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Abstract

There exists a formulation of the Maxwell theory in terms of two vector
potentials, one electric and one magnetic. The action is then manifestly in-
variant under electric-magnetic duality transformations, which are rotations
in the two-dimensional internal space of the two potentials, and local. We
ask the question: can duality be gauged? The only known and battled-tested
method of accomplishing the gauging is the Noether procedure. In its de-
canted form, it amounts to turn on the coupling by deforming the abelian
gauge group of the free theory, out of whose curvatures the action is built,
into a non-abelian group which becomes the gauge group of the resulting
theory. In this article, we show that the method cannot be successfully im-
plemented for electric-magnetic duality. We thus conclude that, unless a
radically new idea is introduced, electric-magnetic duality cannot be gauged.
The implication of this result for supergravity is briefly discussed.

http://arxiv.org/abs/1011.5889v1


1 Introduction

The invariance of the vacuum Maxwell equations under an electric-magnetic
duality transformation, i.e., an internal rotation in the two-dimensional plane
of the electric and magnetic fields, continues to be a fascinating and inspiring
subject. There is a formulation of the Maxwell theory in terms of two vector
potentials, one electric and one magnetic. The action is then manifestly in-
variant under electric-magnetic duality transformations, which are rotations
in the two-dimensional internal space of the two potentials, and local. It is
then natural to ask the question: can duality be gauged, i.e., can the angle of
the SO(2) duality rotations be made spacetime dependent? In this article,
we attempt to apply the only known and battled-tested method of accom-
plishing the gauging, namely the Noether procedure, and show that it is not
viable. Therefore, we answer the question in the negative.

The plan of the paper is the following. In section 2, we begin by recalling
the formulation of the Maxwell theory in terms of two abelian vector poten-
tials Aa, a = 1, 2. The curl of A1 is the ordinary magnetic field while that
of A2 is the negative of the electric field. We emphasize that SO(2) duality
rotations in the a = 1, 2 plane are a symmetry of the action and not just of
the equations of motion, as it is often incorrectly stated. The action is also
invariant under the group [U(1)]2 of independent gauge transformations of
each of the two potentials. Next, in that same section, we extend the theory
to n copies of the Maxwell field and recall that the global electric-magnetic
duality group, which was SO(2) when n = 1, becomes U(n). The gauge
group becomes [U(1)]2n. We end section 2 by analyzing the subgroups of
U(n) which are relevant for the gauging procedure which is discussed next.

Section 3 is devoted to applying the Noether gauging procedure to electric-
magnetic duality. In its decanted form, the procedure amounts to turn on
the coupling by deforming the [U(1)]2n gauge group of the free theory, out
of whose curvatures the action is built, into a non-abelian group which be-
comes the gauge group of the resulting theory. The 2n generators of the
adjoint representation of this gauge group should: (i) be linear combinations
of the n2 generators of U(n) in its (2n)- dimensional representation; and
(ii) in addition, the linear combination should contain the generators of the
electric-magnetic duality subgroup [SO(2)]n. We show that already the first
requirement cannot be met and conclude that, unless a radically new idea
is introduced, electric-magnetic duality cannot be gauged. This conclusion
remains valid if one admits into the action Maxwell terms of the traditional
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one-potential type. Additionally, in that same section, we discuss some group
theory relationships which underlie the previous analysis and end by explain-
ing how the lack of a doubled potential reformulation of the pure nonabelian
Yang-Mills action, which is local and manifestly duality invariant, relates to
our results.

In section 4 we make some brief comments on the implications of our re-
sults for supergravity and, finally section 5 is devoted to concluding remarks.

