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Abstract

We discuss some new simple closed bosonic string solutions in AdS5×S5 that may be of interest
in the context of AdS/CFT duality. In the first part of this work we consider solutions with two
spins (S1, S2) in AdS5. Starting from the flat-space solutions and using perturbation theory in
the curvature of AdS5 space, we construct leading terms in the small two-spin solution. We find
corrections to the leading Regge term in the classical string energy and uncover a discontinuity in
the spectrum for certain type of solutions. We then analyze the connection between small-spin and
large-spin limits of string solutions in AdS5. We show that the S1 = S2 solution in AdS5 found in
earlier papers admits both limits only in the simplest cases of the folded and rigid circular strings.
In the second part of the paper we construct a new class of chiral solutions in Rt × S5 for which
embedding coordinates of S5 satisfy the linear Laplace equations. They generalize the previously
studied rigid string solutions. We study in detail a simple non-trivial example.
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1 Introduction

Semiclassical string solutions is a useful tool for probing AdS/CFT correspondence [1, 2, 3, 4]. In
the closed string sector, AdS energy of a closed string expressed in terms of spins1 and string tension

T =
√
λ

2π , i.e. E(Si, Jm;λ), gives the strong coupling limit of the scaling dimension of the corresponding
gauge-theory operator (see, e.g., [5, 6]). Also, in the open string sector, solutions ending at the
boundary of AdS5 describe the strong coupling limit of the associated Wilson loops [7, 8].

In this paper we present some new classical solutions for a closed bosonic string in the AdS5 × S5.

We shall first consider strings with two spins in AdS5 part of AdS5 × S5. A natural ansatz for
describing a rigid “rotating” string solution is [4] (0 ≤ σ < 2π):

Y0 + iY5 = y0(σ) e
iκτ , Y1 + iY2 = y1(σ) e

iω1τ , Y3 + iY4 = y2(σ) e
iω2τ ,

κ, ω1, ω2 = const .
(1.1)

Here YP are embedding coordinates of R2,4 with the metric ηPQ = (−1,+1,+1,+1,+1,−1); YPY
P =

−1. A general approach to finding such rigid string solutions was developed in [9]. Using the reduction
of the conformal-gauge string sigma model to the 1-d Neumann integrable model, one finds that the
equations for y0, y1, y2 are those of a harmonic oscillator constrained to move on a 2d hyperboloid —
an integrable system with two integrals of motion b1, b2 with b1 + b2 = κ2 + ω2

1 + ω2
2. In general, the

solutions are expressed in terms of hyperelliptic functions and thus are not easy to analyze. There are
few special cases when they simplify — when the hyperelliptic surface degenerates into an elliptic one
and ya(σ) can be expressed in terms of the standard elliptic functions. Two of such cases, ω1 = ω2,
corresponding to S1 = S2 solution, and its boosted analog with κ = ω2 6= ω1 were studied in [10]. The
existence of simple but more general solution with two unequal spins is an open question. Recent study
of N = 4 SYM states dual to minimal energy spinning string configuration with two spins (S1, S2) with
S1

S2
fixed using the asymptotic Bethe ansatz (ABA) [11] suggests that such simple solution might indeed

exist. In the large-spin limit the energy of the S1 = S2 solution [10] matched the strong-coupling ABA
result of [11].

Aiming at a better understanding of two-spin solutions in AdS5, here we first study the case of small
strings or small-spin limit. Starting from the flat-space case, in which the general two-spin solutions
are [9]

κ2 = n21a
2
1 + n22a

2
2

yflat1 = a1 sin(n1σ) yflat2 = a2 sin[n2(σ + σ0)]
ω1 = n1, ω2 = n2, ni = integer

(1.2)

and performing perturbation with respect to the curvature of AdS5, we find the corrections to the
flat-space expression for the classical energy E(S1, S2;λ). We uncover a discontinuity in the spectrum
of classical strings with equal and unequal winding numbers in Y1Y2 and Y3Y4 planes (n1 and n2). It
may indicate that there are deep differences between solutions with n1 6= n2 and more symmetrical
ones with n1 = n2. We then investigate the connection between small- (flat-space) and large-spin
limits of two-spin string solutions in AdS5. In the particular cases of ω1 = ω2 and κ = ω2 6= ω1 the
general solutions in AdS5 were found in [10]. It was discussed there, for κ = ω2 6= ω1 case, that strings
which admit large-spin limit do not have the small-spin one and vice-versa. For ω1 = ω2, we find
that apart from the trivial cases of folded and circular strings, the general rigid solution with S1 = S2

1 The generic states of bosonic string in AdS5 × S5 may be labeled by the values of three SO(2, 4) Cartan generators
(E,S1, S2) and three SO(6) Cartan generators (J1, J2, J3). We will be interested in “spinning” string solutions that have
non-zero value of these charges.
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in AdS5 admitting the large-spin limit does not have a small-spin limit. For more general two-spin
solutions, having both limits might still be possible.

In the second part of the paper we consider another simple class of string solutions — chiral solutions
in Rt × S5. Such solutions obey an additional constraint

∂+XM∂−XM = 0, (1.3)

where XM are embedding coordinates of R6 with the Euclidean metric δMN ; XMXM = 1 and ∂± =
∂

∂σ±
= 1

2

(

∂
∂τ

± ∂
∂σ

)

, σ± = τ ± σ. Then the classical string equations in conformal gauge become

∂+∂−XM = 0. (1.4)

The simplest solution of this kind is [12],

Y0 + iY5 = eiκτ , X1 + iX2 = a1e
im1σ± , X3 + iX4 = a2e

im2σ± , X5 + iX6 = a3e
im3σ∓ , (1.5)

where
3
∑

i=1
ai = 1 and mi are integers. It was recently used in [13] as a model of a quantum string state

with “small” quantum numbers. We expect that more general chiral solutions may also find useful
applications.

Here we consider the following ansatz

X1 + iX2 = a1e
iF1(σ+), X3 + iX4 = a2e

iF2(σ+), X5 + iX6 = a3e
iF3(σ−), (1.6)

and obtain the general solution for the functions Fi(σ±). A particular simple non-trivial case

F1(σ+) = α cosnσ+ , F2(σ+) = α sinnσ+ , F3(σ−) = mσ− (1.7)

we analyze in detail. It reduces to (1.6) in the limit n → 0. Note that chiral solutions treat τ and σ
on an equal footing, i.e. non-trivial dependence on τ implies that the shape of the string is not rigid,
in general, so such solutions are similar to “pulsating” ones.

The rest of the paper is organized as follows. In section 2 we discuss basics of bosonic string solutions
in AdS5×S5: action in the conformal gauge, equations of motion, etc. Section 3 is dedicated to small-
string solutions in AdS5. In section 4 we consider the relation between string solutions admitting
small- and large-spin limits in AdS5. In particular, we discuss small-spin limit of exact solutions with
two equal spins. Section 5 is devoted to the chiral solutions in Rt × S5. In Appendix A we give an
overview of circular and folded string solutions in AdS5. In Appendix B curvature corrections to the
folded string solution displaced from the center of AdS5 are discussed. In Appendixes C and D we
present technical details of calculation of spins for chiral solutions corresponding to (1.7).

