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1. Introduction and Outlook

Two dimensional conformal field theories (CFT’s) have been studied extensively over the

years. There are many solvable examples that admit a large-N limit. The exact solvability

of these theories in generic regimes of parameter space makes them very attractive as toy

models for questions that are typically very hard for analogous field theories in higher

dimensions. One can compute the exact spectrum and in some cases also exact correlation

functions. In this paper we revisit a special set of two dimensional CFT’s: WZW models

(and cosets thereof) based on the SU(N) group. Our interest in these models stems from

the following observations:

(i) On general grounds it is expected that conformal field theories with a large-N expan-

sion have a dual description in terms of a string theory on AdS. For the AdS3/CFT2

correspondence the canonical example is provided by the symmetric orbifold of N

copies of the 2d sigma model with target space M4, which has been argued to be dual

to type IIB string theory on AdS3 × S3 ×M4 (the large-N diagrammatic expansion

of the symmetric orbifold theory has been discussed recently in [1]). In order to gain

a deeper insight into the general principles underlying the AdS/CFT correspondence

it is important to extend the list of known examples. Situations involving solvable

CFT’s are of obvious interest and hence a natural question is whether it is possible

to identify the string theory duals of well-known exact 2d CFT’s. In the process one

hopes to uncover qualitatively new features of the AdS/CFT correspondence.

(ii) We will discuss 2d theories that have interesting analogies/connections to 3d(4d)

field theories. For example, WZW models are well-known to be connected to 3d

Chern-Simons (topological) theories via a bulk-boundary correspondence, albeit not

a holographic one [2, 3]. Roughly, quantization of a Chern-Simons (CS) theory with

(simple) group G and coefficient k ∈ Z on R × Σ where Σ is a closed 2d Riemann

surface, provides a Hilbert space with states that in one-to-one correspondence with

the conformal blocks of the Gk current algebra on Σ.

CS theories coupled to matter also give rise to a generic class of 3d CFT’s. Examples

with N = 2, 4, 6, 8 supersymmetries have been argued to describe the (low-energy)
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world-volume theories on multiple M2 branes (see [4] for a prototype example). M2

branes have two dimensional boundaries when they end on M5 branes. The theory

on these intersections (self-dual strings) is expected to be a 2d CFT. Recent work [5]

indicates that this theory involves a WZW model part.

The AdS4/CFT3 duality for the CSM theories on M2-branes predicts that there is

a drastic reduction of the degrees of freedom as one moves from weak to strong ’t

Hooft coupling. We will observe a qualitatively similar reduction of the degrees of

freedom at strong ’t Hooft coupling in two dimensional large-N CFT’s.

A good 2d analogue of the (conformal) CS gauge interactions in three dimensions

are the quadratic non-derivative gauge interactions exemplified by two dimensional

gauged WZW models. We will discuss a gauged WZW model that exhibits full level-

rank duality [6]. This particular duality bears many similarities with the Seiberg-like

duality of the one-adjoint Ak CSM theories in three dimensions [7] and the Seiberg-

Kutasov duality of corresponding one-adjoint SQCD theories in four dimensions [8].

A relation between level-rank duality in SU(N)k WZW models and a Seiberg-like

duality in topological N = 2 CS theories was also pointed out in [9]. The distin-

guishing feature of the level-rank duality that we will discuss here is that it extends

to the full theory and not just to the level of conformal blocks. Accordingly, it bears

similarities with 3d (and 4d) Seiberg duality in non-topological theories.

The theories we will be focusing on are the WZW model SU(N)k, [10, 11] and its

avatars, namely the coset theories, [12, 13] , SU(M + N)k/SU(N)k and SU(N)k1 ×
SU(N)k2/(SU(N)k1+k2. There are more general cosets, as well as large generalizations

of the coset construction, [14, 15] but we will not consider them here.

We will show that the generating theory, the SU(N)k WZW model, has an interesting

’t Hooft (or Veneziano-like) large N limit where N → ∞, k → ∞ with N
k
= λ fixed.

Moreover we will show that this theory has two dual descriptions. At weak coupling,

λ→ 0, the weakly coupled description is the conventional WZW model, written in terms of

a bosonic field g that transforms as a bifundamental under the current algebra symmetry

SU(N)L × SU(N)R.

At strong coupling λ→ ∞, the weakly coupled description is in terms of the IR limit

of N copies of massless Dirac fermions transforming in the fundamental representation of

a U(k) gauge group. This looks like a conventional gauge theory1 and in this language k

1Although the YM action is irrelevant in the IR in two dimensions.
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is color, N is flavor and λ = N
k

is the Veneziano ratio. The bosonic field g corresponds

the fermion mass operator in the strongly coupled regime. In this sense this theory can be

thought of as a gauge theory with quarks where although there is confinement, the theory

is conformal in the IR and there is no chiral symmetry breaking.

This picture is corroborated by studies of the spectrum and four-points functions. This

study also gives a concrete example of the non-commutativity of the two limits N → ∞
and λ → ∞. The central charge scales as O(N2), but also depends on λ. At strong

coupling there is a drastic reduction of the number of degrees of freedom as attested by

the value of c, not unlike a similar effect in AdS4/CFT3.

The spectrum is comprised by affine primary ground-states and excitations over them

generated by the current modes. Scaling dimensions in the large N-limit take values from

O(1) to O(N2) for ground-states corresponding to representations with about kN/2 boxes

in the Young tableau. Such states have multiplicities that can compete with the Cardy

formula.

Such a theory is expected to have an AdS3 dual with SU(N)L × SU(N)R symmetry.

The closed string sector is expected to be trivial and the dependence on the metric is

induced on the boundary by the proper boundary conditions on the open string sector

as recognized already in [16]. The open string sector is expected to be realized in a way

similar to the one advocated for flavor in higher dimensions. D2 and D̄2 branes generate

the gauge symmetry which at low energy is realized by two CS actions with couplings of

opposite sign. A direct computation of the effective action for currents is in agreement

with the CFT calculation using the WZW model.

The study of scaling dimensions indicates that in the weak coupling limit, the spectrum

of ground states can be made to have a large gap from the stringy states. This suggests that

in that limit, a “gravity” description of the physics is possible. In the strong coupling limit

all dimensions are of the same order and therefore a stringy bulk description is necessary.

The ground states are generated by a bifundamental field T that should correspond to

an open string stretching between D2 and D̄2. This is a picture analogous to the one in

[17]. Other ground states in the CFT correspond to multi-particle states. Sources for T

correspond to a mass matrix in the fermionic language. They generate a flow that drives

the theory to an IR fix point equivalent to SU(N − r)k where r the rank of the source of

T .

The states with scaling dimensions of O(N2), have masses that can be comparable to

Mp. We find that they are of the order of Mplanck at strong coupling and much larger at

weak coupling. Therefore, at weak coupling these states should correspond to macroscopic
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smooth solutions of the bulk theory, with associated flavor hair. This hair is responsible

for their entropy, and in this case it dominates the Cardy entropy.

The cosets are also very interesting CFTs with several possible large-N limits we an-

alyze. They also have dual versions , between gauged-WZW models and quiver gauge

theories coupled to massless quarks.

The SU(M+N)k/SU(N)k theory can be thought of also as a quiver. The gauge group

is U(N)×U(k) and the k(N+M) Dirac fermions transform as ( , ) under (SU(N), U(k))

and as M copies of ( , 1), having global chiral symmetry SU(M)L × SU(M)R.

Finally the U(k1 + k2)N/U(k1)N × U(k2)N CFT can be thought of as a quiver gauge

theory with gauge group U(k1) × U(k2) × SU(N) and massless quarks transforming as

( , 1, ) and (1, , ) under the gauge group. This description automatically explains the

rank-level duality symmetry that states that

U(k1 + k2)N
U(k1)N × U(k2)N

∼ SU(N)k1 × SU(N)k2
SU(N)k1+k2

(1.1)

The subclass of coset models
SU(N)k1×SU(N)1

SU(N)k1+1
, giving rise to the WN minimal models has

been analyzed recently in [18]. Its closed string sector has been argued to correspond to the

quantum hamiltonian reduction SL(N,C) → WN . Such theories provide more complex

examples of large N limits but we will only touch upon them in this paper.

There are several issues that remain open in this direction. The first concerns a more

organized control of the spectrum via the partition function. The AdS/CFT correspon-

dence is fundamentally a relation between partition functions that reads

ZAdS = ZCFT . (1.2)

In the canonical formulation for the partition function on the torus

ZCFT = Tr
[

e2πiτ(L0− c
24

)e−2πiτ̄(L̄0− c̄
24

)
]

. (1.3)

If fermions are present in the theory we also need to specify their periodicities around the

two cycles of the torus. The imaginary part of τ plays the role of inverse temperature

in the bulk, and the real part is a chemical potential for angular momentum. There is

a reasonably good understanding of this partition function for the WZW model and the

interesting question is whether it can be recast in a way that makes it interpretable as the

partition function on AdS, ZAdS. At low energies the Hilbert space of the gravitational

theory comprises of a gas of particles moving on AdS. At high energies we encounter

black holes. There have been several attempts to make sense of ZAdS as a sum over all
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saddle points of the full bulk effective action I (including in principle all string and loop

corrections), i.e. recast ZAdS as

ZAdS(τ, τ̄) =
∑

e−I . (1.4)

The most concrete realization of this programme, is the Farey tail expansion of [19]. In this

case, instead of considering the full partition function one focuses on a BPS subsector and

computes the elliptic genus. Then, one observes that the elliptic genus admits an expansion

that is suggestive of a supergravity interpretation in terms of a sum over geometries. It

would be interesting to explore if there is a similar expansion of the full partition function

of the SU(N)k WZW model. A more promising context for this idea is to analyze the

elliptic genus of N = 2 gauged WZW models, e.g. N = 2 Kazama-Suzuki models (the

supersymmetric Grassmannian coset may be an interesting example).