2 Electric-Magnetic Duality

2.1 SO(2)-Duality

The electric-magnetic duality transformation is an internal rotation in the
two-dimensional plane of the electric and magnetic fields,

E → cosαE− sinαB (2.1)

B → sinαE+ cosαB. (2.2)

In covariant form it reads,

F µν
→ cosαF µν

− sinα ∗F µν (2.3)
∗F µν

→ sinαF µν + cosα ∗F µν . (2.4)

It is often incorrectly stated that duality is only a symmetry of the equa-
tions of motion, but this is not the case. Indeed, as shown in [1], duality
leaves invariant the standard Maxwell action. The duality invariance of the
action becomes manifest if one introduces a second vector potential by solv-
ing the Gauss law for the electric field. The manifestly duality invariant
action reads [1, 2, 3]

S inv[Aa
i ] =

1

2

∫

dx0 d3x
(

ǫabB
a
· Ȧb

− δabB
a
·Bb

)

, a, b = 1, 2 (2.5)

where
Ba = ∇×Aa

and ǫab = −ǫba is the Levi-Civita tensor in 2 dimensions (with ǫ12 = 1). The
duality rotations in this formulation are

A1
→ cosαA1

− sinαA2 (2.6)

A2
→ sinαA1 + cosαA2. (2.7)
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The action (2.5) is clearly invariant under these transformations since both
ǫab and δab are invariant tensors for SO(2). The standard magnetic field B
is B ≡ B1 while the standard electric field E is E ≡ −B2. The vector A1

is the standard vector potential A. The two magnetic fields are canonically
conjugate, in the sense that their equal time Poisson brackets are

[Bi
a(x), B

j
b (x

′)] = δabǫ
ijkδ,k(x, x

′).

2.2 U(n)-Duality

For n Maxwell fields, the manifestly duality invariant action takes the form
(2.5) but the internal indices run now from 1 to 2n values and the ǫ-symbol
is replaced by the antisymmetric canonical symplectic form σMN (M,N =
1, · · · , 2n),

σ =























0 1 0 0 · · · 0 0
−1 0 0 0 · · · 0 0
0 0 0 1 · · · 0 0
0 0 −1 0 · · · 0 0
...

...
...

...
...

...
...

0 0 0 0 · · · 0 1
0 0 0 0 · · · −1 0























,

which gives

S inv[AM
i ] =

1

2

∫

dx0 d3x
(

σMNB
M

· ȦN
− δMNB

M
·BN

)

. (2.8)

For later purposes, it is convenient to introduce the time component AM
0

of the vector potentials by replacing ȦM
i by

fM
0i = ȦM

i − ∂iA
M
0

and to rewrite the action (2.8) as

S inv[AM
µ ] =

1

4

∫

dx0 d3x
(

σMN ǫ
ijkfM

ij fN
0k − δMNf

M
ij fN ij

)

. (2.9)

Because of the Bianchi identity, the term ∂kA
M
0 involving AM

0 in (2.9) is
a total derivative, so that (2.8) and (2.9) differ by a surface term and are
equivalent. The time components of the vector potentials occur only through
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a total derivative and yield the trivial equations 0 = 0. The virtue of writing
the action in this form is that its gauge invariances,

AM
µ → AM

µ + ∂µΦ
M , (2.10)

are manifest as the action is expressed in terms of the abelian curvatures fM
µν

only. The gauge symmetry group corresponding to (2.10) is [U(1)]2n, one
U(1) for each vector potential. There is, however, an invariance larger than
(2.10): since AM

0 appears in the action only through a total derivative, it can
be shifted arbitrarily and not just by the amount ∂0Φ

M but this will only be
used tangentially in subsection 3.3 below.