2 Closed bosonic string in AdS5 × S5

We will be interested in the classical bosonic solutions for closed string in AdS5 × S5

IB =
1

2
T

∫

dτ

2π
∫

0

dσ(LAdS + LS), T =
R2

2πα′ =

√
λ

2π
, (2.1)
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where

LAdS = −∂aYP∂aY P − Λ̃(YPY
P + 1), LS = −∂aXM∂

aXM + Λ(XMXM − 1). (2.2)

Here XM , M = 1, ..., 6 and YP , P = 0, ..., 5 are embedding coordinates of R6 with the Euclidean metric
δMN in LS and of R2,4 with ηPQ = (−1,+1,+1,+1,+1,−1) in LAdS , respectively (YP = ηPQY

Q).
Λ and Λ̃ are the Lagrange multipliers imposing the two hypersurface conditions YPY

P = −1 and
XMXM = 1. The action (2.1) is to be supplemented with the conformal gauge constraints

ẎP Ẏ
P + Y ′

PY
′P + ẊMẊM +X ′

MX
′
M = 0, ẎPY

′P + ẊMX
′
M = 0 (2.3)

and the closed string periodicity conditions

YP (τ, σ + 2π) = YP (τ, σ), XM (τ, σ + 2π) = XM (τ, σ). (2.4)

The classical equations of motion following from (2.1) are

∂a∂aYP − Λ̃YP = 0, Λ̃ = ∂aYP∂aY
P , YPY

P = −1,

∂a∂aXM + Λ̃XM = 0, Λ = ∂aXM∂aXM , XMXM = 1.
(2.5)

The action is invariant under the SO(2, 4) and SO(6) rotations with correspondent conserved (on-shell)
charges

SPQ =
√
λ

2π
∫

0

dσ

2π
(YP ẎQ − YQẎP ), JMN =

√
λ

2π
∫

0

dσ

2π
(XM ẊN −XN

˙XM ) . (2.6)

We are interested in finding “spinning” string solutions that have non-zero values of these charges.

It is useful to solve the constraints

YPY
P = −1 XMXM = 1 (2.7)

by choosing an explicit parametrization of the embedding coordinates YP and XM , for example

Y05 = Y0 + iY5 = cosh ρeit ,

Y12 = Y1 + iY2 = sinh ρ cos θeiφ1 , Y34 = Y3 + iY4 = sinh ρ sin θeiφ2 ;
(2.8)

X12 = X1 + iX2 = sin γ cosψeiϕ1 , X34 = X3 + iX4 = sin γ sinψeiϕ2 ,

X56 = X5 + iX6 = cos γeiϕ3 .
(2.9)

Then the corresponding metrics take the form

ds2AdS5
= − cosh2 ρ dt2 + dρ2 + sinh2 ρ (dθ2 + cos2 θ dφ21 + sin2 θ dφ22) (2.10)

ds2S5 = cos2 γ dϕ2
1 + dγ2 + sin2 γ (dψ2 + cos2 ψ dϕ2

1 + sin2 ψ dϕ2
2). (2.11)

The Cartan generators of SO(2, 4) corresponding to the three linear isometries of the AdS5 metric are
the translations in the AdS time t and two angles φa :

S0 ≡ S05 ≡ E =
√
λE , S1 ≡ S12 =

√
λS1, S2 ≡ S34 =

√
λS2. (2.12)
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The Cartan generators of SO(6) corresponding to the three linear isometries of the S5 metric are the
translations in the three angles ϕa :

J1 ≡ J12 =
√
λJ1, J2 ≡ J34 =

√
λJ2, J3 ≡ J56 =

√
λJ3. (2.13)

In this paper we also use the other type of embedding coordinates in AdS5:

Y05 = y0 e
it , Y12 = y1 e

iφ1 , Y34 = y2 e
iφ2 , (2.14)

where

y1 = sinh ρ cos θ , y2 = sinh ρ sin θ and y0 =
√

1 + y21 + y22 = cosh ρ . (2.15)

The corresponding AdS5 metric takes the form

ds2AdS5
= −(1 + y21 + y22)dt

2 − (y1dy1 + y2dy2)
2

1 + y21 + y22
+ dy21 + dy22 + y21dφ

2
1 + y22dφ

2
2 . (2.16)

Coordinates (2.8) we call “circular”, coordinates (2.14) — “cartesian”.

3 Small rigid strings in AdS5

Aiming at a better understanding of two-spin solutions in AdS5, in this section we study the case of
small strings.

3.1 Rigid string ansatz

Our aim here is to study closed strings with two spins, i.e. rotating in φ1,2. A natural ansatz for
describing such solutions is the “rigid” string ansatz [4] (0 ≤ σ < 2π):

t = κτ , φ1 = ω1τ , φ2 = ω2τ κ, ω1, ω2 = const
y1 = y1(σ) , y2 = y2(σ) or ρ = ρ(σ) , θ = θ(σ) .

(3.1)

In the “circular” coordinates, the string equations of motion and the conformal constraint for this
ansatz read

(θ′ sinh2 ρ)′ = (ω2
1 − ω2

2) sin θ cos θ sinh2 ρ (3.2)

ρ′′ − cosh ρ sinh ρ (κ2 + θ′2 − ω2
1 cos

2 θ − ω2
2 sin

2 θ) = 0 (3.3)

ρ′2 − κ2 cosh2 ρ+ sinh2 ρ (θ′2 + ω2
1 cos2 θ + ω2

2 sin2 θ) = 0. (3.4)

Note, that these equations are not independent, for example, (3.3) is a linear combination of (3.2) and
(3.4)’s first derivative.

In the “cartesian” coordinates, the string equations of motion and the conformal constraint read

y1y
′′
1 + y2y

′′
2

1 + y21 + y22
y1 +

(y1y
′
2 − y2y

′
1)

2 + y′21 + y′22
(1 + y21 + y22)

2
y1 − y′′1 + (1 + ω2

1)y1 = 0 (3.5)

y1y
′′
1 + y2y

′′
2

1 + y21 + y22
y2 +

(y1y
′
2 − y2y

′
1)

2 + y′21 + y′22
(1 + y21 + y22)

2
y1 − y′′2 + (1 + ω2

2)y2 = 0 (3.6)

(y′2 y1 − y′1 y2)
2 + (y′1)

2 + (y′2)
2 = (1 + y21 + y22) (κ

2 (1 + y21 + y22)− ω2
1 y

2
1 − ω2

2 y
2
2). (3.7)
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We may rewrite this system in a more compact form (with only independent equations present):

(y′2 y1 − y′1 y2)
′ = (ω2

1 − ω2
2) y1 y2 (3.8)

(y′2 y1 − y′1 y2)
2 + (y′1)

2 + (y′2)
2 = (1 + y21 + y22) (κ

2 (1 + y21 + y22)− ω2
1 y

2
1 − ω2

2 y
2
2), (3.9)

where (3.8) is the difference between (3.5) and (3.6).

A general approach to finding such rigid string solutions in AdS5 (and S5) was developed in [9]
using the reduction of the conformal-gauge string sigma model to the 1-d Neumann integrable model.2

Starting with the R2,4 embedding coordinates (2.14) one finds that the equations for y0, y1, y2 are
those of a harmonic oscillator constrained to move on a 2d hyperboloid — an integrable system with
two integrals of motion b1, b2 with b1 + b2 = κ2 + ω2

1 + ω2
2 . In general, the solutions are expressed

in terms of hyperelliptic functions and thus are not easy to analyze. There are few special cases
when they simplify — when the hyperelliptic surface degenerates into an elliptic one and ya(σ) can
be expressed in terms of the standard elliptic functions. Two of such cases, ω1 = ω2, corresponding
to S1 = S2 solution, and its boosted analog with κ = ω2 6= ω1 were studied in [10]. The existence of
simple but more general solution with two unequal spins is an open question. Recent study of N = 4
SYM states dual to minimal energy spinning string configuration with two spins (S1, S2) with

S1

S2
fixed

using ABA [11] suggests that such simple solution might indeed exist.

Here we study small strings with two-spin solutions in AdS5, starting from the flat-space solutions
and using perturbation theory in the curvature of AdS5.

3.2 Flat-space limit

In this section, we review the flat-space limit for closed strings in AdS5. Let us start from the expression
for the metric in “circular” coordinates

ds2AdS5
= − cosh2

( ρ

R

)

dt2 + dρ2 +R2 sinh2
( ρ

R

)

(dθ2 + cos2 θ dφ21 + sin2 θ dφ22) . (3.10)

Here R is the radius of curvature of AdS5.

If the size of the string is small ρ = ǫρ̃≪ R, ǫ≪ 1, one can perform an expansion (R = 1):

ds2AdS5
= ǫ2(− dt̃2 + dρ̃2 + ρ̃2 dΩ3) + ǫ4ρ̃2

(

−dt̃2 + 1

3
ρ̃2dΩ3

)

+O
(

ǫ6
)

, (3.11)

where t = ǫt̃, dΩ3 = dθ2 + cos2 θ dφ21 + sin2 θ dφ22. The leading term represents the metric of flat R1,4

Minkowski space.