As we have seen there are many configurations in such CFTs that have macroscopic

entropy and will be therefore expected to correspond to smooth bulk solutions currying

flavor hair. It would be interesting to investigate the existence of such solutions. Moreover,

our analysis indicates that at least for the SU(N)k theory, at strong coupling such solutions

should be thought of as describing a fermionic ground state (fermi surface) of almost free

fermions.

CFTs like the WZW model have a class of features that are interesting to explore

in an AdS setup. They contain current algebra null vectors that are responsible for the

truncation of the spectrum (affine cutoff). It is interesting that although such non-trivial

relations are counter-intuitive in the weak coupling limit, they are simply explained in the

strong coupling limit where the theory can be described in terms of kN Dirac fermions.

From the basic formula ga,b =
∑k

i=1 ψ
i
aψ̄

i
b. It is then obvious that fermi statistics forbids

symmetrized powers (gab)
p with p > k. The current algebra null vectors are responsible for

the existence of “instanton” corrections to the partition function (namely terms that behave

as e−N). The study of these effects is interesting as they should match with D-instanton

effects in the dual string theory.

A related set of null vectors are the Knizhnik-Zamolodchikov ones, whose content is

based on the fact that the stress tensor is quadratic in the currents. They are the key tools

in computing the correlation functions. We have seen that the affine-Sugawara construction

is an avatar of the proper boundary conditions for the CS theory in 3d. It should be possible

to derive the analogue of KZ equations from the bulk.

The bulk description once developed will provide a concrete tool for the study of RG

flows between different fixed points. A lot is known in 2d CFTs about such flows, but
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it is expected the bulk description will provide more efficient tools in this analysis. An

intermediate step in this program is the understanding of the bulk effective actions for the

scalar fields, something that needs further study. As a byproduct, this approach would

allow a more thorough study of the thermodynamics of 2d QFTs.

A related issue is the holographic dual of a c-function, a fact that is firmly established

for 2d CFTs. It would be interesting to find classes of examples where one could follow

the flows between many fixed points, exploring in such a way the landscape of 2d CFTs.

Such large landscapes of flows exist in 2d CFTs, [20], with the flows and c-function known

exactly, although the intermediate non-conformal theories in that case are non-relativistic

Hamiltonian theories that flow to standard relativistic CFTs at the fixed points. Recent

ideas on “order” and distance in such a landscape [21] may prove useful.

2. Solvable 2d CFTs

In two dimensions we have both the largest class of known CFTs as well as the largest

class of solvable CFTs.

Solvable CFTs are composed essentially of WZW models based on compact affine Lie

groups, [10] and cosets, [12, 13]. All of these can be solved exactly. Solvable extensions

include some non-compact theories, like Liouville theory, [22, 23] and some semisimple

groups [24, 25]. Larger classes of irrational CFTs were found by generalizations of the

GKO construction, [14, 15] but no non-trivial CFT in this class has been solved so far.

We will consider below the simplest classes of WZW and coset models which posses

large-N limits. But before doing this it is appropriate to make some general comments on

“color” vs “flavor” degrees of freedom.

We define color as degrees of freedom which are gauged. Gauge fields in two dimension

have two types of IR dynamics. The standard, namely YM kinetic terms, are irrelevant

in the IR, and never play role in CFTs. The quadratic gauge terms that play a role are

non-propagating, and the gauged WZW models provide an example of these. As a result

pure gauge dynamics in 2d is trivial and the main role of the gauge group is kinematic

confinement and removal or colored degrees of freedom from the spectrum. In this sense,

gauge interactions in two dimensions reduce the most the number of degrees of freedom

because of confinement, compared with 3d or 4d gauge dynamics.

On the other hand we will define flavor degrees of freedom as those that are not affected

by gauge interactions. For example a set of Nf free Majorana fermions for example has a
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maximal flavor symmetry O(Nf)L ×O(Nf)R that is promoted to an affine current algebra

in two dimensions.

As is usual for color degrees of freedom being gauged, the relevant operators are gauge

singlets and give rise in a dual string theory to closed strings. Flavor degrees of freedom

being un-gauged give rise in a dual string theory to open strings/D-branes. The fact

that 2d pure gauge theories are trivial, imply the absence of Regge trajectories. Their

dynamical role is to remove matter degrees of freedom. Therefore the holographic closed

sector dynamics is typically field theoretic and involves a finite set of states (one of which

is the graviton) living on an AdS3×Mp space. On the other hand flavor degrees of freedom

have also an associated closed sector: Flavor singlet operators should be though of as dual

to closed string states. These are the closed string states that consistently interact with

the open string degrees of freedom.

We will now present a few of the examples that we will analyze in the paper, albeit at

different depth.

2.1 The SU(N)k WZW model

This is an interesting case which seems to contain only flavor. The flavor symmetry is

SU(N)L ×SU(N)R and as it usually happens with non-trivial compact global symmetries

in CFTs, it is extended to a full affine algebra. Note that this not the flavor symmetry we

would obtain from N massless Dirac fermions in 2d dimensions. That symmetry is larger

and its is O(2N)L × O(2N)R.

This theory has two parameters, N which is the number of flavors and k that plays

the role of the σ-model coupling constant. We will see in the subsequent section that there

are several possible large-N limits that can be defined here.

This is a CFT whose spectrum is conveniently represented using current algebra repre-

sentations. There are ”ground states” that coincide with the primary affine representations

with spin zero, transforming as (R, R̄) ∈ SU(N)L × SU(N)R with R an integrable repre-

sentations of the SU(N)k affine algebra. All other states are build on the primary states

from the action of current operators. They should be thought of as the oscillators of an

appropriate open string in AdS3, with the zero mode sector generated by an appropriate

CS theory. The closed string states are traces of the flavor degrees of freedom. The stress

tensor in particular is composite in the currents and it is therefore not an independent op-

erator. Closed string states therefore can be probably thought as multiparticle (non-Fock)

states of open string states.
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As it will explained in section 4, the SU(N)k theory can be thought of as the IR limit

of a theory of N copies of massless Dirac fermions transforming in the fundamental of the

gauge group U(k).

2.2 The SU(N)k/SU(N)k gauged WZW model

This is the simplest theory that contains SU(N) color but no flavor. The gauge degrees of

freedom remove essentially all states in this theory. In particular the theory is topological

and has central charge c = 0. It has a finite number of ground states that are in one to one

correspondence with all integrable representations of the SU(N)k affine algebra. In this

sense it should be thought of as the space of states of a point particle moving on a fuzzy

group manifold.

Its AdS dual theory is the topological SU(N) Chern-Simons (CS) theory at level k.

This theory is topological and has a finite number of states that is also in one to one

correspondence with all integrable representations of the SU(N)k affine algebra, [2]. This

is the simplest topological open string theory in 3d. Its related closed sector is a trivial

topological string: it has no propagating states. From the interpretation of the previous

section we gather than the present theory can be thought of as a simple quiver: two gauge

groups U(k) and U(N) and Dirac fermions in the bifundamental. There are no Regge

trajectories in this case.

2.3 The SU(N +M)k/SU(N)k gauged WZW model

This theory has an SU(N) gauge group and therefore N stands for color degrees of freedom.

The (un-gauged) commuting subgroup of SU(M +N), namely SU(M) should be thought

of as a flavor group, while k is a coupling constant. The theory has the following central

charge

c = k

(

(N +M)2 − 1

k +N +M
− N2 − 1

k +N

)

. (2.1)

In the ’t Hooft limit, N, k ≫ 1 with the ratio λ = N
k
fixed, and for M fixed the central

charge becomes to leading order in M/N

c ∼ 2 + λ

(1 + λ)2
NM . (2.2)

This is analogous to the quenched limit of 4d gauge theories where the number of flavors

is kept finite as the number of colors becomes large. At weak ’t Hooft coupling, c ∼ 2NM ,

and the theory looks like a (perturbative) QCD theory with M quarks. Its string theory
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dual could be identified as an open+closed string theory that arises by adding M branes

in the topological closed string sector of the M = 0 case.

Another interesting limit of this theory is a Veneziano-type limit where M/N = m is

kept fixed and finite. In the limit of large m we are approaching our next and most general

example: the Grassmannian coset models.

This theory can be thought of also as a quiver. The gauge group is U(N)× U(k) and

the k(N +M) Dirac fermions transform as ( , ) under (U(N), U(k)) and as M copies of

( , 1), having global chiral symmetry SU(M)L × SU(M)R.

2.4 The U(k1+k2)N
U(k1)N×U(k2)N

gauged WZW model

This theory can be thought of as a theory with U(k1+ k2) flavor symmetry whose U(k1)×
U(k2) part is gauged. The coupling constant is N . This CFT is dual to the

SU(N)k1 × SU(N)k2
SU(N)k1+k2

coset by rank-level duality, [6]. In this dual version of the CFT one starts from an SU(N)×
SU(N) flavor symmetry and then gauges the diagonal subgroup.