In addition to local gauge symmetries, the action possesses also rigid
duality symmetries. The duality group clearly contains n factors SO(2) ×
SO(2)×· · ·×SO(2), namely, one SO(2) for each pair (A2k−1, A2k) describing
a single standard Maxwell field. But duality is in fact bigger, because one can
also perform linear transformations that mix the vector potentials belonging
to different pairs. Hence the duality group is enlarged from [SO(2)]n to U(n)
[4, 5]. This can be seen as follows: linear transformations of the potentials
AM ,

AM
→ A′M = ΛM

NA
N (2.11)

where Λ ∈ GL(2n,R), leave the action (2.8) invariant if and only if they
preserve the symplectic product and the scalar product (in order to preserve
the kinetic term and the Hamiltonian, respectively),

ΛTσΛ = σ, ΛT IΛ = I. (2.12)

The first condition implies Λ ∈ Sp(2n,R), while the second implies Λ ∈ O(n)
(O(n) always means here O(2n,R)). Accordingly, the transformation Λ must
belong to Sp(2n,R) ∩ O(2n), which is the maximal compact subgroup of
the symplectic group Sp(2n,R), known to be isomorphic to U(n) (see, for
example, [6]).

In infinitesimal form, the invariance condition reads, with Λ = I + λ,

λTσ + σλ = 0, λT + λ = 0, (2.13)

or in component form,

σPNλ
P
M + σMPλ

P
N = 0, δPNλ

P
M + δMPλ

P
N = 0. (2.14)
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To study some of the interesting subgroups of U(n), it is convenient to
adopt a notation in which the vector potentials Aa

µ are grouped in electric-
magnetic pairs, AM

µ , M = 1, · · · , 2n → AIa
µ , I = 1, · · ·n, a = 1, 2. In this

notation, the action reads

S inv[AIa
µ ] =

1

4

∫

dx0 d3x
(

ǫabδIJǫ
ijkf Ia

ij fJb
0k − δabδIJf

Ia
ij fJb ij

)

,

I, J = 1, · · ·n, a, b = 1, 2

The subgroup [SO(2)]n of independent SO(2) rotations in the n two-
dimensional planes spanned by AI1 and AI2 (I = 1, · · · , n)

A′Ia = (I)Ra
bA

Ib,

with (I)Ra
b ∈ SO(2) for each I, is the group of strict electric-magnetic duality

rotations. Its diagonal subgroup SO(2) in which one makes the same rotation
for each I

A′Ia = Ra
bA

Ib, Ra
b ∈ SO(2)

is the center of U(n).
Another subgroup of U(n) is the group SO(n) of transformations acting

in the same way on AI1
µ and AI2

µ , i.e.,

A′Ia = RI
JA

Ja, RI
J ∈ SO(n).

Only this subgroup survives in the second order formalism where each Maxwell
field is described by a single vector potential. Any attempt to exhibit the
full U(n) would require the introduction of non-local kernels. So, while the
standard second order formulation of a collection of Maxwell fields makes
manifest only an SO(n) global invariance group, the formulation based on
the duality invariant first order action exhibits a U(n) duality symmetry.

3 Gauging Duality

3.1 Statement of the problem

The dimension of the global duality group U(n) is n2, while the number of
vector fields is 2n which is smaller than n2 for n > 2, with equality for n = 2.
This paper is devoted to the question of whether one can gauge a subgroup
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of U(n), i.e., turn some of the global duality transformations into local gauge
transformations. To achieve this goal: (i) One can either take advantage of
the vector fields that are already present; or (ii) One may add new vector
fields which may be either described by the same duality-invariant action,
thereby simply increasing the range of the index M , or by the standard
Maxwell action −

1
4

∫

d4xfµνf
µν .

Thus, we take as starting point the general action

S[A∆
µ ] = S inv[AM

µ ] + SMax[A(α)
µ ], (3.1)

∆ = (M,α), M = 1, · · · , 2n, α = 1, · · · , m (3.2)

with,

SMax[A(α)
µ ] = −

1

4

∫

d4xδαβf
(α)
µν f (β)µν , (3.3)

and where n is now the number of all the vector pairs with the manifestly
duality-invariant action, including those that might have been added.