A similar expansion can be performed in terms of the “cartesian” coordinates. In the limit of small
strings

y1 = ǫỹ1, y2 = ǫỹ2, ǫ≪ 1, (3.12)

where ǫ defines the size of the string with respect to the radius of curvature, we have

ds2AdS5
= ǫ2

(

−dt̃2 + dỹ21 + dỹ22 + ỹ21dφ
2
1 + ỹ22dφ

2
2

)

− ǫ4
(

(ỹ21 + ỹ22)dt̃
2 + ỹ1dỹ1 + ỹ2dỹ2

)

+O(ǫ4) ,(3.13)

2A more general rigid string ansatz, where in addition to ρ = ρ(σ), θ = θ(σ) one has φ1 = ω1τ + α1(σ), φ2 =
ω2τ + α2(σ) and where the corresponding 1-d system is the Neumann-Rosochatius one, was considered in [12].
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where dt = ǫdt̃. Again, the leading term is the metric of flat R1,4 Minkowski space.

In this paper we will mainly work with the expansion (3.13).

In the flat-space limit the string equations of motion and conformal constraint for the ansatz (3.1)
become

ỹ′′1 + ω2
1 ỹ1 = 0 ỹ′′2 + ω2

1 ỹ2 = 0
(ỹ′1)

2 + ω2
1 ỹ

2
1 − κ̃21 = 0 (ỹ′2)

2 + ω2
2 ỹ

2
2 − κ̃22 = 0

t̃ = κ̃τ, κ̃2 = κ̃21 + κ̃22

(3.14)

The solutions of these equations are [9]

t̃ = κ̃τ, κ̃2 = n21a
2
1 + n22a

2
2

ỹ1 = yflat1 = a1 sin(n1σ) ỹ2 = yflat2 = a2 sin[n2(σ + σ0)]
ω1 = n1, ω2 = n2

(3.15)

where ni are integers and σ0 is a constant phase shift. The energy and spins are given by

E = κ, Si =
nia

2
i

2
, i.e. E =

√

2(n1S1 + n2S2)

or, restoring λ,

E =
√
λκ, Si =

√
λ
nia

2
i

2
, i.e. E =

√

2
√
λ(n1S1 + n2S2).

To get the states on the leading Regge trajectory (having minimal energy for given values of the spins)
one is to choose n1 = n2 = 1.

Note, that in the case n1 = n2 and 2σ0 6= πn there are also non-Cartan components of the spin
present. We have not mentioned them above, as such solutions can always be rotated to3

yflat1 = a sin(nσ), yflat2 = b cos(nσ)

ω1 = ω2 = n, κ2 = n2(a2 + b2)
(3.19)

i.e. ones without non-Cartan components.

3.3 Curvature corrections to the flat-space solutions in AdS5

Expansions (3.11) and (3.13) suggest the possibility that solutions in full AdS5 may be constructed as

y1(σ) = ǫ yflat1 + ǫ3z1(σ) + ǫ5z3(σ) + ...

y2(σ) = ǫ yflat2 + ǫ3z2(σ) + ǫ5z4(σ) + ...
(3.20)

3 Let us set, for simplicity, n1 = n2 = n = 1 and rotate (3.15) by an angle β (β 6= π

2
m, m ∈ Z) in Y1Y3 and Y2Y4

planes
(

a1 sin(σ)
a2 sin(σ + σ0)

)

→

(
√

(a cos β − b sin β cosσ0)2 + (b sin β sin σ0)2 sin(σ − ϕ1)
√

(a sin β + b cosβ cos σ0)2 + (b cos β sin σ0)2 cos(σ − ϕ2)

)

, (3.16)

where

sinϕ1 =
b sin β sin σ0

√

(a cosβ − b sin β cos σ0)2 + (b sin β sin σ0)2
(3.17)

sinϕ2 =
a sin β + b cosβ cos σ0

√

(a sin β + b cos β cos σ0)2 + (b cos β sin σ0)2
(3.18)

When ϕ1 = ϕ2 = ϕ0 or equivalently tan 2β = a

b cos σ0
, the rotated solution is indeed of the form (3.19), with σ → σ−ϕ0.
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where the first term corresponds to the flat-space solution (3.15), while the others may be found using
perturbation theory in the curvature of AdS5.

Here we will be interested in the first subleading corrections only.

Let us look for a solution of (3.8), (3.9) in the form:

y1(σ) = ǫ a sin(n1σ) + ǫ3z1(σ)

y2(σ) = ǫ b sin(n2(σ + σ0)) + ǫ3z2(σ),
(3.21)

where n1,2 ∈ Z and

ω1 = n1(1 + ǫ2ω̃1), ω2 = n2(1 + ǫ2ω̃2)

κ0 = ǫ κ0 + ǫ3 κ1, κ20 = a2n21 + b2n22
(3.22)

with ω̃i, κ1 are curvature corrections to ωi, κ.

From (3.8), (3.9) one obtains the following system of equations

−b sin((σ + σ0)n2) (n
2
1z1 + z′′1 ) + a sin(σn1)

(

n22z2 + z′′2
)

= 2ab sin((σ + σ0)n2) sin(σn1)(n
2
1ω̃1 − n22ω̃2)

(3.23)

2a (cos(n1σ)n1z
′
1 + sin(n1σ)n

2
1z1) + 2b (cos(n2(σ + σ0))n2z

′
2 + sin(n2(σ + σ0))n

2
2z2)

= 2χ+
1

4
(a2n1 sin(2n1σ) + b2n2 sin(2n2(σ + σ0)))

2

+a2 sin2(n1σ)
[

a2n21 + b2n22 − 2a2n21ω̃1

]

+ b2 sin2(n1(σ + σ0))
[

a2n21 + b2n22 − 2b2n22ω̃2

]

.

(3.24)

Here χ2 = κ21κ
2
0. The equations for z1 and z2 may be separated in the following way. Differentiate

both sides of (3.24). The left-hand side reads
(

a (cos(n1σ)n1z
′
1 + sin(n1σ)n

2
1z1) + b (cos(n2(σ + σ0))n2z

′
2 + sin(n2(σ + σ0))n

2
2z2)

)′

= a cos(n1σ)n1
(

n21z1 + z′′1
)

+ b cos(n2(σ + σ0))n2
(

n22z2[s] + (z2)
′′ [s]

)

.
(3.25)

Then, compare (3.25) with the left-hand side of (3.23). After some rearrangements we obtain

z′′1 + n21z1 = 2a sin(n1σ)
[

a2n21 cos
2(n1σ) + b2n2 cos

2(n2(σ + σ0))− n21ω̃1

]

(3.26)

z′′2 + n22z2 = 2b sin(n2(σ + σ0))
[

a2n21 cos
2(n1σ) + b2n2 cos

2(n2(σ + σ0))− n22ω̃2

]

. (3.27)

These equations can be readily solved:

• If n1 = n2 = n one finds

z1 = C1 sin(nσ) + C2 cos(nσ)

−1

4
a nσ

[

(a2 + 2b2 − 4ω̃1) cos(nσ)− b2 cos(nσ + 2nσ0)
]

− a

16

[

a2 sin(3nσ) + b2 sin(3nσ + 2nσ0) + 2b2 sin(nσ + 2nσ0)

−2 sin(nσ)
(

a2 + 2b2 − 4ω̃1

)]

z2 = C3 cos(nσ) + C4 sin(nσ)

−1

4
b nσ

[

(b2 + 2a2 − 4ω̃2) cos(nσ + nσ0)− a2 cos(nσ − nσ0)
]

− b

16

[

b2 sin(3nσ + 3nσ0) + a2 sin(3nσ + nσ0) + 2a2 sin(nσ − nσ0)

−2 sin(nσ + nσ0)
(

b2 + 2a2 − 4ω̃2

)]

.

(3.28)
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Here Ci (i = 1, 2, 3, 4) are integration constants.