From the parameters we can build two independent ’t Hooft couplings, λi = N/ki.

The central charge becomes to leading order in the ’t Hooft couplings c = N2+ subleading

indicating that this model is similar to a gauge theory coupled to an adjoint scalar. It

is interesting to compare it to the N = 2 one-adjoint An+1 CSM theories of [7]. Some

parallels between these theories are:

(a) Both are controlled by three discrete parameters. In the CSM case, these three

parameters are: k the level of the CS interaction, N the rank of the U(N) gauge

group, and n + 1 the power of the single-trace operator TrXn+1 that appears in the

action as a superpotential deformation.

(b) A crucial effect of the superpotential deformation in the CSM theory is that it trun-

cates the chiral ring. The levels ki play an analogous role in the WZW model trun-

cating the spectrum.

(c) Both theories exhibit a non-trivial duality. The U(N)k An+1 CSM theory is Seiberg-

dual to the U(nk−N)k An+1 CSM theory. The
SU(N)k1×SU(N)k2

SU(N)k1+k2

gauged WZW model

is dual, by level-rank duality, to the SU(k1+k2)N
SU(k1)N×SU(k2)N×U(1)

gauged WZW model.

This theory can be thought of as a quiver gauge theory with gauge group U(k1) ×
U(k2)×U(N) and massless quarks transforming as ( , 1, ) and (1, , ) under the gauge

group. This description automatically explains the rank-level duality symmetry.
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3. On large N limits

There are several large N limits that are possible in the CFTs we have mentioned above.

They have been discussed in different contexts in the literature and we will go through them

for comparison. As the CFTs we are analyzing are solvable, we will be able to characterize

explicitly the nature of each of these limits.

3.1 The ’t Hooft large-N limit

The characteristic feature of the ’t Hooft limit is that the coupling constant is rescaled

so that it compensates for the increase of degrees of freedom. Another characteristic is

that for adjoint theories the normalized n-point functions behave as N1−n
2 . This implies

in particular that the central charge c ∼ O(N2). For the SU(N)k theory the ’t Hooft limit

implies N → ∞, k → ∞ with

λ =
N

k
(3.1)

kept fixed, [26, 18]. When λ≪ 1 we are in a perturbative regime. This implies in particular

that α′-perturbation theory is applicable. Since in the perturbative limit, k >> N , the

affine cutoff [27] is not visible when we consider representations with ∼ O(N) columns in

the Young tableau or less. Therefore the fusion algebra of such low-lying representations

is “perturbative”: it coincides with the classical Glebsch-Gordan decomposition.

In the opposite limit λ ≫ 1 we are in the strong coupling regime. The σ-model

semiclassical expansion breaks down and since k ≪ N the affine cutoff is felt at relatively

low representations. This implies algebraic relations between primary fields (the vanishing

of fields with spin higher than k) well before the distinction between single trace and double

trace operators sets in.

The central charge can be written in this limit as

c =
N2

1 + λ
+O(1) (3.2)

and it is indeed O(N2) as advertised. It does remain so at weak ’t Hooft coupling but at

strong coupling

c ∼ N2

λ
+O

(

1

λ2

)

∼ kN +O
(

1

λ2

)

(3.3)

is parametrically smaller than N2 and behaves as O(N) for finite k. As the central charge

is a quantum measure of the number of degrees of freedom, this indicates that there is

a drastic reduction of degrees of freedom at strong ’t Hooft coupling mimicking a similar

situation predicted by AdS4/CFT3 for three dimensional conformal field theories. The only
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difference is that here this is explicitly calculable.2 Another difference is that the reduction

here is by a factor of N while in three dimensions it is by a factor of
√
N .3

Focusing at the conformal dimensions with an O(1) number of boxes of the Young

tableau, we obtain (see appendix 7)

∆R =
λ

1 + λ
∆R(∞) +O

(

1

N

)

(3.4)

To leading order at 1/N and at weak coupling they all asymptote to zero

∆R = λ∆R(∞) +O
(

λ2
)

(3.5)

in agreement with the fact that in the classical theory all primary operators have vanishing

scaling dimension.

At strong ’t Hooft coupling on the other hand they asymptote to half-integers

∆R = ∆R(∞) +O
(

1

λ

)

(3.6)

Note that this is the same spectrum as in the naive large-N limit discussed in section 3.2

In general, in the ’t Hooft limit the dimensions of primaries are

∆R =
λ

2(λ+ 1)

k
∑

i=1

mi (3.7)

where mi are the Dynkin indices provided the sums are O(1). Otherwise the full formula

(4.7) should be used. All mi take values 0 ≤ mi ≤ N/2. In all cases,
∑k

i=1mi is the total

number of boxes in the Young tableau of the associated representation.

The maximal dimension is obtained when mi = N/2 ∀ i. In that case

C2 =
kN(k +N)

8
, ∆max =

λ

2(λ+ 1)

kN

2
=
N2

8λ
(3.8)

As we will later see, this state is one of those related to a macroscopic black hole.

On the other hand for the maximal symmetric tensor mi = 1 ∀ i ≤ k

C2 =
k(k +N)

2
, ∆sym =

N

2λ
+ · · · (3.9)

For the maximal antisymmetric representation m1 = N/2, all others zero

C2 =
N2

8
, ∆a =

λ

8(λ+ 1)
N + · · · (3.10)

2Recently the analogous result in three dimensions was computed from a reduced matrix model, [29].
3An analogous analysis in the AdS7/CFT6 correspondence for M5 branes indicates that the CFT6 at

strong ’t Hooft coupling has more rather than less degrees of freedom from an equivalent weakly coupled

theory.

– 12 –



3.2 The simple large-N limit

This amounts to taking N → ∞ while keeping k fixed. It has been studied in specific

examples, in [30, 31], in order to produce representations of the W∞ algebra. In this limit

c ≃ kN +O(1) (3.11)

and in this sense this look like a vectorial large-N theory. The large-N limit of the dimen-

sions of primary fields gives

∆R ≃ ∆R(∞) +O
(

1

N

)

(3.12)

Therefore the primary dimensions become half integers and this hints at a free-fermionic

formulation in terms of 2kN free fermions (as also suggested by the central charge). This

is indeed true as analyzed in appendix 8.

The formula (3.12) applies to representations with an O(1) number of boxes in the

Young-tableau. However, if one considers representations with O(N) boxes then things are

different. For example the antisymmetric representation with N
2
+m boxes has dimension

∆AN
2

+m
=
N + 1

8
− m2

2N
+O

(

1

N2

)

(3.13)

On the other hand the maximal symmetric representation can only have k boxes because

of the affine cutoff. We therefore have

∆Sk
=
k

2
+O

(

1

N

)

(3.14)

Therefor we have dimensions scaling as O (N) and dimensions scaling as O (1)

In coset theories primary dimensions can also be of O
(

1
N

)

as shown in [30, 18]. Con-

sider the coset

CFT ≡ SU(N)k1 × SU(N)k2
SU(N)k1+k2

, c =
k1k2(k1 + k2 + 2N)(N2 − 1)

(k1 +N)(k2 +N)(k1 + k2 +N)
(3.15)

In the naive large-N limit we may rewrite the central charge as

c = 2k1k2 +O
(

1

N

)

(3.16)

which is finite in the large-N limit.

There is an interesting symmetry in this theory, stemming from rank-level duality, that

indicates that this CFT is equivalent to a dual one4

CFT ∼ ˜CFT ≡ SU(k1 + k2)N
SU(k1)N × SU(k2)N × U(1)

(3.17)

4This has been explicitly checked in the associated supersymmetric models, [6] although it is also

plausible here.
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Most of the dimensions of the coset are associated with three representations: R1 ∈ G1,

R2 ∈ G2 and R3 ∈ R1 ⊗R2. Since

∆R1,R2;R3
= ∆R1

+∆R2
−∆R3

+ integer (3.18)

we obtain in the large-N limit

∆R1,R2;R3
= ∆R1

(∞) + ∆R2
(∞)−∆R3

(∞) +O
(

1

N

)

(3.19)

For representations with an O(1) number of boxes in the Young tableau this dimension is

of O
(

1
N

)

For example consider the case R1 = Am1
, R2 = Am2

, R3 = Am1+m2
. We obtain

∆Am1
,Am2

;Am1+m2
=
m1m2

N
+O

(

1

N2

)

(3.20)

We will still have also dimensions that scale like O (N). For example

∆AN
2

−m1
,AN

2
−m2

;AN−m1−m2
=
N + 1

4
− m1 +m2

2
+O

(

1

N

)

(3.21)

Therefore in such CFTs, there are primary operators in class A with dimensions O (N),

operators in class B with dimensions O (1) and operators in class C with O
(

1
N

)

. Moreover

the maximum dimension is obtained with m1 = m2 = · · ·mk−1 =
N
2
with

∆m ≃ kN

8
+ · · · (3.22)

It was shown in [30] that one can make a class of operators of dimension O (1) out

of operators of the class C. The way is to take operators as in (3.20) and take the limit

m1 = q1
√
N , m2 = q2

√
N . Such operators were shown to have abelian OPE’s and generate

the analogue of the discrete series operators in pp-wave CFTs as shown in [25].

Note that this large-N limit has a dual version in the CFT (3.17) as a weak coupling

limit where all current algebra levels go to infinity. Therefore the σ-model is a flat space to

leading order with 2k1k2 dimensions, and the states in this theory, correspond to the class

B operators as well as the class C operators that can be made to have O(1) dimensions as

explained earlier.