The problem of gauging given rigid symmetries is of course an old ques-
tion, which has been much studied in the past in the case when the vector
fields necessary for achieving the gauging are all described in the free limit by
the Maxwell action, i.e., when the starting point is (3.1) with only Maxwell
terms,

S[A(α)
µ ] = SMax[A(α)

µ ] = −
1

4

∫

d4xδαβf
(α)
µν f (β)µν . (3.4)

In that case, the consistent gauged formulation is achieved through the Yang-
Mills construction [7], and the gauge group is a subgroup of the group SO(m)
that leaves the second-order action (3.4) invariant. The uniqueness of the
Yang-Mills interactions has been furthermore well established, using a variety
of different approaches [8, 9, 10, 11]. One important result lucidly brought up
in [8] is that there is no electrically charged massless vector fields. The only
way to overcome the inconsistencies encountered in trying to couple charged,
i.e., complex, massless vector fields to the electromagnetic field is to go to
the Yang-Mills Lagrangian, where all vector fields are on the same footing
and where there is no priviledged electromagnetic direction.

But, to our knowledge, the possibility of gauging electric-magnetic dual-
ity, which would enable the rotation angle α in (2.1) and (2.2) to become a
spacetime function instead of a constant, so that being “electric” or “mag-
netic” would be a spacetime-dependent concept, has not been investigated
previously. The possibility of exploring this question becomes available once
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one uses the first-order action (2.9). If successful, gauging duality would be
a novel feature since starting from the standard Maxwell action, one would
only gauge a subgroup of SO(n), not allowing the possibility of gauging
transformations of U(n) which are not in SO(n).

We report, however, a negative result. As we show below, the procedure
of modifying the action by replacing the initial abelian curvatures by the
non-abelian curvatures stemming out of the would-be new gauge group, does
not work because of the impossibility to embed the adjoint action of that
group in U(n).

3.2 Pure first-order action

To exhibit the obstacle to gauging, we first consider the case where this
obstacle appears quite clearly. This occurs for the pure action (2.9) which
does not include a standard Maxwell term.

One can view the problem of gauging, and more generally of switching
on interactions among the dynamical variables, as a deformation problem,
in which one alters both the gauge symmetries and the action keeping the
action gauge invariant. Thus the number of physical degrees of freedom is not
changed by the deformation. This point of view, systematically developed in
[9, 12, 13], is useful in that it clearly organizes the possible obstructions to
introducing consistent interactions.

In our case, the initial gauge symmetry is [U(1)]2n and we want to deform
it into a gauge group G of same dimension 2n. The group G acts on the
potential through the adjoint action.

After the Yang-Mills interactions are switched on, the gauge transforma-
tions of the vector fields are deformed to

δAM
µ = ∂µΦ

M + CM
NPA

N
µ Φ

P (3.5)

where CM
NP are the structure constants of the gauge group G and are defined

so as to contain the deformation parameter g. The group G acts also through
the adjoint action on the non-abelian curvatures,

FM
µν = fM

µν + CM
NPA

N
µ A

P
ν (3.6)

i.e.,
δFM

µν = CM
NPF

N
µνΦ

P . (3.7)

7



The deformed action is obtained from (2.9) by replacing the abelian cur-
vatures by the non-abelian ones

Sdeformed[AM
µ ] =

1

4

∫

dx0 d3x
(

σMNǫ
ijkFM

ij FN
0k − δMNF

M
ij FN ij

)

(3.8)

It is gauge invariant if and only if the invariance conditions (2.14) on the
symplectic form and the metric hold for

λM
N = µP CM

PN

with µP arbitrary. That is, if and only if the 2n by 2n matrices of the adjoint
representation of G are matrices of the (2n)-dimensional representation of
U(n) acting on the 2n vector potentials AM

µ . Explicitly, this imposes

σQNC
Q
PM + σMQC

Q
PN = 0, (3.9)

δQNC
Q
PM + δMQC

Q
PN = 0. (3.10)

While the second of these invariance conditions poses no problem, the
first is the source of the difficulty. Indeed, defining

DMNP ≡ σMQC
Q
NP ,

one may rewrite (3.9) as
DNPM = DMPN ,

i.e., DMNP is symmetric under exchange of its first indexM with its last index
P . But DMNP is also antisymmetric in its last two indices by definition,

DMNP = −DMPN

which implies DMNP = 0 (DMNP = DPNM = −DPMN = −DNMP =
DNPM = DMPN = −DMNP = 0). Since σMN is invertible, this yields

CM
NP = 0,

which means that G is abelian and that there is no deformation. That is,
there is no gauging of any non-abelian subgroup of U(n) and the original
abelian gauge symmetry U(1)2n is unchanged.