The closed string periodicity condition (2.4) requires z1, z2 being periodic in σ, i.e. the linear
terms must vanish:

(a2 + 2b2 − 4ω̃1) cos(nσ)− b2 cos(nσ + 2nσ0) = 0

(b2 + 2a2 − 4ω̃2) cos(nσ + nσ0)− a2 cos(nσ − nσ0) = 0.
(3.29)

These equations can be solved for constant values of ω̃1, ω̃2 only

– in the elliptic string case, when 2σ0n = π + 2πm, m ∈ Z,

ω̃1 =
1

4
(a2 + 3b2), ω̃2 =

1

4
(3a2 + b2). (3.30)

This case is considered in section 3.4.

– in the folded string case, when 2σ0n = 2πm, m ∈ Z

ω̃1 = ω̃2 =
1

4
(a2 + b2). (3.31)

This case is considered in section 3.5.

The restriction on σ0 might first look surprising. One can always rotate (3.15) with arbitrary
σ0 to (3.19) (see section 3.2) and, using the method given above, find the curvature corrections
to any flat-space solution with n1 = n2. However, rotating back, we would not remain in the
framework of the rigid string ansatz as the frequencies ω1 and ω2 are now different (see (3.30)).

• If n1 6= n2 one finds

z1 = C1 sin(n1σ) + C2 cos(n1σ)

+
ab2

4
(

n21 − n22
)

[

− cos(n1σ) sin(2n2(σ + σ0))n1n2 + cos(2n2(σ + σ0)) sin(n1σ)n
2
2

]

−a
3

16

[

sin(3n1σ)− 2 sin(n1σ)
a2n21 + 2b2n22 − 4n21ω̃1

n21

+4n1σ cos(n1σ)
a2n21 + 2b2n22 − 4n21ω̃1

n21

]

z2 = C3 cos(n2(σ + σ0)) + C4 sin(n2(σ + σ0))

− ba2

4
(

n21 − n22
)

(

− cos(n2(σ + σ0)) sin(2n1σ)n1n2 + cos(2n1σ) sin(n2(σ + σ0))n
2
1

)

− b3

16

[

sin(3n2(σ + σ0))− 2 sin(n2(σ + σ0))
b2n22 + 2a2n21 − 4n22ω̃2

n22

−4n2σ cos(n2(σ + σ0))
b2n22 + 2a2n21 − 4n22ω̃2

n22

]

.

(3.32)

Here Ci (i = 1, 2, 3, 4) are integration constants.

The closed string periodicity condition (2.4) requires the linear terms vanish:

a2n21 + 2b2n22 − 4n21ω̃1 = 0, b2n22 + 2a2n21 − 4n22ω̃2 = 0. (3.33)
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Then (for any value of σ0) we have

ω̃1 =
a2n21 + 2b2n22

4n21
, ω̃2 =

2a2n21 + b2n22
4n22

. (3.34)

This case is considered in section 3.6.

In fact, the restriction on σ0 in the n1 = n2 case singles out the solutions with zero non-Cartan
components of spin. Indeed, for n1 6= n2 there are no such components for any value of σ0, while for
n1 = n2 they vanish only if 2σ0 = πm.

Only flat-space solutions with zero non-Cartan components of spin receive curvature corrections in
the framework of the rigid string ansatz. An attempt to find the corrections to the solutions with
non-vanishing non-Cartan components leads out of the rigid string ansatz.

3.4 The elliptic string solution (n1 = n2)

Curvature corrections to the string solution with n1 = n2 = n and 2σ0n = π + 2πm, m ∈ Z are (see
(3.28), (3.30))

z1 = C1 sin(nσ) + C2 cos(nσ)−
1

16
a (a2 − b2) sin(3nσ)

z2 = C3 cos(nσ) + C4 sin(nσ) +
1

16
b (b2 − a2) cos(3nσ).

(3.35)

Here vanishing of non-Cartan components of spin requires aC4 = −bC2.

Recall that in order to get from the system (3.23), (3.24) to (3.26), (3.27), we take a derivative from
(3.24), thus we must check if it is satisfied. Substituting (3.35) into (3.24), one finds

− 16χ− 3n2
(

a2 − b2
)2

+ 16n2 (aC1 + bC3) = 0 . (3.36)

Then the classical energy of the string reads

En1=n2
=

√

2n(S1 + S2)

[

1 +
3

8n
(S1 + S2) +

1

2n

S1S2

S1 + S2
+O(SiSj)

]

(3.37)

or, restoring λ,

En1=n2
=

√

2n
√
λ(S1 + S2)

[

1 +
3

8n
√
λ

(S1 + S2) +
1

2n
√
λ

S1S2
S1 + S2

+O(λ−1)

]

. (3.38)

This expression is a generalization of circular and folded string cases (for a review see Appendix A
and references therein). In the limit S1 = S, S2 = 0, it gives the small-spin expansion of the classical
energy of the folded string (see (A.14))

E =
√
2nS

(

1 +
3S
8n

+O(S2)

)

; (3.39)

in the limit S1 = S2 = S — the small-spin expansion of the classical energy of the circular string (see
(A.5))

E = 2
√
nS

(

1 +
S
n
+O(S2)

)

. (3.40)
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3.5 The folded string solution (n1 = n2)

Curvature corrections to the string solution with n1 = n2 = n and 2σ0n = π + 2πm, m ∈ Z are (see
(3.28), (3.31))

z1 = C1 sin(nσ) + C2 cos(nσ)−
1

16
a (a2 + b2) sin(3nσ)

z2 = C3 cos(nσ) + C4 sin(nσ)−
1

16
b (b2 + a2) cos(3nσ).

(3.41)

Here vanishing of non-Cartan components of spin requires aC4 = −bC2.

From (3.24), one obtains the constraint on Ci :

− 16χ− 3n2
(

a2 + b2
)2

+ 16n2 (aC1 + bC3) = 0. (3.42)

Then the classical energy of the string reads

E =
√
2nS

(

1 +
3

8n
S +O(S2)

)

or E =

√

2n
√
λS

(

1 +
3

8n
√
λ
S +O(λ−1)

)

, (3.43)

i.e. coincides with the small-spin expansion of the classical energy of the folded string (A.14).

3.6 n1 6= n2 solutions

Curvature corrections to the string solution with n1 6= n2 and arbitrary phase shift σ0 are (see (3.32),
(3.34))

z1 = C1 sin(n1σ) + C2 cos(n1σ)

+
ab2

4
(

n21 − n22
)

[

− cos(n1σ) sin(2n2(σ + σ0))n1n2 + cos(2n2(σ + σ0)) sin(n1σ)n
2
2

]

−a
3

16
sin(3n1σ)

z2 = C3 sin(n2(σ + σ0)) +C4 cos(n2(σ + σ0))

+
ba2

4
(

n22 − n21
)

(

− cos(n2(σ + σ0)) sin(2n1σ)n1n2 + cos(2n1σ) sin(n2(σ + σ0))n
2
1

)

− b3

16
sin(3n2(σ + σ0)).

(3.44)

From (3.24), one obtains the constraint on Ci :

− 16χ− 3
(

a4n21 + b4n22
)

+ 16
(

a n21 C1 + b n22 C3

)

= 0. (3.45)

Then the classical energy of the string reads

En1 6=n2
=

√

2n1S1 + 2n2S2

[

1 +
3

8

(S1 + S2)
2

n1S1 + n2S2
+

1

2

S1S2

n1S1 + n2S2

(

n1
n2

+
n2
n1

− 3

2

)

+O(SiSj)

]

(3.46)
or, restoring λ,

En1 6=n2
=

√

2
√
λ(n1S1 + n2S2)

[

1 +
3

8
√
λ

(S1 + S2)
2

n1S1 + n2S2

+
1

2
√
λ

S1S2

n1S1 + n2S2

(

n1
n2

+
n2
n1

− 3

2

)

+O(λ−1)

]

.
(3.47)
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Note, that in the limit n1 = n2 = n expression (3.47) becomes

En1 6=n2

n1=n2−→
√

2
√
λn(S1 + S2)

[

1 +
3

8n
√
λ

(S1 + S2)
2

S1 + S2
+

1

2n
√
λ

S1S2

S1 + S2

(

1

2

)

+O(λ−1)

]

,

which differs from (3.38) by the factor of 1/2 in the third term in the brackets.