Note also that the U(N)1 theory is equivalent to a collection of 2N free fermions

∼ O(2N)1, as described in appendix 8. The only integrable representations are the anti-

symmetric ones and are constructed from products of fermions. The SU(N)1 is obtained

from the free fermion theory by coseting by the overall U(1).

– 14 –



3.3 The BMN large-N limit

This is a large-N limit in which a tuning is done so that some dimensions stay finite, [32, 25].

We will consider an example of this: SU(N)k × U(1)N−1 where the U(1)’s are time-like

and have level 2N . The BMN limit is a large-N limit at k fixed, but which ties together

specific combinations of U(1) and SU(N) reps. This will generate a contraction of the group

to a non-semi-simple one where one linear combination of the U(1)’s and SU(N) Cartan

generators becomes a set of N-1 central currents, the other linear combination becomes

a set of N-1 rotation operators, and all raising and lowering operators become transverse

pp-wave operators.

The dimension of a generic primary is

∆~q,R = − ~q2

2N
+

C2(R)
k +N

(3.23)

Consider a representation of type A with xiN + ξi boxes in the i − th column, with

0 < xi < 1, i = 1, 2, · · · , k and ξi of order O(1). This representation has a dimension

that is O(N). We also pick the U(1) charges qi so that they cancel the O(N) piece of the

previous dimension

qi = N
√

xi(1− xi) (3.24)

We compute in the large-N limit

∆ =

k
∑

i=1

ξi(1− 2xi) + (1− k)xi(1− xi) (3.25)

Such states provide highest weight or lowest weight representations. If the CFT has

operators of type C, then their continuous limit with U(1) charges of order O(1) provides

continuous series representations [25].

4. The SU(N)k WZW model

This is a prototypical unitary CFT, realizing current algebra and depending on two natural

numbers, N, k. The global symmetry is SU(N)L × SU(N)R that is enhanced to the full

affine left-moving and right-moving algebra SU(N)k.

It can appear as an IR fixed point in many CFTs, including the SU(N) chiral model

modified by the addition of a WZ term, [10]. It can also appear as the IR fixed point of

2-dimensional massless QCD with gauge group U(k) and N Dirac flavors of quarks, [37] as

explained in appendix 8. In such a description the YM action is becoming irrelevant in the
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IR and the theory flows to the U(kN)1/U(k)N coset that is equivalent to the SU(N)k CFT.

Therefore k can be identified as the number of colors and N as the number of massless

quark flavors.

We will denote the ratio of flavors to colors as

λ =
N

k
(4.1)

and we will call it the ’t Hooft coupling although from the fermionic point of view, it is the

Veneziano ratio
Nf

Nc
. In the σ-model picture this ratio does look more like the conventional

’t Hooft coupling.

In the gauge theory picture the global flavor symmetry is SU(N)L × SU(N)R and

is manifest in the theory. This is an example of a confining gauge theory without chiral

symmetry breaking. The reason that such a theory can be still a CFT is that in two dimen-

sions non-abelian gauge fields carry no propagating degrees of freedom and confinement

is essentially kinematical. It can be implemented by the (generalized) Gauss law of the

appropriate current algebra on the states of the un-gauged theory.

Denoting the currents of the SU(N)k WZW model as Ja(z), J̄a(z̄) we have the OPE’s

Ja(z)J b(w) ∼ kδab
(z − w)2

+
∑

c

ifabc
Jc(w)

z − w
(4.2)

with a corresponding expression for the right-moving currents J̄a (which we will systemat-

ically omit).

The stress-energy tensor satisfies the affine Sugawara construction

T (z) =
1

2(k +N)

∑

a

(JaJa)(z) . (4.3)

The central charge in this theory is given by

c =
k(N2 − 1)

k +N
=

(N2 − 1)

λ+ 1
∼ O(N2) ∼ O(k2) (4.4)

In the large ’t Hooft limit λ ≫ 1, c ≃ N2

λ
= kN . In this case one can observe

the same phenomenon that has been observed in 3d CFTs dual to M2 brane geometries.

At strong ’t Hooft coupling there is a reduction of the number of degrees of freedom

from O(N2) to O(N). As shown in appendix 8, in this regime, N ≫ k the theory is

approximately described by kN free massless Dirac fermions and YM interaction can be

treated perturbatively. In the opposite regime, λ ≪ 1 or N ≪ k, the theory is well

described by the (weakly coupled) WZW theory, over a large volume group manifold.
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We now proceed to analyze the spectrum and conformal dimensions. The spectrum is

composed of affine (spinless) primary states transforming in the (R, R̄) integrable repre-

sentation of the global SU(N)L × SU(N)R group, with one copy per representation. On

top of these primary states the whole affine representation is build by acting with the

lowering operators of the Current algebra, the negative Ja
−n current modes. Were it not

for the existence of non-trivial current algebra null vectors, the multiplicity of the states

inside representations would be the same as the related U(1)(N
2−1) free theory. The current

algebra null vectors provide non-perturbative effects in k, and disappear as k → ∞.

The (left) conformal dimensions for the affine primary fields of the SU(N)k theory,

transforming in the R irreducible unitary representation of the SU(N) algebra are given by

∆R =
C2(R)

k +N
(4.5)

where C2(R) is the quadratic Casimir, defined and analyzed in appendix 7. To find the

large-N limits we must analyze the scaling of the quadratic Casimir for SU(N) representa-

tions, with the result

C2(R) ≃ N∆R(∞) +O (1) (4.6)

in the N → ∞ limit for representations with an O(1) number of boxes in their Young

tableau.

We can give a general formula for the quadratic Casimir C2(R) = C2(R̄), corresponding

to a Young tableau with m1 boxes in the first column, m2 boxes in the second column etc,

with the mi ordered, m1 ≥ m2 ≥ m3 · · · . We also use the prescription that the proper

Young tableau is the one with the minimum number of boxes. In this notation the Casimir

is

C2(m1, m2, · · · , mn) =
(
∑n

i=1mi)N
2 − ((

∑n
i=1m

2
i )−

∑n
i=1(2i− 1)mi)N − (

∑n
i=1mi)

2

2N
(4.7)

For mi ∼ O(1) and n ∼ O(1) we obtain

∆R(∞) =
1

2
(
∑

i

mi) (4.8)

which are integers or half integers. In particular, this number is the total number of boxes

in the Young tableau, divided by two.

We finally obtain

∆R → λ

λ+ 1
∆R(∞) +O

(

1

N

)

(4.9)
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In the strong coupling limit λ → ∞, we obtain that the dimensions are half integers,

reflecting the fact that theory asymptotes to kN free massless fermions (see appendix 8

and the next section). In that case one can think of a rectagular box of dimensions N × k

divided into kN compartments (boxes). A choice of “occupied” boxes defines a Young

tableau and therefore an integrable representation R of SU(N)k. Not surprisingly, the set

of “ground-states” of the theory, namely the primary fields, is in one to one correspondence

with filling some of the boxes using the kN fermions and abiding to the Pauli principle.

We will now consider reps with large scaling dimensions. The maximum scaling di-

mension is given for representations around the “half-box”,

mi =
N

2
+ ni , ni ∼ O(1) (4.10)

with

C2 =
Nk(N + k)

8
−

∑k
i=1 n

2
i +

∑k
i=1(k + 1− 2i)ni +

1
N
(
∑k

i=1 ni)
2

2
(4.11)

with scaling dimension

∆ =
N2

8λ
− λ

2(λ+ 1)

[

1

N

k
∑

i=1

n2
i +

1

N

k
∑

i=1

(k + 1− 2i)ni +
1

N2
(

k
∑

i=1

ni)
2

]

(4.12)

Note that the scaling dimension is of O(N2), and is 1/8 times the central charge in (4.4).

The spectrum of the theory is therefore consisting of ”ground-states” associated with

the affine primary fields and “stringy excitations” associated with the affine descendants,

generating Regge trajectories on top of the ground-states.

The ground state transforming under the representation (R, R̄) of the global group

SU(N)L ×SU(N)R has multiplicity D(R)2 where D(R) is the dimension of the associated

representations. The dimensions start at O(1) but the multiplicity they generate can be

substantially higher.

For example the maximal representation corresponding to the ”half-box” in (4.10) with

ni = 0 has dimension

D =

∏N/2
i=1

(N+k−i)!
(N−i)!

∏k
i=1

(N
2
+i−1)!

(i−1)!