A different way to reach the same conclusion is to observe that the AM
0 ’s

drop out from the action (3.8) by virtue of the Bianchi identity when the
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structure constants fulfill the above invariance conditions. This implies that
the AM

0 ’s should not appear in the field equations. But one may verify that
the Euler-Lagrange derivatives of the kinetic term in (3.8) are proportional
to σMNǫ

ijkD0F
M
ij and this expression contains the term σMN ǫ

ijkCM
PQA

P
0 F

Q
ij

in which AP
0 explicitly appears. Hence, since AP

0 must drop out when the
invariance conditions are satisfied, this term must be zero and one concludes
again that the invariance conditions imply CM

PQ = 0.

3.3 Mixed Action. Original Noether method

The same conclusion holds for the mixed action (3.1) because the rigid sym-
metry group of linear transformations of the potentials that replaces U(n)

is now U(n) × SO(m). This group does not mix the AM
µ ’s with the A

(α)
µ ’s.

Repeating the analysis of the previous subsection, one therefore finds now
that the only non-vanishing components of the structure constants are CM

PQ

and Cα
βγ and further, that the CM

PQ actually vanish. The only non-trivial
Yang-Mills deformations are therefore in the conventional sector, i.e., they
are a sum of standard Maxwell actions.

In the original Noether method the obstruction just encountered man-
ifests itself already at first order in the deformation parameter. To bring
this fact to light, consider the gauging of a single SO(2) electric-magnetic
duality. The Noether current that follows from the invariance of the action
(2.5) under duality is

j0 =
1

2
ǫijkfa

ijA
b
kδab (3.11)

jk = ǫijk∂0A
a
i A

b
jδab − 2fa kjǫabA

b
j (3.12)

This current is coupled to a gauge vector field, which we denote by Bµ,
yielding the coupling term,

g

∫

d4xjµBµ (3.13)

where g is the deformation parameter which we do not set equal to unity to
keep track of it. The free action for Bµ is the standard Maxwell action

SMax[Bµ] = −
1

4

∫

d4xGµνGµν , Gµν = ∂µBν − ∂νBµ. (3.14)

We must take (3.14) for the field Bµ since we need the component B0 to
couple to the component j0 of the current, which is not identically zero.
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Thus, the action to zeroth order is the mixed action (3.1) with two fields Aa
i

described by the manifestly duality invariant first-order action and one field
Bµ described by the Maxwell action, M = a = 1, 2, α = 1.

The minimal coupling term (3.13) is invariant under the U(1) gauge sym-
metry of the field Bµ up to terms proportional to the field equations for
Aa

µ which can always be compensated by a first-order deformation of the
transformations of Aa

µ under that symmetry.
However, the minimal coupling term is not invariant, even on-shell, under

the gauge symmetries of Aa
µ. To cure this problem, one may try to add non-

minimal terms involving the curvature Gµν . But although this procedure
works when the zeroth order action is a sum of Maxwell actions, yielding
the Yang-Mills Lagrangian [8], there is no way here to compensate the non-
invariance of (3.13). Indeed, the only candidates that could compensate this
non-invariance must be cubic in the fields and involve only one derivative
since the minimal term has these properties. They are therefore, using three-
dimensional covariance,

αǫijkǫabA
a
iA

b
jG0k, βǫabA

a
iA

b
jG

ij

but there is no choice of the coefficients α and β that make g
∫

d4xjµBµ +
αǫijkǫabA

a
iA

b
jG0k + βǫabA

a
iA

b
jG

ij invariant on-shell for the gauge symmetries
of Aa

i . Hence, the Noether deformation is obstructed already at first-order
in g.