This discontinuity may indicate that there are deep differences between solutions with n1 6= n2 and
more symmetrical ones with n1 = n2.

4 Small-string limit of the exact string solutions in AdS5

In this section we investigate the connection between small- (flat-space) and large-spin limits of two-
spin string solutions in AdS5. In the particular cases of ω1 = ω2 and κ = ω2 6= ω1 the general solutions
in AdS5 were found in [10]. It was discussed there, for κ = ω2 6= ω1 case, that strings which admit
large-spin limit do not have the small-spin one and vice-versa. Thus we study only solutions with
ω1 = ω2, corresponding to S1 = S2 case.

When ω1 = ω2 = ω, string sigma model equations reduce to

θ′ =
c

sinh2 ρ
(4.1)

ρ′2 = κ2 cosh2 ρ− c2

sinh2 ρ
− ω2 sinh2 ρ , (4.2)

where c is an integration constant. The solution for ρ is [10]

cosh ρ =

√
a−

dn[
√

a+(ω2 − κ2)σ, a+−a−
a+

]
. (4.3)

Here

a± =
2ω2 − κ2 ±

√

κ4 − 4c2(ω2 − κ2)

2(ω2 − κ2)
(4.4)

define the size of the string:
√
a− ≤ cosh ρ ≤ √

a+. Parameters κ, ω, c are related to a± as

c2 = (a+ − 1)(a− − 1)(ω2 − κ2), κ2 = ω2a+ + a− − 2

a+ + a− − 1
. (4.5)

Solution (4.3) is valid for
√
a− ≤ cosh ρ ≤ √

a+ only.

Let us expand (4.3) in the small-string limit.

When the size of the string is small with respect to the curvature of AdS5 space (R = 1), one has

a+ = cosh ρmax = 1 + ǫ2 a2 + ǫ4 A+O(ǫ6)

a− = cosh ρmin = 1 + ǫ2 b2 + ǫ4 B +O(ǫ6)
ǫ≪ 1 . (4.6)

In what follows we omit orders higher then ǫ4.

In that limit the elliptic modulus of dn in (4.3) is small

a+ − a−
a+

=
ǫ2 (a2 − b2) + ǫ4 (A−B)

1 + ǫ2 a2 + ǫ4 A
∼ ǫ2 ≪ 1 ,
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so we can perform an expansion

cosh ρ = 1 + ǫ2
1

2
(a2 sin2(Wσ) + b2 cos2(Wσ))

+ ǫ4
1

8

[

W (a4 − b4) σ sin(2Wσ)− 1

4
(a2 − b2)2 sin2(2Wσ)

−
(

a4 − 4A
)

sin2(Wσ)−
(

b4 − 4B
)

cos2(Wσ)
]

+O(ǫ6) .

(4.7)

Here W 2 = ω2 − κ2. To satisfy the closed string periodicity condition, the ǫ2 and ǫ4 terms must both
be periodic. There are two options:

• W is an integer. Then the ǫ2 term is periodic and the linearity in the ǫ4 term cancels if a = b.

• W has the form W =W0 + ǫ2 W1. Then from (4.7) we have

cosh ρ = 1 + ǫ2
1

2
(a2 sin2(W0σ) + b2 cos2(W0σ))

+ ǫ4
1

8

[

(a2 − b2)(4W1 +m(a2 + b2)) σ sin(2W0σ)−
1

4
(a2 − b2)2 sin2(2W0σ)

−
(

a4 − 4A
)

sin2(W0σ)−
(

b4 − 4B
)

cos2(W0σ)
]

.
(4.8)

The ǫ2 term is periodic if W0 is an integer and the linearity in the ǫ4 term cancels if a = b or

W1 = −ǫ2 1

4
W0 (a2 + b2) . (4.9)

The case a = b brings us to the trivial limit of the circular string, so we will not discuss it here. Let
us investigate the other option.

Assuming that W has the form (4.9), we get

cosh ρ = 1 + ǫ2
1

2
(a2 sin2(W0σ) + b2 cos2(W0σ))

− ǫ4
1

8

[

1

4
(a2 − b2)2 sin2(2W0σ)

+
(

a4 − 4A
)

sin2(W0σ) +
(

b4 − 4B
)

cos2(W0σ)
]

.

(4.10)

Making use of (4.1) and (4.10), one obtains the following equation for θ

θ′ =
c̃ ǫ2

sinh2 ρ
=

c̃0 + ǫ2 c̃1

a2 sin2(W0σ) + b2 cos2(W0σ)

−ǫ2 c̃0
2A sin2(W0σ) + 2B cos2(W0σ)− (a2 − b2)2 cos2(W0σ) sin

2(W0σ)

2(a2 sin2(W0σ) + b2 cos2(W0σ))2
,

(4.11)

where

c = c̃ ǫ2 = ǫ2 c̃0 + ǫ4 c̃1. (4.12)

Its solution is

θ(σ) = θ0(σ) + ǫ2 θ1(σ), (4.13)
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where

θ0(σ) =
c̃0

W0 ab
arctan

[a

b
tan(W0σ)

]

;

θ1(σ) =
c̃0

4W0 ab

(

a2 + b2 − 2
A

a2
− 2

B

b2
+ 4

c̃1
c̃0

)

arctan
[a

b
tan(W0σ)

]

− c̃0
4W0

(

a2 − b2 − 2
A

a2
+ 2

B

b2

)

cos(W0σ) sin(W0σ)

a2 sin2(W0σ) + b2 cos2(W0σ)
− c̃0

2W0
arctan [tan(W0σ)] .

(4.14)

This expression, as well as (4.3) and (4.8), is valid for 0 ≤ W0σ ≤ π
2 only. Within this interval

θ may change only by a rational value of π : 0 ≤ θ ≤ n
k
θ and may not gain any small corrections,

otherwise the solution would not satisfy the closed string periodicity condition. We must have that
θ1(W0σ = 0) = θ1(W0σ = π

2 ). The latter gives the following constraint on c̃i, A, B

4
c̃1
c̃0

= 2

(

A

a2
+
B

b2

)

− (a− b)2. (4.15)

So far we have not used the relations given in (4.5). Substitution of (4.9) and (4.12) into (4.5) gives

4
c̃1
c̃0

= 2

(

A

a2
+
B

b2

)

− (a− b)2 + ab. (4.16)

Comparing this to (4.15), one finds
ab = 0,

which implies a = 0 or b = 0 and brings us to the limit of folded string.

Apart from the trivial cases of folded and circular strings, we find that the general rigid solution
with ω1 = ω2 (S1 = S2) in AdS5 admitting the large-spin limit does not have a small-spin limit. For
more general two-spin solutions it might still be possible to have both limits.

5 Chiral solutions for a bosonic string in Rt × S5

In this section we discuss chiral solutions in Rt × S5. Such solutions obey an additional constraint

∂+XM∂−XM = 0, (5.1)

where XM are embedding coordinates of R6 with the Euclidean metric δMN ; XMXM = 1 and

∂± =
∂

∂σ±
=

1

2

(

∂

∂τ
± ∂

∂σ

)

, σ± = τ ± σ.

We will discuss the string located at the center of AdS5 and rotating in S5, trivially embedded in
AdS5 as Y5 + iY0 = eit, with the global AdS time being t = κτ and Y1, ..., Y4 = 0 (see (2.5)).

The classical string equations in conformal gauge become4

∂−∂+XM = 0 (5.4)

∂−XM∂+XM = 0 (5.5)

κ2 = 4∂±XM∂±XM (5.6)

4 Chiral solutions may also be considered via Pohlmeyer reduction [14]. For example, let only four of XM ’s are
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The simplest solution of this kind is [12],

κ = 2a3m3 , X1 + iX2 = a1e
im1σ± , X3 + iX4 = a2e

im2σ± , X5 + iX6 = a3e
im3σ∓ ,

where
3
∑

i=1
ai = 1 and mi are integers. It was recently used in [13] as a model of a quantum string state

with “small” quantum numbers. We expect that more general chiral solutions may also find useful
applications.