(4.13)

The logarithm of the multiplicity of this ground state is derived in appendix 7 as

logD2 =
[

4(λ+ 1) log 2− λ2 log λ+ 2(λ+ 1)2 log(λ+ 1)− (λ+ 2)2 log(λ+ 2)
] N2

2λ2
+

(4.14)

−N
2
logN + [2 log(λ+ 2)− 4(λ+ 1) log(λ+ 1) + 2(λ− 1) log λ+ 2λ log 2]

N

2λ
−
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−1

6
log

λ+ 2

λ
+O(N−1)

At strong coupling, λ≫ 1

logD2 ≃ (2λ log 2− log λ+ · · · )N
2

λ2
+O(N logN) ∼ O

(

N2

λ

)

≃ 2c log 2 + · · · (4.15)

while at weak coupling, λ≪ 1

logD2 ≃
[

log 1
λ

2
+O(λ2)

]

N2 +O(N logN) ∼ O
(

N2 log
1

λ

)

≃ c log
1

λ
+ · · · (4.16)

We should also consider states whose scaling dimensions scale as O(N) in the large-N

limit. In section 3.1 we have mentioned two such representations the maximal symmetrized

representation with all Dynkin indices m0<i<k+1 = 1, and the “maximal” antisymmetrized

representation, m1 = N
2
and all others zero. The scaling dimension of the maximal sym-

metric tensor is

C2 =
k(k +N)

2
, ∆sym =

N

2λ
+ · · · (4.17)

while for the antisymmetric one

C2 =
N2

8
, ∆a =

λ

8(λ+ 1)
N + · · · (4.18)

Note that ∆sym vanishes in the strong coupling limit. This is a consequence of fermi-

statistics, as this representation is built out of fermions as
∏k

i=1 ψ
ai
i × cc, and therefore one

cannot obtain a symmetric object in the flavor indices, ai. On the other hand ∆a → N
8

in the strongly coupled limit as in this case a similar state, can be achieved in terms of

free fermions. Such states resemble baryons, and indeed their “masses” are of order N . Of

course there are many more representations of this type, beyond the ones discussed above.

Note that the N dependence of scaling dimensions that arises in (4.5,4.7) contains

contributions from tree level, disk level and one loop. On the other hand the central charge

has only a single one-loop contribution. The λ dependence although simple indicates the

presence of a full perturbative series of corrections both at small and large λ.

We have seen that the Hilbert space decomposes into a finite number of unitary irre-

ducible representations of the current algebra. For each representation there is a ground

state, transforming in the (R, R̄) of SU(N)L×SU(N)R corresponding to the primary field,

and the rest of the states are generated from the primary field by the action of the current

oscillators. The different primary operators can be thought of as products of the basic

WZW field ga,b(z, z̄). Using appropriate normal ordering and symmetrizations or antisym-

metrizations of the indices we may construct any integrable primary of the algebra. This

fact will be important when we analyze the AdS3 dual.
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4.1 The four-point function

An important observable in CFT are correlation functions.

We will analyze the large-N limits of the four-point function of the basic primary fields

of the SU(N)k WZW model, namely the fundamental ga,b(z, z̄) and its conjugate g−1
b,a(z, z̄)

following [11] and then study its large N-limit.

The four-point was calculated solving the KZ equation and reads

G(x, x̄) ≡ 〈ga1,b1(∞)g−1
b2,a2

(1)ga3,b3(x, x̄)g
−1
b4,a4

(0)〉 =
2

∑

A,B=1

IAĪB GAB(x, x̄) (4.19)

I1 = δa1,a2δa3,a4 , Ī1 = δb1,b2δb3,b4 , I2 = δa1,a4δa2,a3 , Ī2 = δb2,b4δb1,b3 (4.20)

with

GAB(x, x̄) = F (1)
A (x)F (1)

B (x̄) + h F (2)
A (x)F (2)

B (x̄) (4.21)

There are two group invariants corresponding to the two representations, the singlet

and the adjoint appearing in the product of fundamental with an anti-fundamental. Tak-

ing into account the left-moving and right-moving group structure, the total number of

invariants is four and they appear in (4.20). h in (4.21) is the only non-trivial quantum

Glebsch-Gordan (OPE) coefficient coupling a fundamental, an anti-fundamental and the

adjoint.

The detailed analysis is done in appendix 9. We will summarize the results here.

The associated conformal blocks are

F (1)
1 (x) = x−2∆ (1− x)∆A−2∆ F

(

− 1

2κ
,
1

2κ
; 1 +

N

2κ
, x

)

(4.22)

F (1)
2 (x) = −x

1−2∆ (1− x)∆A−2∆

2κ+N
F

(

1− 1

2κ
, 1 +

1

2κ
; 2 +

N

2κ
, x

)

(4.23)

F (2)
1 (x) = x∆A−2∆ (1− x)∆A−2∆ F

(

−N − 1

2κ
,−N + 1

2κ
; 1− N

2κ
, x

)

(4.24)

F (2)
2 (x) = −Nx∆A−2∆ (1− x)∆A−2∆ F

(

−N − 1

2κ
,−N + 1

2κ
;−N

2κ
, x

)

(4.25)

where F is the hypergeometric function and

∆ =
N2 − 1

2N(N + k)
, ∆A =

N

N + k
, 2κ = −N − k (4.26)

and

h =
1

N2

Γ
[

N−1
N+k

]

Γ
[

N+1
N+k

]

Γ2
[

k
N+k

]

Γ
[

k+1
N+k

]

Γ
[

k−1
N+k

]

Γ2
[

N
N+k

] (4.27)
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In the ’t Hooft limit we obtain

G11 = |x|− 2λ
1+λ +O

(

1

N2

)

, G22 = |1− x|− 2λ
1+λ +O

(

1

N2

)

(4.28)

G12 =
λx̄

N
|x|− 2λ

1+λ F

(

1, 1;
2 + λ

1 + λ
, x̄

)

− (1− x)

N
|1−x|− 2λ

1+λ F

(

1, 1; 1 +
λ

1 + λ
, x

)

+O
(

1

N2

)

(4.29)

Note that in the symmetric channels G11 and G22 are powerlike at leading order in

1/N suggesting the existence of a single block. In the asymmetric channel G12 there is

non-trivial structure at subleading order in 1/N

Finally in the strong coupling limit λ→ ∞ the result simplifies to

G11 =
1

|x|2 + · · · , G22 =
1

|1− x|2 + · · · , G12 =
λ

N

1

x(1− x̄)
+ · · · (4.30)

This is indeed compatible with the claim that the theory is described by free fermions

in that limit. In particular the properly normalized fundamental field of the WZW can be

written in the strong coupling limit as

gab(z, z̄) =
1

k

k
∑

i=1

ψa
i (z)ψ̃

b
i (z̄) (4.31)

where the tilde indicates right-movers. From (4.31) the 4-point function in (4.30) follows.

4.2 Non-commutativity of large-N and large-λ limits.

An interesting question in any large-N theory is the commutativity of the large-N and the

large ’t Hooft coupling limit. In the conventional definition we first take the large-N limit,

and we then let λ become large. In our example we can study these limits explicitly and

we will show that they do not commute. More details can be found in appendix 9.

The particular observable to study is the OPE coefficient in (4.27) This OPE coefficient

has a double expansion

h =

∞
∑

n=1

∞
∑

m=−2

Wn,m

N2nλm
(4.32)

If we first take the large-N limit while keeping λ fixed we will reorganize the double

expansion as

lim
N→∞

h =

∞
∑

n=1

Zn(λ)

N2n
(4.33)
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We will now take the large λ limit. The functions Zn have the following λ→ ∞ limit

lim
λ→∞

Z2 = −λ2 +O
(

1

λ

)

(4.34)

lim
λ→∞

Z3 = 2λψ′′(1)− 6ψ′′(1) +O
(

1

λ

)

(4.35)

from which we read in the range 1 ≤ n ≤ 3, −2 ≤ m ≤ 0

W1,0 = 1 , W2,−2 = −1 , W3,−1 = 2ψ′′(1) , W3,0 = −6ψ′′(1) (4.36)

all other being zero in that range.

We will now take the opposite sequence of limits, taking the large-λ limit first. We

rewrite the double expansion as

lim
λ→∞

h =
∞
∑

n=−2

Hn(N)λ−n (4.37)

and we subsequently take the large -N limit of the functions Hn. We obtain

lim
N→∞

H−1 =
2ψ′′(1)

N6
+O(N−8) (4.38)

lim
N→∞

H0 =
1− 4γE + π2

3

N4
+

15π2 + π4 − 180ψ′′(1)

45N6
+O(N−8) (4.39)

from which we deduce

W2,−2 = −1 , W3,−1 = 2ψ′′(1) , W2,0 = 1−4γE+
π2

3
, W3,0 =

15π2 + π4 − 180ψ′′(1)

45
(4.40)

while the rest are zero.

Comparing (9.30) and (9.36) we observe that the two limits do not commute.

4.3 The effective action for sources

We will derive here the effective action of the WZW theory once we couple the currents to

sources. The WZW action is given by

I(g) =
1

16π

∫

d2ξTr[∂ag∂
ag−1] + Γ(g) , Γ(g) =

i

24π

∫

d3ξTr[g−1∂agg
−1∂bgg

−1∂cg]ǫ
abc

(4.41)

where the second integral is over a 3d manifold with two dimensional space as its boundary.

The action satisfies the Polyakov-Wiegmann relation, [28]

I(gh−1) = I(g) + I(h) +
1

16π

∫

d2ξTr[g−1∂z̄gh
−1∂zh] (4.42)
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The associated path integral for SU(N)k is defined as

Z =

∫

Dg e−k I(g) (4.43)

The left and right currents for this theory are given by

Jz = ∂zgg
−1 , Jz̄ = g−1∂z̄g (4.44)

and we can couple external sources to them and define their effective action as

Z(Az, Az̄) = e−W (Az,Az̄) =
1

Z

∫

Dg e−k I(g,Az ,Az̄) (4.45)

with

I(g, Az, Az̄) = I(g) +
1

16π
Tr

∫

d2ξ
[

Az̄Jz − AzJz̄ + Az̄gAzg
−1
]

(4.46)

We may now parameterize without loss of generality the two sources Az,z̄ in terms of two

scalar functions, h, h̄.

