42) is trivially satisfied and therefore the current is conserved.

The equation of motion (40) becomes

[

iγµ∂µ + γ5eA(∂y + 2∂yA)− η eAF (φ)
]

Ψ = 0. (43)

In this stage, we use the general chiral decomposition

Ψ(x, y) =
∑

n

ψLn
(x)αLn

(y) +
∑

n

ψRn
(x)αRn

(y), (44)

with ψLn
(x) = −γ5ψLn

(x) and ψRn
(x) = γ5ψRn

(x). With this decomposition ψLn
(x) and

ψRn
(x) are the left-handed and right-handed components of the four-dimensional spinor

field, respectively. After applying (44) in (43), and demanding that iγµ∂µψLn
= mnψRn

and

iγµ∂µψRn
= mnψLn

, we obtain two equations for αLn
and αRn

[∂y + 2∂yA+ ηF (φ)]αLn
= mne

−AαRn
, (45)

[∂y + 2∂yA− ηF (φ)]αRn
= −mne

−AαLn
. (46)

Inserting the general chiral decomposition (44) into the action (39), using (45) and (46) and

also requiring that the result take the form of the standard four-dimensional action for the
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massive chiral fermions

S =
∑

n

∫

d4x ψ̄n (γ
µ∂µ −mn)ψn, (47)

where ψn = ψLn
+ ψRn

and mn ≥ 0, the functions αLn
and αRn

must obey the following

orthonormality conditions
∫ ∞

−∞

dy e3AαLmαRn = δLRδmn. (48)

Implementing the change of variables

z =

∫ y

0

e−A(y ′)dy ′, (49)

αLn
= e−2ALn and αRn

= e−2ARn, we get

− L′′
n(z) + VL(z)Ln = m2

nLn , (50)

− R′′
n(z) + VL(z)Rn = m2

nRn , (51)

where

VL(z) = η2e2AF 2(φ)− η∂z
(

eAF (φ)
)

, (52)

VR(z) = η2e2AF 2(φ) + η∂z
(

eAF (φ)
)

. (53)

Using the expressions ∂zA = eA(y)∂yA and ∂zF = eA(y)∂yF , we can recast the potentials (52)

and (53) as a function of y [24],[25]

VL(z(y)) = ηe2A
[

ηF 2 − ∂yF − F∂yA(y)
]

(54)

VR(z(y)) = VL(z(y))|η→−η (55)

It is worthwhile to note that we can construct the Schrödinger potentials VL and VR from

(54) and (55). This procedure is used just to have a qualitative analysis of the profile

potential.

In this stage, it is instructive to state that with the change of variable (49) we get a

geometry to be conformally flat

ds2 = e2A(z)
(

ηµνdx
µdxν − dz2

)

. (56)

Now we focus attention on the condition (42) for the line element (56). In this case we

obtain

∇MΓM = i(∂zA(z))e
−A(z)γ5. (57)
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Therefore, the current is not conserved for the line element (56). It is known that, in

general, the reformulation of the theory in a new conformal frame leads to a different,

physically inequivalent theory. This issue has already a precedent in cosmological models

[36]. Recently, other inconsistencies are stated in [26].

Under this arguments, we use only the change of variable (49) to have a qualitative anal-

ysis of the potential profile, which is an fundamental ingredient for the fermion localization

on the brane.

Now we focus attention on the calculation of the zero mode. Substituting mn = 0 in (45)

and (46) and using αLn
= e−2ALn and αRn

= e−2ARn, respectively, we get

L0 ∝ exp

[

−η
∫ y

0

dy′F (φ)

]

, (58)

R0 ∝ exp

[

η

∫ y

0

dy′F (φ)

]

. (59)

This fact is the same to the case of two-dimensional Dirac equation, in that context are

called isolated solutions [37]. At this point is worthwhile to mention that the normalization

of the zero mode and the existence of a minimum of the effective potential at the localization

on the brane are essential conditions for the problem of fermion localization on the brane.

Recently, this fact already has been reported in [25].