Let us consider the ansatz
X12 = X1 + iX2 = a1e

iF1(σ+)

X34 = X3 + iX4 = a2e
iF2(σ+)

X56 = X5 + iX6 = a3e
iF3(σ−)

(5.7)

where
3
∑

i=1
ai = 1. To satisfy periodicity condition, F1, F2 must have the form

Fi(σ+) = miσ+ +
∑

n

f (i)n cos(nσ+) + g(i)n sin(nσ+) (5.8)

with f in, g
i
n are real and mi are integers.

From string equations (5.4), (5.5), (5.6) one finds

κ2 = 4a21 (∂+F1)
2 + 4a22 (∂+F2)

2 , κ = 2m3a3, (5.9)

F3 = m3σ−. (5.10)

Let us assume that F1 is an arbitrary function of the form (5.8), then F2 is expressed as

F2(σ+) = ±
∫

1

a2

√

a23m
2
3 − a21 (∂+F1)

2dσ+. (5.11)

Being represented as an integral from the periodic function, F2 possess periodic and linear terms only.
So up to adjusting ai, it has the form (5.8).

The general solution for the ansatz (5.7) is

κ = 2m3a3

X12 = a1 e
iF1(σ+), F1(σ+) = m1σ+ +

∑

n

fn cos(nσ+) + gn sin(nσ+)

X34 = a2 e
iF2(σ+), F2(σ+) = ± 1

a2

∫

dσ+

√

a23m
2
3 − a21 (∂+F1)

2

X56 = a3e
im3σ−

(5.12)

non-zero. The reduced model corresponding to the string in Rt × S3 [15] is the complex sine-Gordon (CSG) model

L̃ = ∂+α∂−α+ tan2
α ∂+θ∂−θ +

κ2

2
cos 2α . (5.2)

The variables α and θ are expressed in terms of the SO(4) invariant combinations of derivatives of the original variables
Xm (m = 1, 2, 3, 4)

κ
2 cos 2α = ∂+XM∂−XM , κ

3 sin2
α ∂±θ = ∓

1

2
ǫ
MNKL

XM∂+XN∂−XK∂
2
±XL . (5.3)

Chiral solutions meet particular case of α = π

4
.

15



In general, the “phase function F2” resulting from the integration (5.11) is expressed in ellip-
tic functions. There are few cases when it simplify to elementary ones. Two of them F1(σ+) =
m1σ+, F2(σ+) = m2σ+ and F1(σ+) = α cosnσ+ , F2(σ+) = α sinnσ+ are discussed below.

Note that chiral solutions treat τ and σ on an equal footing, i.e. non-trivial dependence on τ implies
that the shape of the string is not rigid, in general, so such solutions are similar to “pulsating” ones.

5.1 Rigid chiral solutions

The simplest chiral solution from ansatz (5.7) corresponds to

F1(σ+) = m1σ+, F2(σ+) = m2σ+ . (5.13)

It reads [12]:

κ = 2a3m3 , X12 = a1e
im1σ+ , X34 = a2e

im2σ+ , X56 = a3e
im3σ− , (5.14)

where

a21m
2
1 + a22m

2
2 = a23m

2
3 (5.15)

with mi are integers,
3
∑

i=1
a2i = 1.

Comparing that to (3.1), we see that it is a rigid string solution. In fact, it is the the only possible
rigid chiral solution from ansatz (5.7).

For fixed mi, the energy is given by the standard flat-space linear Regge relation

E =
√

2(m1J1 +m2J2 +m3J3), m3J3 = m1J1 +m2J2 , (5.16)

where expressions for spins are

J1 = a21m1, J2 = a22m2, J3 = a23m3 . (5.17)

Restoring λ, we get

E =

√

2
√
λ(m1J1 +m2J2 +m3J3), m3J3 = m1J1 +m2J2 . (5.18)

Note, that the non-Cartan components are zero only for m1 6= m2. If m1 = m2 the solution can
always be rotated to a two-spin one (S2 = 0).

5.2 Sine-Cosine solutions

A particularly simple non-trivial solution from ansatz (5.7) corresponds to

F1(σ+) = α cosnσ+ , F2(σ+) = α sinnσ+ . (5.19)
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It reads
κ = 2m sin γ

X1 =
1√
2
cos γ sin

[√
2
m

n
tan γ cos(nσ+)

]

X2 =
1√
2
cos γ sin

[√
2
m

n
tan γ sin(nσ+)

]

X3 =
1√
2
cos γ cos

[√
2
m

n
tan γ cos(nσ+)

]

X4 =
1√
2
cos γ cos

[√
2
m

n
tan γ sin(nσ+)

]

X5 = sin γ cos(mσ−)
X6 = sin γ sin(mσ−)

(5.20)

Here n,m are integers, a1 = a2 = 1√
2
cos γ 6= 0, a3 = sin γ 6= 0. Snap shots of the string at τ = 0 and

τ = π
4 are given on figure 1. One could see how it changes shape: a bended circle at τ = 0 and folded

(in projection on X1X3X5) at τ = π
2 .

−0.5
−0.25

0
0.25

0.50.5

0  
0.1

0.2
0.3

0.4
0.5

−0.8

−0.4

0   

0.4 

0.8 

 X
1

 X
3

 X
5

Figure 1: Shape of the string for n = 1, m = 1, γ = π
4 :

a bended circle at τ = 0 and folded (in projection on X1X3X5) at τ = π
2

The energy and spins are (see Appendix C):

E = 2m sin γ

J1 = J12 =
1

2
m sin(2γ) BesselJ1

[

2
m

n
tan γ

]

J3 = J56 = m sin2 γ

(5.21)
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For fixed n,m we find

E = 2
√

mJ3, J1 =
√

J3(m− J3)BesselJ1

[

2
m

n

√

J3

m− J3

]

, (5.22)

or, restoring λ,

E = 2

√

m
√
λ J3, J1 =

√

m
√
λ J3

(

1− J3

m
√
λ

)

BesselJ1



2
m

n

√

√

√

√

J3
m
√
λ

1− J3
m
√
λ



 . (5.23)

The dependance J1(J3) is presented on figure 2.

0 0.5 1 1.5 2 2.5 3

−0.4

−0.2

0

0.2

0.4

0.6

 J
3

 J
1

Figure 2: J1(J3) for n = 1, m = 3.

Solution (5.20) does not admit large-spin limit, as the values of spins are bounded above:

J3 ≤ Jmax
3 = m

√
λ, J1 ≤ Jmax

1 ≈ 0, 6
n
√
λ

1 + n2

m2

. (5.24)

In the small-spin limit, expanding the Bessel function in the expression for J1, we obtain

E = 2

√

m
√
λ J3, J1 = J3

m

n

(

1− 1

2

m2

n2
J3

m
√
λ
+O(λ−1)

)

. (5.25)

Let us show that in the limit n→ 0, certain solutions of type (5.20) reduce to (5.14).

18



In that limit from (5.20) one finds

κ = 2m sin γ

X1 =
1√
2
cos γ, X3 =

1√
2
cos γ

X2 =
1√
2
cos γ sin

[√
2 m tan γσ+

]

, X4 =
1√
2
cos γ cos

[√
2 m tan γ σ+

]

X5 = sin γ cos(mσ−), X6 = sin γ sin(mσ−)

(5.26)

Here we omitted the infinite phases in X1, X3, coming from cos(nσ+)
n

, as they do not contribute into
the consideration.

Relations (5.26) look like ones describing rigid chiral solution with two spins. Indeed one could
rewrite them as

κ = 2a3m
X1 = a, X3 = a,

X2 = a sin(kσ+), X4 = a cos(kσ+)
X5 = c cos(mσ−), X6 = c sin(mσ−)

(5.27)

where a = 1√
2
cos γ, c = sin γ, k =

√
2m tan γ. However k is in general arbitrary, so (5.27) corresponds

to the rigid chiral solutions only when

k =
√
2m tan γ is integer.

The expression for the AdS5 energy does not changes in n → 0 limit. The spins transform to (use
integral expressions from appendix C and restore m,n 6= 1)

J1 = J12 → 0, J2 = J34 → 0, J3 = J56 = mc2,

J24 =

√
2

2
m tan γ cos2 γ

sin(nσ+)

2πn

∣

∣

∣

∣

∣

2π

0

→ ka2
(5.28)

in exact agreement with (5.17).