Az = ∂zh h
−1 , Az̄ = ∂z̄h̄ h̄

−1 (4.47)

Note that this does not imply that the sources have a flat field strength. Using this

parametrization we may rewrite the source action as

I(g, Az, Az̄) = I(h̄−1gh)− I(h̄−1h) +
1

16π
Tr

∫

d2ξAzAz̄ (4.48)

We may now perform the path integral in (4.45), by changing variables from g → h̄−1gh

and noting that the path integral measure is invariant under left and right group transfor-

mations to obtain

W (Az, Az̄) = −kI(h̄−1h) +
k

8π
Tr

∫

d2ξAzAz̄ (4.49)

= −k I(h̄−1)− k I(h) =W (Az̄) +W (Az)

where in the second step we used (4.42). This is the final factorized action for the sources.

Variation with respect to Az, Az̄ will give the current correlators.

5. Holography on AdS3

There has been a lot of evidence for the holographic correspondence between 2d CFTs and

string theories on AdS3 that is summarized in [16].

Gravity theories and solutions are characterized by a Planck scaleMp = 1/(16πG3) and

the associated Planck length, ℓp = G3. Solutions to the gravity theory are characterized

– 23 –



by their mass M and angular momentum J . The central charge of the CFT is related to

the gravity data as

c =
3ℓ

2ℓp
, (5.1)

The general formula for the central charge (5.1) was derived in [35] using low-energy gravity.

Mass and angular momentum are related to the CFT data by

M =
L0 + L̄0

ℓ
, J = L0 − L̄0 (5.2)

where ℓ is the AdS3 radius. The calculation of the central charge in the gravity theory

is expected to be reliable in the semi-classical regime ℓ ≫ ℓp. Therefore, the result (5.1)

should be viewed as the leading term in an expansion in ℓp/ℓ. The formulae (5.2) however

are expected to be a universal feature of the correspondence.

Assuming that the string theory dual is of the form

AdS3 ×Mp , (5.3)

where Mp is a p-dimensional compact manifold with volume V =
(

ℓM
ℓs

)p

, the three-

dimensional Planck length can be written in terms of the string coupling gs and the string

length ℓs as
1

ℓp
=

V

g2sℓs
=

1

g23ℓs
. (5.4)

g3 is the three-dimensional string coupling.

Before going further, it is worth discussing the more familiar situation of the F1-NS5

system (p F1’s and k NS5’s). In this case

c = 6kp =
3ℓ

2ℓp
,
ℓs
ℓp

=
V

g2s
=

1

g23
= 4p

√
k ,

ℓ

ℓs
=

√
k . (5.5)

The volume of the internal manifold S3 and gs behave as

V ∼
(

ℓ

ℓs

)3

= k3/2 , gs ∼
√

k

p
. (5.6)

Defining

N ≡
√

kp (so that c ∼ N2) and λ ≡ gsN (5.7)

we obtain

λ = k and V (λ) ∼ λ
3
2 . (5.8)

If we assume the validity of (5.1), for the present CFT we obtain

ℓ

ℓp
=

2

3
c ≃ 2N2

3(1 + λ)
+O(1) . (5.9)
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The next ingredient is the relation of string coupling to λ. To obtain some intuition

we will try to establish first in which region we expect a field theory description. Note the

scaling dimensions for the representations with finite number of boxes were given in (4.10)

as

∆ =
λ

λ+ 1
∆R(∞) + n+ n̄ (5.10)

where the integers n, n̄ are the contributions of the current oscillators. We would like to

study the gap in dimensions between the primaries and their descendants. In the limit

λ→ ∞, the primary dimensions are half integers and therefore there is no adjustable gap

separating them from the excited states. On the other hand as λ → 0 the primary field

dimensions vanish and this creates an adjustable gap. This suggests that the gravity limit

will be reliable when λ → 0. We will adjust ℓs so that the scaling dimensions in the field

theory limit are constant while the excited states’ dimensions vary with λ. This gives

ℓ

ℓs
=

√

1 + λ

λ
(5.11)

We may then estimate the string couplings as

g2s ∼
ℓp
ℓs

∼ (1 + λ)
3
2

N2
√
λ

→ gsN ∼
[

(1 + λ)3

λ

]
1
4

(5.12)

We have made several assumptions to derive the previous results, including the fact that

the string theory dual is a three-dimensional non-critical string theory. This is motivated

from the realization of the CFT and previous experience that suggests that extra adjoint

matter will generate extra dimensions, whereas fundamental matter is induced by space-

filling flavor branes.

We expect that the bulk string theory has a trivial closed string sector. The reason

is two-fold. First the closed string sector should contain the pure gauge theory states

and these are trivial in two dimensions. Second, as we will see, the open string sector

associated with flavor will generate the necessary correlators of the stress tensor and other

closed string fields. This does not imply that there is no non-trivial gravitational action

for the metric but that there will be no non-trivial fluctuations here and no stringy states.

The non-trivial string sectors are associated with the flavor symmetry SU(N)L ×
SU(N)R. This should be a symmetry that is realized as a bulk gauge symmetry. It will

be realized by two sectors of open strings associated to N D2 branes and N D2 as in

higher-dimensional realizations of flavor. The gauge fields Lµ, Rµ associated with flavor

symmetry will have an action that starts with the CS action as

Sbulk =
ik

8π
Tr

∫

(LdL+
2

3
L3 − RdR− 2

3
R3) + · · · (5.13)
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where the ellipsis indicates higher derivative terms starting from with YM action and

L = LaT a with Tr[T aT b] = δab. The sign of the coupling constants is implied by the parity

invariance of the CFT.

In global AdS3

ds2 =

(

1 +
r2

ℓ2

)

dt2 +
dr2

1 + r2

ℓ2

+ r2dφ2. (5.14)

The asymptotic expansion near the boundary, r → ∞ for solutions of the gauge fields

are, [16]

Ai(r, ~x) = A
(0)
i (~x) +

A
(1)
i (~x)

r2
+ · · · (5.15)

where we chose the gauge Ar = 0. The equations of motion, including the higher order

terms imply that A(0) is flat

F (A(0))ij = 0 (5.16)

It also implies that it is only the CS terms that contribute to boundary terms. In particular

the boundary current is

∆S =
i

2π
Tr

∫

d2x
√

g(0)J iδA
(0)
i (5.17)

where g(0) is the boundary metric.

The correct variational principle states that in complex boundary coordinates one

of the two Az,z̄ should vanish at the boundary. The boundary action that imposes this

condition is

Sboundary = − k

16π
Tr

∫

d2x
√
ggab(LaLb +RaRb) (5.18)

We therefore have the boundary conditions

L
(0)
z̄ = R(0)

z = 0 , Jz =
1

2
J z̄ =

ik

2
L(0)
z , Jz̄ =

1

2
Jz = −ik

2
R

(0)
z̄ (5.19)

The boundary value of the stress tensor can also be computed from (5.20) to be

Tab =
k

8π
Tr[L(0)

a L
(0)
b − 1

2
g
(0)
ab L

(0)
c L(0),c + (L↔ R)] (5.20)

from where we obtain the affine Sugawara stress tensors

Tzz =
k

8π
Tr[L(0)

z L(0)
z ] , Tzz =

k

8π
Tr[R(0)

z R(0)
z ] , Tzz̄ = 0 (5.21)

5.1 The effective action

We will now establish the effective action for the sources, and match eventually to the one

obtained in section 4.3 equation (4.49). To do this we follow the analysis in [3]. In this

work, it is shown how one can write the gauge fields on-shell, in terms of a two-dimensional
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flat connection. The end result will be that the on-shell value of the effective action agrees

with (4.49).

The equations of motion of the CS theory imply that

FL = FR = 0 (5.22)

in the bulk whose solution is

Lµ = ∂µh h
−1 , Rµ = ∂µh̄ h̄

−1 (5.23)

with h, h̄ functions of r and the two dimensional coordinates z, z̄.

Evaluating the CS action on the solution of (5.22) we obtain

Son−shell
bulk = − ik

24π

∫

(L3 − R3) = −k[Γ(h)− Γ(h̄)] = −k[Γ(h) + Γ(h̄−1)] (5.24)

Adding this to the boundary action (5.20) where h, h̄ are evaluated at the boundary, we

obtain perfect agreement with the effective action obtained from the CFT (4.49).

5.2 The bulk scalar

From the non-trivial ground states of the WZW theory, associated to primaries only one can

be considered as the generating operator dual to a complex bulk scalar Tij , that transforms

in the bi-fundamental under the bulk gauge group SU(N)L ×SU(N)R. The reason is that

all other primary ground states can be considered as composites (multi-particle states) of

the fundamental scalar g under OPE, since they arise as appropriately regularized algebraic

functions (products) of the fundamental operator.

Its mass is given by the standard formula that connects it to its scaling dimension

h = ∆+ ∆̄ =
λ

λ+ 1
+O

(

1

N2

)

, m2ℓ2 = −λ(λ+ 2)

(λ+ 1)2
(5.25)

The situation is similar to that of tachyon condensation in D− D̄ systems realizing flavor

in holography , [17]. The simplest two derivative action compatible with the symmetries is

ST =
1

2
Tr

∫ √
g
(

gµνDµTDνT
† −m2TT †) (5.26)

with

DµT = ∂µT + iLµT − iTRµ , DµT
† = ∂µT

† − iRµT
† + iT †Lµ (5.27)

The vev associated with the CFT vacuum is T = 0 which is the only choice that

keeps the chiral symmetry unbroken. Turning on a source for T should correspond to
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perturbations of the WZW theory by g. In the strong coupling limit this corresponds to

turning on a mass matrix for the fermions. Therefore, the theory is expected to flow to

SU(N − r)k theory where r is the rank of the mass-matrix. This amounts to a reduction

of the values of the ’t Hooft coupling λ, therefore flowing towards weak coupling.