In order to check the normalization condition (48) for the left-handed fermion zero mode

(58), the integral must be convergent, i.e

∫ ∞

−∞

dy exp

[

−A(y)− 2η

∫ y

0

dy ′F (φ(y ′))

]

<∞. (60)

This result clearly shows that the normalization of the zero mode is decided by the asymp-

totic behavior of F (φ(y)). Furthermore, from (54) and (55) can be observed that the effective

potential profile depends on the choice of F (φ(y)). This fact implies that the existence of a

minimum of the effective potential VL(z(y)) or VR(z(y)) at the localization on the brane is

decided by F (φ(y)). This point will be more clear when it is considered a specific Yukawa

coupling. Therefore, the behavior of F (φ(y)) plays a leading role for the fermion localization

on the brane [25]. Having set up the two essential conditions for the problem of fermion

localization on the brane, we are now in a position to choice some specific forms for Yukawa

couplings.
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A. Zero mode and fermion localization

From now on, we mainly consider the simplest case F (φ) = φ. First, we consider the

normalizable problem of the solution. In this case, from Eqs. (37) and (38) the integrand

in (60) can be expressed as

I = exp

[

− ln (sech (a y))− 3a2α

4
tanh2 (a y)−

√
6 ηĪ(y)− 3

√
6

2
aηα sech(ay)

]

, (61)

where Ī =
∫

dy′ arcsin [tanh(ay′)]. We follow the same procedure of Ref. [16], we only need

to consider the asymptotic behavior of the integrand and it becomes

I → exp

[

−
(πη

b
− a

)

| y| − 3aαη

2b
e−

3

2
ab2| y|

]

. (62)

In this stage, it is instructive to note that the asymptotic behavior of the integrand dependent

the signs of a and b. One can readily envisage that four different classes of solutions can be

segregated:

• Class A. For a > 0 and b > 0, the behavior of (62) as | y| → ∞ is given by

I → exp
[

−
(π

b
η − a

)

| y|
]

→ 0, for η > ab/π . (63)

This result shows that the zero mode of the left-handed fermions is normalized only

for η > ab/π. Note that the asymptotic behavior of the normalization condition for

this case is independent of α. Now, under the change η → −η (L0 → R0) we obtain

that the right-handed fermions can not be a normalizable zero mode. The shape of the

potentials for this case are shown in Fig. 4 for some values of α. The Fig. 4(a) shows

that the potential of left-handed fermions, (VL)A, is indeed a volcano-like potential.

The shapes of the energy density, (VL)A potential and zero mode for this case are

shown in Fig. 5 for α = 0.1. An similar behavior is obtained for α = 1 and α = 10.

The Fig. 5 clearly shows that the effective potential (VL)A has a minimum at the

localization of the brane, therefore, this clearly shows that the zero mode of the left-

handed fermions is localized on the brane. On the other hand, the figure 4(a) shows a

well structure that decreases as α grows. From this can be conclude that the ability to

trap fermions decrease as the value of α grows. Figure 4(b) shows that the potential

(VR)A is always positive. This effective potential has a maximum that decreases as α

grows. Therefore, the potential can not trap any bound fermions with right chirality.
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FIG. 4: Potential profile: (a) (VL(y))A (left) and (b) (VR(y))A (right) for η = 1, a = 1, b =
√

2/3,

α = 0.1 (dot line), α = 1 (dashed line) and α = 10 (thin line)
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FIG. 5: The profiles of the energy density (thin line), (VL)A (thick line) and zero mode (dashed

thick line) for η = 1 and α = 0.1.

• Class B. For a > 0 and b < 0, the behavior of (62) as | y| → ∞ is

I → exp

[(

π

| b| η + a

)

| y|
]

→ ∞, (64)

which leads to a non normalizable zero mode, therefore, the zero mode of the left-

handed fermions can not be localized on the brane. Similar to previous case the

asymptotic behavior of the normalization condition is independent of α. Otherwise,

the change η → −η (L0 → R0) allowed us to conclude that the right-handed fermions

can be normalizable on the condition η > ab/π. It is instructive note that under

the change b → −| b| in (37), we obtain φ → −φ (i.e F (φ) → −F (φ)), therefore,
the behavior of the potentials for the class B can be written out easily by replacing

(VL)B = (VR)A and (VR)B = (VL)A. From this, we conclude that the zero mode of the

right-handed fermions is localized on the brane for η > ab/π.
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• Class C. For a < 0 and b < 0, the behavior of (62) as | y| → ∞ is

I → exp

[

−
(

| a| − π

| b| η
)

| y| − 3αη

2

| a|
| b| e

3

2
| a|b2| y|

]

. (65)