Being expressed, as harmonic functions with the argument (5.8), solutions (5.7) are not easy to
analyze in terms of stability. Straight forward analysis may be performed only for the rigid chiral
solutions (5.14), which were proved stable in [12]. Thus one may also expect (5.20) being stable, due
to their relation to (5.14).

One may hope that generalization of F1(σ+) = α cosnσ+ to

F1(σ+) = m1σ+ + β1 sin(n1σ+) (5.29)

would also give a simple solution. However, in this case, from (5.19) we find that F2 is expressed via
elliptic functions E, F and Π all together. Finding anther simple solutions from ansatz (5.20) is an
open question.
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Summary

In this paper we have discussed several classical solutions for a closed bosonic string in the AdS5×S5.

First, we considered small rigid strings with two spins in AdS5 part of AdS5 × S5. Starting from
the flat-space solutions (3.15) and using perturbation theory in the curvature of AdS5 space, we
constructed leading terms in the small two-spin solution and found corrections to the leading Regge
term in the classical string energy (3.38) and (3.47). We uncovered a discontinuity in the spectrum of
classical strings with equal and unequal winding numbers in the Y1Y2 and Y3Y4 planes (n1 and n2).
In the limit n1 = n2 the expression for En1 6=n2

(S1, S2;λ) does not coincide with En1=n2
(S1, S2;λ).

We then investigated the connection between small-spin (flat-space) and large-spin limits of two-spin
string solutions in AdS5. For the ω1 = ω2 (i.e. S1 = S2) case we found that, apart from the trivial
cases of folded and circular strings, the general rigid solution with S1 = S2 in AdS5 admitting the
large-spin limit does not have a small-spin limit.

In the second part of the paper we constructed a new class of chiral solutions in Rt × S5 for which
the embedding coordinates of S5 satisfy the linear Laplace equations (5.4). We used the ansatz (5.7)
and obtained the general solution for it in the form (5.12). These solutions generalize the previously
studied rigid string chiral solutions (5.14) [12]. We studied in detail a simple non-trivial example of
these solutions (5.20).

There are a number of open questions that we leave for future investigation. It is of interest to find
solutions in full AdS5which correspond to more general flat-space solutions than rigid and folded ones.
The relation between small-spin and large-spin limits should be clarified. So far, it looks plausible
that there is no connection between them apart in the trivial limits. The origin of the discontinuity
in the spectrum of small-string solutions with n1 = n1 and n1 6= n1 is also not quite clear. Another
direction is to study possible applications of chiral solutions (5.12).
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A Appendix: Circular and folded strings in AdS5

A.1 The circular string solution

A particular simple solution of equations (2.5), (2.3), (2.4) is the rigid circular rotating string [4, 12, 16]:

Y05 =

√
m2 + w2

√
2m

eiκτ , Y12 =
κ

2m
eiωτ+imσ , Y34 =

κ

2m
eiωτ−imσ , (A.1)

where w =
√
m2 + κ2. It can also be rewritten in the form

Y05 =
√

1 + r2eiκτ , Ỹ12 = r cos(mσ)eiωτ , Ỹ34 = r sin(mσ)eiωτ , (A.2)

where ω = m
√
1 + 2r2 and r = sinh ρ0 =

κ√
2m

is a radius of the string. This is a consistent closed-string

solution periodic in O ≤ σ < 2π.
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The two spins of the string are equal S1 = S2 = S and are related to the energy by

E = κ+
2κS√
κ2 +m2

, S =
κ2

4m2

√

m2 + κ2 . (A.3)

In the small-string limit (S → 0) the profile of the string reads

Y05 ≈ (1+
1

2
ǫ2 a2) ei

√
2 ǫ amτ , Y12 ≈ a cos(σ) eim(1+ǫ2a2) τ , Y34 ≈ a sin(σ) eim(1+ǫ2a2) τ . (A.4)

The expression for the classical energy in this limit is

E = 2
√
mS

(

1 +
S
m

+O(S2)

)

or E = 2

√

m
√
λS

(

1 +
S

m
√
λ
+O(λ−1)

)

. (A.5)

Here the classical energy contains a non-trivial curvature corrections which modify the leading-order
flat-space Regge behavior.

A.2 Folded string solution

Another simple solution of equations (2.5), (2.3), (2.4) is the classical solution for the folded string
spinning in the AdS3 part of AdS5

ds2 = − cosh2 ρ dt2 + dρ2 + sinh2 ρ dφ2

described by [2, 17]
t = κτ, φ = wτ, ρ = ρ(σ), (A.6)

where
ρ′2 = κ2 cosh2 ρ− w2 sinh2 ρ . (A.7)

ρ varies from 0 to its maximal value ρ∗

coth2 ρ∗ =
w2

κ2
≡ 1 +

1

l2
. (A.8)

Thus l measures the length of the string. The solution of the differential equation (A.7), i.e.

ρ′ = ±κ
√

1− l−2sinh2 ρ , ρ(0) = 0 (A.9)

can be written in terms of the Jacobi function sn

sinh ρ = l sn(κl−1σ, −l2) . (A.10)

The periodicity in σ implies the following condition on the parameters [2]

κ = l 2F1(
1

2
,
1

2
; 1;−l2) . (A.11)

The classical energy E =
√
λE and the spin S =

√
λS are found to be

E = l 2F1(−
1

2
,
1

2
; 1;−l2), S =

l2

2

√

1 + l2 2F1(
1

2
,
3

2
; 2;−l2) . (A.12)
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Here we will be interested in the short string limit 0 < ǫ ≪ 1, l = aǫ in which

ρ∗ = aǫ− 1

6
ǫ3a3 +O(ǫ5) . (A.13)

In the strict limit a = 0 or κ = 0 we get ρ = ρ∗ = 0, so that the string shrinks to a point with E = 0.

From (A.12) in the ǫ ≪ 1 or the small S limit we obtain

E =
√
2S

(

1 +
3

8
S +O(S2)

)

, (A.14)

so the short string limit corresponds to S ≪ 1 and the expansion of the energy looks like

E =

√

2
√
λS

(

1 +
3

8
√
λ
S +O(λ−1)

)

. (A.15)

Expanding the exact solution (A.10) in powers of ǫ we obtain

sinh ρ = ǫ a sinσ − ǫ3
a3

16
(sin(3σ) + sinσ) +O(ǫ5) (A.16)

or equivalently, changing phase σ → π
2 − σ

sinh ρ = ǫ a cos σ − ǫ3
a3

16
(− cos(3σ) + cos σ) +O(ǫ5). (A.17)

For the frequencies we have

ω = 1 + ǫ2
a2

4
+O(ǫ4), κ = ǫ a− ǫ3

1

4
a3 +O(ǫ4). (A.18)

B Appendix: Folded string displaced from the AdS5 center (n2 = 0).

The possibility omitted in section 3.3 is when one of the frequencies of the original flat-space solutions
(ni) is zero, while the “amplitude” yi = const 6= 05. We will look for the solutions of (3.8), (3.9) in
the form:

y1(σ) = ǫ a sin(σn) + ǫ3z1(σ)

y2(σ) = ǫ b+ ǫ3z2(σ),
(B.1)

where n ∈ Z and

ω1 = n(1 + ǫ2 ω̃1), ω2 = ǫ ω̃2

κ = ǫ κ0 + ǫ3 κ1, κ20 = a2n2.
(B.2)

It follows from (3.13), that expansion of ω2
i must consist of the even powers of ǫ. So if n2 = 0 the

leading order of ω2 is ǫ.

From (3.8), (3.9) one obtains the set of equations:

−b (n2z1 + z′′1 ) + a sin(nσ) z′′2 = 2ab sin(nσ)(ω̃1 n
2 − ω̃2

2) (B.3)

2an [sin(nσ)nz1 + cos(nσ)z′1] = 2χ− b2ω̃2
2 + a2b2n2

−2a2 ω̃1 n
2 sin2(nσ) + 2a4n2 sin2(nσ)− a4n2 sin4(nσ).