The flow is also visible in the the bulk theory, (5.13), (5.26). It is plausible that the

non-linear theory is described by a DBI-like action along the lines of [33], [34].

5.3 Multiparticle states and entropy

We have seen in section 4 that ground states that are multiparticle states can have large

multiplicities. Their scaling dimensions are of O(N2) and therefore are expected to corre-

spond to macroscopic solutions (black holes?) in the bulk theory.

The associated mass for the “half-box” states in (4.13) is given by

M

Mp
=

∆+ ∆̄
N2

24π(1+λ)

≃ 6π
λ+ 1

λ
(5.28)

where we have used (5.1,5.2). All other primary masses are suppressed by 1/N or more.

Note that in the weak coupling limit, λ→ 0, the mass becomes much larger than the Planck

scale, M
Mp

∼ 1
λ
. therefore these are macroscopic configurations. Note that it is in this limit

that the zero mode theory (gravity+CS) are expected to give a reliable description of the

physics.

On the other hand for λ → ∞, the mass of these states is bounded, M
Mp

∼ 6π by

the Planck scale. Therefore, in this limit the ground states remain Planckian and do not

generate macroscopic states.

The entropy of the “half-box” state was calculated in (4.14). We can compare it with

the Cardy entropy for a state with the same scaling dimension as the conformal dimensions

∆ = ∆̄ = N2

8λ
in (4.12)

SCardy = 2 · 2π
√

c∆

6
≃ π√

3

N2

λ
+ · · · (5.29)

We observe that at strong coupling the dimension multiplicity in (4.15) is subleading to

(5.29) as π√
3
> 2 log 2. On the other hand at weak coupling the Cardy entropy is subdom-

inant. This suggests that in this case it is not the Regge trajectory of the vacuum module

that dominates asymptotic entropy but this class of ground-states. As we saw above, such

states have macroscopic energy so they should correspond to classical bulk solutions with

large degeneracy. This degeneracy is coming from the large-N bulk gauge symmetry but it

is also enhanced by the weak interactions. It is not clear what such solutions are.
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In the opposite case of strong coupling such states have subdominant entropy, and

never dominate the Cardy entropy.
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Appendices

7. Casimirs and dimensions for the SU(N) algebra

In this appendix we will tabulate some useful results on SU(N) representations namely di-

mensions, the Dynkin index and the quadratic Casimir that enters in conformal dimensions

of primary fields.

We will denote the dimension of the representation R by D(R). The irreducible rep-

resentation R is completely specified with its Young tableau. Conjugation by an ǫ-tensor

acts on any column of length s ≤ N of the Young tableau replacing it with a column of

length N − s. We use the convention to have the minimal number of boxes for an SU(n)

representation. For example if we discuss the that can be described also by N − 1

antisymmetrized boxes we substitue instead the fundamental with one box. Therefore a

representation represented by a generic Young tableau has m1 boxes in the first column,

m2 boxes in the second column etc, with m1 ≥ m2 ≥ m3 · · · ≥ mn. We will denote this

representation as (m1, m2, · · · , mn).

The affine cutoff implies that only integrable representations can be present as primary

states. For SU(N)k, all representations with more than k columns are not integrable.

Therefore n ≤ k above.

In a tensor product of irreducible representations R1 ⊗ R2 =
∑

k Rk we have the

following relation for their dimensions

D(R1)D(R2) =
∑

k

D(Rk) (7.1)

from which the well known formulae for dimensions of an arbitrary Young tableau can be

calculated.

The Dynkin index S2(R) of a representation R is defined as, [36]

Tr[T a
RT

b
R] = S2(R) δ

ab (7.2)

where T a
R are the Lie algebra generators of the representation R. We will normalize them

here so that S2( ) = 1
2
. Again for a tensor product we have the following relations that

allow the calculation of all Dynking indices

D(R1)S2(R2) +D(R2)S2(R1) =
∑

k

S2(Rk) (7.3)
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Finally the quadratic Casimir is defined as

∑

a

(T a
RT

a
R)ij = C2(R)δij (7.4)

and is related to the Dynking index by by

(N2 − 1)S2(R) = D(R)C2(R) (7.5)

that follows from (7.2) and (7.4).

The general formula for the Casimir for an arbitrary representation (m1, m2, · · · , mn)

is

C2(m1, m2, · · · ) =
(
∑n

i=1mi)N
2 − ((

∑n
i=1m

2
i )−

∑n
i=1(2i− 1)mi)N − (

∑n
i=1mi)

2

2N
(7.6)

The quadratic Casimir is related to the conformal dimensions of primary fields as

∆R = ∆̄R =
C2(R)

k +N
(7.7)

The large-N limit of dimension is obtained from the large limit of the Casimir

lim
N→∞

C2(R) = N∆R(∞) +O(1) , lim∆R =
λ

1 + λ
∆R(∞) (7.8)

with the ’t Hooft coupling defined in (3.1). We obtain

∆R(∞) =
1

2
(
∑

i

mi) (7.9)

for mi ∼ O(1).

The dimension, Dynkin index, Casimir and ∆R(∞) for some common representations

are tabulated in table 7.

– 31 –



Representation dimension Dynkin Index S2 Casimir C2 ∆R(∞)

N 1
2

N2−1
2N

1
2

N(N+1)
2

N+2
2

(N−1)(N+2)
N

1
N(N−1)

2
N−2
2

(N+1)(N−2)
N

1

Adjoint N2 − 1 N N 1
N(N+1)(N+2)

6
(N+2)(N+3)

4
3(N−1)(N+3)

2N
3
2

N(N2−1)
3

N2−3
2

3(N2−3)
2N

3
2

N(N−1)(N−2)
6

(N−2)(N−3)
4

3(N+1)(N−3)
2N

3
2

N(N+1)(N+2)(N+3)
24

(N+2)(N+3)(N+4)
12

2(N−1)(N+4)
N

2

N(N−1)(N−2)(N−3)
24

(N−2)(N−3)(N−4)
12

2(N+1)(N−4)
N

2

N2(N2−1)
12

(N+2)(N+3)(N+4)
12

2(N2−4)
N

2
N(N−1)(N+1)(N+2)

8
(N+2)(N2+N−4)

4
2(N2+N−4)

N
2

N(N+1)(N−1)(N−2)
8

(N−2)(N2−N−4)
4

2(N2−N−4)
N

2

m-symmetric
(

N+m−1
m

)

1
2

(

N+m
m−1

)

m(N−1)(N+m)
2N

m
2

m-antisymmetric
(

N
m

)

1
2

(

N−2
m−1

) m(N−m)(N+1)
2N

Min[m,N−m]
2

We will now consider reps with large dimensions and large multiplicities. The maxi-

mum is when

mi =
N

2
+ ni , ni ∼ O(1) (7.10)

from where we compute

C2 =
Nk(N + k)

8
−

∑k
i=1 n

2
i +

∑k
i=1(k + 1− 2i)ni +

1
N
(
∑k

i=1 ni)
2

2
(7.11)

which gives the scaling dimension

∆ =
C2

N + k
=
Nk

8
−

∑k
i=1 n

2
i +

∑k
i=1(k + 1− 2i)ni +

1
N
(
∑k

i=1 ni)
2

2(N + k)
= (7.12)

=
N2

8λ
− λ

2(λ+ 1)

[

1

N

k
∑

i=1

n2
i +

1

N

k
∑

i=1

(k + 1− 2i)ni +
1

N2
(

k
∑

i=1

ni)
2

]

The dimension of the associated SU(N) representation when ni = 0 for all i is

D =

∏N/2
i=1

(N+k−i)!
(N−i)!

∏k
i=1

(N
2
+i−1)!

(i−1)!

(7.13)

The logarithm is

logD =

N/2
∑

i=1

[log(N + k − i)!− log(N − i)!]−
k

∑

i=1

[

log

(

N

2
+ i− 1

)

!− log(i− 1)!

]

(7.14)
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Using Stirling’s formula

log(n!) = n log n− n+
1

2
log(2πn) +O(n−1) (7.15)

we obtain

logD =

N/2
∑

i=1

[(

N − i+
1

2

)

log
(N + k − i)

(N − i)
+ k log(N + k − i)

]

− (7.16)

−
k

∑

i=1

[

N

2
log

(

N

2
+ i− 1

)

+

(

i− 1

2

)

log

(

N
2
+ i− 1

)

(i− 1)

]

We may now use the summation formula

N
∑

i=1

f(i) =

∫ N+1

1

f(x)dx+
1

2
(f(N+1)−f(1))+ 1

12
(f ′(N+1)−f ′(1))− 1

72
(f ′′(N+1)−f ′′(1))+O(f ′′′)

(7.17)

to obtain

logD =
[

4(λ+ 1) log 2− λ2 log λ+ 2(λ+ 1)2 log(λ+ 1)− (λ+ 2)2 log(λ+ 2)
] N2

4λ2
+

(7.18)

−N
2
logN + [2 log(λ+ 2)− 4(λ+ 1) log(λ+ 1) + 2(λ− 1) log λ+ 2λ log 2]

N

4λ
−

− 1

12
log

λ+ 2

λ
+O(N−1)

8. Free fermions, O(2N)1, U(N)1, and SU(N)k

Consider N complex free left-moving fermions ψi, ψ̄i, i = 1, ..., N , equivalent to 2N real

(Majorana-Weyl) ones. They realize the O(2N)1 current algebra, [10]. This is equivalent

as a CFT to U(N)1 ∼ U(1)× SU(N)1.