3.4 Underlying Group Theory Relationships

We can reformulate the conditions (3.9) and (3.10) on the structure constants
in group theoretical terms as follows.

The conditions (3.9) and (3.10) respectively express that the adjoint rep-
resentation of G should be embedded in the symplectic group Sp(2n,R) and
in the orthogonal group SO(2n). Because the adjoint representation is in
general not a faithful representation of G, this does yield an embedding of
G in Sp(2n,R) and SO(2n), but rather an embedding of G/Z(G) in these
groups. Indeed, the kernel of the adjoint representation is equal to the cen-
ter Z(G), and so the adjoint representation is a faithful representation of the
quotient G/Z(G).

The impossibility to fulfill the first invariance condition (3.9) is thus the
statement that there is no symplectic embedding of the adjoint representation

10



of G unless the adjoint representation and hence G/Z(G) are trivial, that is,
unless G is abelian.

3.5 Relation with pure Yang-Mills

Our results express that no subgroup of the duality group U(n) can be gauged
in the first order, manifestly duality-invariant formulation, not even the sub-
groups that can be gauged in the second-order formulation. As we pointed
out above in subsection 2.2, these are subgroups of SO(n) ⊂ U(n) that act
in the same way on AI1

µ and AI2
µ .

These negative results could seem to lead to a contradiction. Indeed, one
might think that by first gauging the theory in the second order formulation
to get the standard pure Yang-Mills action with a subgroup of SO(n) as
gauge group, and then passing to the first-order formulation, one would get
a consistent deformation of the first-order action (2.8) in which a subgroup
of SO(n) is gauged.

It is known, however, that the steps that lead to the manifestly duality-
invariant action (2.8) in the case of non-interacting U(1)-fields cannot be
repeated when the group is non-abelian [1]. Hence the previous reasoning
cannot be applied and no contradiction arises.

4 Implications for Supergravity

The problem investigated here has some incidence on the gauging of the
so-called “hidden symmetries” of supergravity. After the discovery that tori
dimensional reductions of maximal supergravity exhibits unexpected remark-
able symmetries [14, 15], the question arose to promote these rigid symme-
tries into gauge ones. In four dimensions, the hidden symmetry is E7,7 and
contains electric-magnetic duality. This symmetry is thus manifest at the
level of the action only if one doubles the vector fields as done above.

The first gauging of maximal supergravity appeared in [16, 17]. The
general gaugings of that theory were systematically studied more recently in
[18, 19]. In all these studies, the starting point is the second order Maxwell
action for half of the vector potentials that appear in the discussion. So,
these studies exclude from the very beginning the possibility of gauging the
electric-magnetic dualities. Even in the symplectic covariant formalism of
[20], the constraint that the charges are “mutually local” is imposed, so
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that an electric-magnetic duality transformation exists that converts all the
charges to electric ones. In that frame, the gauging is the standard “electric”
gauging of the second order action.

By considering the possibility to gauge the duality transformations that
mix “electric” with “magnetic”, one might have expected to enlarge by a
factor of two the available gaugings, since the undeformed gauge group is
then [U(1)]2n rather than [U(1)]n. Our negative results, however, show it not
to be the case.

5 Conclusion

In this article, we have asked the question: can electric-magnetic duality be
gauged? To answer it we have used the standard procedure of (i) Writing the
original action in terms of the abelian curvatures; (ii) Replacing the latter by
their analog for a non-abelian deformation of the group, and (iii) Demanding
that the resulting action be invariant. This procedure is a decantation of
the original idea of gauging a global symmetry by iterating the coupling of
its Noether current to a compensating field. We have found that there is
no such group deformation. Therefore we conclude that, in the lack of a
radically new way to bring in interactions, electric-magnetic duality must be
regarded as being only a global symmetry.
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