(B.4)

5One may also consider perturbations under a flat-space solution with n1 = n2 = 0, i.e. a point-like string displaced
from the center of AdS5. There are no closed string solutions in this limit.
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Here χ2 = κ21κ
2
0. These system can be readily solved. The solution of (B.4) is straight forward:

z1 = C1 cos(nσ) + an σ cos(nσ)

(

ω̃1 −
1

4
a2
)

+
sin(nσ)

2an2
(2χ− b2ω̃2

2)

−a sin(nσ)
(

ω̃1 −
1

2
(a2 + b2)

)

− 1

4
a3 sin2(nσ) cos(nσ).

(B.5)

Employing the closed string periodicity condition (2.4), one finds

ω̃1 =
a2

4
. (B.6)

Then the solution for z2 is

z2 = C2 + σC3 −
1

4
a2b cos(2nσ) + σ2

b

2

(

a2n2 − ω̃2
2

)

. (B.7)

Making use of the closed string periodicity conditions, one finds

ω̃2 = ±an, C3 = 0 . (B.8)

There is no additional constraints on the parameters C1, C2, χ, so the solution of (B.3), (B.4) is

z1 = C1 cos(nσ) +
1

16
a3(3 sin(nσ)− sin(3nσ)) +

κ1 sin(nσ)

n

z2 = C2 −
1

4
a2b cos(2nσ)

ω1 = n(1 + ǫ2
a2

4
), ω2 = ±ǫ an, κ = ǫ an+ ǫ3 κ1.

(B.9)

It is not hard to see, that due to κ ≈ ω2, non-Cartan components of the spin S0i do not vanish. This
solution can be rotated by boost to a folded string one.

C Appendix: Spins for the Sine-Cosine solutions

In this section we will calculate the components of spin Jij =
2π
∫

0

dσ
2π [XiẊj −XjẊi] for the Sine-Cosine

solutions (5.20). Set for the simplicity n = m3 = 1.

Cartan components of the spin are

J1 = J12 =

2π
∫

0

dσ

2π
[X1Ẋ2 −X2Ẋ1]

=
1

4
sin(2γ)

2π
∫

0

dσ

2π
[sin(τ + σ + π/4) sin(2 tan γ sin(τ + σ + π/4))

+ sin(τ + σ − π/4) sin(2 tan γ sin(τ + σ − π/4))]

=
1

2
sin(2γ)

2π
∫

0

dζ

2π
sin(ζ) sin(2 tan γ sin(ζ)) =

1

2
sin(2γ)BesselJ1(2 tan γ)

(C.1)
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(see Appendix D for a proof of the equality on the last line);

J2 = J34 =

2π
∫

0

dσ

2π
[X3Ẋ4 −X4Ẋ3]

= −1

4
sin(2γ)

2π
∫

0

dσ

2π
[sin(τ + σ + π/4) sin(2 tan γ sin(τ + σ + π/4))

− sin(τ + σ − π/4) sin(2 tan γ sin(τ + σ − π/4))]

=
1

4
sin(2γ)

2π
∫

0

dζ

2π
[sin(ζ) sin(2 tan γ sin(ζ))− sin(ζ) sin(2 tan γ sin(ζ))] = 0 ;

(C.2)

J3 = J56 =

2π
∫

0

dσ

2π
[X5Ẋ6 −X6Ẋ5] = sin2 γ . (C.3)

Non-Cartan components of the spin are

J13 =

2π
∫

0

dσ

2π
[X1Ẋ3 −X3Ẋ1] =

1

2
√
2
sin(2γ)

2π
∫

0

dσ

2π
sin(τ + σ) = 0 ; (C.4)

J24 =

2π
∫

0

dσ

2π
[X2Ẋ4 −X4Ẋ2] = − 1

2
√
2
sin(2γ)

2π
∫

0

dσ

2π
cos(τ + σ) = 0 ; (C.5)

J14 =

2π
∫

0

dσ

2π
[X1Ẋ4 −X4Ẋ1]

=
1

2
√
2
sin(2γ)

2π
∫

0

dσ

2π
[sin(τ + σ − π/4) cos(2 tan γ sin(τ + σ − π/4))

+ sin(τ + σ + π/4) cos(2 tan γ sin(τ + σ + π/4))]

=
1√
2
sin(2γ)

2π
∫

0

dζ

2π
sin(ζ) cos(2 tan γ sin(ζ))

=
1√
2
sin(2γ)

2π
∫

0

dζ

2π

∞
∑

l=0

(−1)l

(2l)!
(2 tan γ)2l sin2l+1(ζ) = 0 ;

(C.6)

J23 =

2π
∫

0

dσ

2π
[X2Ẋ3 −X3Ẋ2] =

=
1

2
√
2
sin(2γ)

2π
∫

0

dσ

2π
[sin(τ + σ − π/4) cos(2 tan γ sin(τ + σ − π/4))

− sin(τ + σ + π/4) cos(2 tan γ sin(τ + σ + π/4))]

=
1

2
√
2
sin(2γ)

2π
∫

0

dζ

2π
[sin(ζ) cos(2 tan γ sin(ζ))− sin(ζ) cos(2 tan γ sin(ζ))] = 0 .

(C.7)
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Here we used, that integral over period from odd powers of sine or cosine is zero [18]

2π
∫

0

dζ sin2l+1 ζ = 0,

2π
∫

0

dζ cos2l+1 ζ = 0. (C.8)

To prove that J5j = J6j = 0, j = 1, 2, 3, 4, consider the following expansion of Xij :

X12 =
∞
∑

l=0

g
(1)
l eil(σ+τ), X34 =

∞
∑

l=0

g
(2)
l eil(σ+τ), X56 =

∞
∑

l=0

hle
il(σ−τ). (C.9)

One can show that “cross-spins” (non-Cartan components of spins) between right- and left-chiral
waves always vanish, i.e. for each pair of right- and left-chiral summands in (C.9):

Z1 + iZ2 = Gein(σ+τ), Z3 + iZ4 = Heim(σ−τ), n,m = integer (C.10)

the correspondent contribution (J Z
ij ) into J5j, J6j, j = 1, 2, 3, 4 is zero.

Let us calculate the following values

J Z
+ =

2π
∫

0

dσ

2π
[z1ż2 − z2ż1] = [J Z

13 − J Z
24] + i[J Z

23 + J Z
14]

= i

2π
∫

0

dσ

2π
GH (m− n)eiσ(n−m)+iτ(n+m) =

{

0, for m = n
0, for m 6= n

J Z
− =

2π
∫

0

dσ

2π
[z1ż

+
2 − z+2 ż1] = [J Z

13 + J Z
24] + i[J Z

23 − J Z
14]

= i

2π
∫

0

dσ

2π
GH (m− n)eiσ(n−m)+iτ(n+m) =

{

0, for m = n
0, for m 6= n.

(C.11)

“Cross-spins” for each left-right chiral pair in the expansion (C.9) vanish. We have

J5j = J6j = 0, j = 1, 2, 3, 4. (C.12)

D Appendix: Bessel functions

In this section we will prove the relation

BesselJ1(x) =

π
∫

−π

dα

2π
sinα sin (x sinα). (D.1)

Two formulas from the theory of the Bessel functions are of use [19]:

• Integral representation of the Bessel functions

BesselJn(x) =

π
∫

−π

dα

2π
e−ix sinα+inα. (D.2)
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• Recurrent formula
d

dx

(

BesselJν(x)

xν

)

=
BesselJν+1(x)

xν
. (D.3)

Let us take a derivative from BesselJ0(x) in the integral representation:

d

dx
BesselJ0(x) = −i

π
∫

−π

dα

2π
sinα e−ix sinα =

π
∫

−π

dα

2π
[−i sinα cos (x sinα)− sinα sin (x sinα)] . (D.4)

The Taylor expansion of sin (x sinα) and cos (x sinα) consist of odd and even powers of sinα, respec-
tively. Making use of (C.8), one finds

d

dx
BesselJ0(x) = −

π
∫

−π

dα

2π
sinα sin (x sinα). (D.5)

Then employing (D.3):
d

dx
BesselJ0(x) = −BesselJ1(x), (D.6)

we end up with (D.1).
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