At this point is worthwhile to mention that e
3

2
| a|b2| y| has a dominant asymptotic be-

havior that
(

| a| − π
| b|
η
)

| y| then I → 0 independent the value of η. This result shows

that the zero mode of the left-handed fermions is normalized for any value of η. This

condition on η has not appeared in previous studies. Now, under the change η → −η
(L0 → R0) we obtain that the right-handed fermions can not be a normalizable zero

mode. One more time, note that under the change b → −| b| and a → −| a| in (37),

we obtain φ → φ (i.e F (φ) → F (φ)), therefore, the behavior of the potentials for the

class C can be written out easily by replacing (VL)C = (VL)A and (VR)C = (VR)A.

From this, we conclude that the zero mode of the left-handed fermions is localized on

the brane.

• Class D. For a < 0 and b > 0, the behavior of (62) as | y| → ∞ is

I → exp

[

−
(

| a|+ π

b
η
)

| y|+ 3αη

2

| a|
b

e
3

2
| a|b2| y|

]

. (66)

At this point is worthwhile to mention that e
3

2
| a|b2| y| has a dominant asymptotic be-

havior that −
(

| a|+ π
b
η
)

| y| then I → ∞ independent the value of η. This result

shows that the zero mode of the left-handed fermions is not normalized. Now, under

the change η → −η (L0 → R0) we obtain that the right-handed fermions is normalized

for any value of η. One more time, note that under the change a → −| a| in (37), we

obtain φ → −φ (i.e F (φ) → −F (φ)), therefore, the behavior of the potentials for the

class D can be written out easily by replacing (VL)D = (VR)A and (VR)D = (VL)A.

From this, we conclude that the zero mode of the right-handed fermions is localized

on the brane.

In this four different classes of solutions the normalization condition of the zero mode is

independent of α, but the ability to trap fermions is inversely proportional to α, because the

well structure of the effective potential decreases as α grows. For α not necessarily small we

do not have analytic expressions for the solution of this model, in this case the numerical

study is essential. The numerical study done for a large range of values of α bear out our

results.
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IV. CONCLUSIONS

We have reinvestigated the braneworld model constructed from one scalar field with

nonstandard kinetic terms coupled with gravity. We have considered the model L = K(X)−
V (φ), where K = X +α|X|X (type I model in Ref. [29]). This work completes the analyze

of the research in Ref. [29]. We showed that the equations of motion can be deduced from

the functional E[A, φ] (23), as done by Townsend in the case of standard dynamic. Also,

we showed that the value of the matter energy and the energy of system depend of the

asymptotic behavior of the warp factor. We found an expression for the matter energy

density that differs slightly from [29], the numerical study gives full support to our matter

energy density expression for α small.

We also have investigated the localization problem of fermions for the type model I.

We have used the simplest Yukawa coupling Ψ̄φΨ between the scalar and the spinor fields.

In order to check the normalization condition for the zero mode, one can separate in four

classes of solutions. For class A, we showed that the zero mode of left-handed fermions

is normalizable under the condition η > ab/π and it is independent of α. For this kind

of solution, the effective potential of left-handed fermions (VL)A is a volcano-like potential.

(VL)A has a minimum at the localization of the brane (y = 0), therefore, the zero mode

of the left-handed is localized on the brane. On the other hand, the value of α adjust the

minimum of (VL)A, if α increases the depth of the well structure decreases. Therefore, we

can conclude that the ability to trap fermions of (VL)A is inversely proportional to α. The

right-handed fermions can not be localized on the brane, this fact is a consequence of the

absence of a normalizable zero mode. For class B, we showed that the right-handed fermions

can be localized on the brane for η > ab/π, on the contrary, the left-handed fermions can

not be localized on the brane. For class C, the zero mode of the left-handed fermions can

be localized on the brane for any value of η and the right-handed fermions does not. This

condition on η has not appeared in previous studies. For class D, the zero mode of the

right-handed fermions can be localized on the brane for any value of η and the left-handed

fermions does not. For α not necessarily small, the numerical study done for a large range

of values of α bear out our results.

Additionally, we showed that the change of variable dz = e−A(y)dy leads to a non con-

served current, because the curved-space gamma matrices are not covariantly constant. The
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effects of non-conserved current in the issue of massive modes is currently under considera-

tion and will be the subject of another thorough study.
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