The O(2N)1 theory contains the unit affine representation, the vector (V) represen-

tation (of dimension 2N) the spinor (S) of dimension 2N−1 and the conjugate spinor (C)

with dimension also 2N−1.

The left-right symmetric character-valued partition function is

ZO(2N)1(v, v̄) =
1

2

1
∑

a,b=0

N
∏

i=1

|ϑ[ab ](vi)|2
|η|2 = |χ0|2 + |χV |2 + |χS|2 + |χC |2 (8.1)
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with O(2N)1 characters

χ0(~v) =
1

2

[

∏N
i=1 ϑ3(vi)

ηN
+

∏N
i=1 ϑ4(vi)

ηN

]

= q−N/24[1 +O(q)] (8.2)

χV (~v) =
1

2

[

∏N
i=1 ϑ3(vi)

ηN
−

∏N
i=1 ϑ4(vi)

ηN

]

= 2N q−
N
24

+ 1
2 [1 +O(q)] (8.3)

χS(~v) =
1

2

[

∏N
i=1 ϑ2(vi)

ηN
+

∏N
i=1 ϑ1(vi)

ηN

]

= 2N−1q−
N
24

+N
8 [1 +O(q)] (8.4)

χC(~v) =
1

2

[

∏N
i=1 ϑ2(vi)

ηN
−

∏N
i=1 ϑ1(vi)

ηN

]

= 2N−1q−
N
24

+N
8 [1 +O(q)] (8.5)

We will write the theory in terms of the U(1) and SU(N)1 degrees of freedom. The

representations that descend from the unity and vector of O(2N) are generated by the

operators ψi, ψiψj , ...
∏N

k=1 ψ
ik , and their complex conjugates which correspond to the

various antisymmetric reps of SU(N). These are the only integrable representations at level

one.

This decomposition at the level of conformal dimensions becomes:

∆ =
Q2

2
+ ∆R (8.6)

where Q is the appropriately normalized U(1) charge (defined when the associated

current has central term equal to one), and ∆R is the conformal weight of the SU(N)1

reps.

∆R =
CR

N + 1

For the j-index antisymmetric rep of SU(N), CR = (N + 1)j(N − j)/2N so that

∆j =
j(N − j)

2N
(8.7)

Its (properly normalized) U(1) charge is ±j/
√
N Thus summing up we obtain conformal

weight j/2 which is in agreement with the interpretation above.

Consider now the two spinor reps. The U(1) charges of those can be easily figured out

by bosnizing pairwise the complex fermions

ψi = eiφi , ψ̄i = e−iφi (8.8)

In this basis, the U(1) current is

J =
i√
N

N
∑

k=1

∂φk (8.9)
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The spinor and conjugate spinor are generated by the following vertex operators:

VC,S =
N
∏

k=1

exp

[

i

2
ǫkφk

]

(8.10)

with ǫk = ±1. The spinor corresponds to
∏N

K=1 ǫk = 1 and the conjugate spinor to
∏N

K=1 ǫk = −1 The U(1) charge is Q =
∑N

k=1 ǫk/2
√
N . It is not difficult to see that the

spectrum of U(1) charges coming from C and S is given by

Qk =
N − 2k

2
√
N

, k = 0, 1, 2, ..., N (8.11)

where k even corresponds to one spinor and k odd to the other. C,S decompose under

U(1)×SU(N) to the antisymmetric reps. This can be confirmed by the conformal weights.

When the U(1) charge is Qk the accompanying SU(N) rep is the k-index antisymmetric

representation,
Q2

k

2
+
k(N − k)

2N
=
N

8
(8.12)

which is the correct conformal weight of the spinors.

The quantum of U(1) charge is 1√
N

in the unit-V sector and 1
2
√
N

in the spinor sector.

The number of states in the Dirac spinor is 2N = 2 · 2N−1. This is the number of all

antisymmetric representation states.

8.1 The fermionic current algebra

We define the U(N) currents J ij in terms of the fermions that satisfy

ψi(z)ψj(w) ∼ finite , ψ̄i(z)ψ̄j(w) ∼ finite , ψi(z)ψ̄j(w) ∼ δij
z − w

+ finite (8.13)

J ij = i : ψiψ̄j : , J ij(z)Jkl(w) =
δilδjk

(z − w)2
+ if ij,kl

mnJ
mn(w) + finite (8.14)

f ij,kl
mn = −δilδmkδjn + δjkδmiδnl (8.15)

The properly normalized overall U(1) current is

J =
1√
N

∑

i

J ii , J(z)J(w) =
1

(z − w)2
+ finite (8.16)

The currents are uncharged under the zero mode J0.

Consider now the antisymmetric operator Oi1,··· ,im =: ψi1ψi2 · · ·ψim with U(1) charge

Q = n√
N
.

J ij(z)Oi1,··· ,im(w) =

m
∑

n=1

(−1)n+1δjin

z − w
Oi1,··· ,i,··· ,im + finite (8.17)
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This indicates that the operators O are affine primaries, that transform as the m-index

antisymmetric of SU(N).

Of interest is the m = N operator O =
∏N

i=1 ψ
i that satisfies

J ij(z)O(w) = finite, i 6= j (8.18)

Indeed it can be seen that this operator has charge Q =
√
N and therefore dresses the

trivial SU(N) representation.

8.2 SU(N)k

We now consider k copies of N complex fermions, ψi
a, ψ̄

i
a, a = 1, 2, · · · , k, i = 1, 2, · · · , N .

ψi
a(z)ψ

j
b(w) ∼ finite , ψ̄i

a(z)ψ̄
j
b(w) ∼ finite , ψi

a(z)ψ̄
j
b(w) ∼

δijδ
ab

z − w
+ finite (8.19)

They realize the tensor product U(N)k1 CFT.

We may construct the U(N)k currents as

J ij =

k
∑

a=1

: ψi
aψ̄

j
a : , J ij(z)Jkl(w) = k

δilδjk

(z − w)2
+ if ij,kl

mnJ
mn(w) + finite (8.20)

as well as U(k)N currents

Jab =

N
∑

i=1

: ψi
aψ̄

i
b : , Jab(z)Jcd(w) = N

δadδbc

(z − w)2
+ ifab,cd

efJ
ef(w) + finite (8.21)

The two groups are not independent as they share the same overall U(1)

J =
1√
kN

N
∑

i=1

k
∑

a=1

: ψi
aψ̄

i
a (8.22)

Moreover the two current algebras are not commuting. A general commutator gives other

currents of the maximal O(2kN)1 current algebra.

The global subalgebra of the U(k)N algebra acts non-trivially on the (U(N)1)
k/U(N)k

coset. To leading order it will be a symmetry of U(N)k.

In this respect we have that the theory is given by O(2kN)1 ≃ U(kN)1 ≃ U(N)k1 and

O(2kN)1 = SU(N)k ⊗ SU(k)N ⊗ U(1) , SU(N)k =
O(2kN)1

SU(k)N ⊗ U(1)
(8.23)

In the limit N → ∞, with k fixed, the coset SU(k)N has a central charge of O(1)

therefore to leading order.

SU(N)k ≃ O(2kN)1 (8.24)
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The same is true in the ’t Hooft limit with λ ≫ 1. Therefore in these limits the WZW

model reduces to a theory of kN free complex fermions.

Moreover (8.23) can be translated to the statement that the conformal U(k) gauge

theory of N flavors of massless fermions is equivalent to the SU(N)k WZW model.

In this respect the ’t Hooft limit k → ∞, N → ∞ with N/k = λ fixed can be

interpreted as a Veneziano limit with λ being the ratio of flavors to colors.

Several of the above issues were discussed in early papers on the realization of chiral

symmetry in two dimensions, [37].

9. Analysis of a four-point function in SU(N)k

We present in this appendix the details of the analysis of the SU(N)k four-point function

of the fundamental, ga,b(z, z̄) and its conjugate g−1
b,a(z, z̄) following [11].

The result is

〈ga1,b1(z1, z̄1)g−1
b2,a2

(z2, z̄2)ga3,b3(z3, z̄3)g
−1
b4,a4

(z4, z̄4)〉 = |z14z23|−4∆ G(x, x̄) = (9.1)

= 〈ga1,b1(∞)g−1
b2,a2

(1)ga3,b3(x, x̄)g
−1
b4,a4

(0)〉

where zij ≡ zi − zj , x is the standard cross-ratio

x =
z12z34
z14z32

(9.2)

and bars stand for complex conjugation.

The function G can be decomposed into group channels as

G(x, x̄) =
2

∑

A,B=1

IAĪB GAB(x, x̄) (9.3)

with

I1 = δa1,a2δa3,a4 , Ī1 = δb1,b2δb3,b4 , I2 = δa1,a4δa2,a3 , Ī2 = δb2,b4δb1,b3 (9.4)

and conformal block channels as

GAB(x, x̄) = F (1)
A (x)F (1)

B (x̄) + hF (2)
A (x)F (2)

B (x̄) (9.5)

The conformal blocks have been calculated by solving the Knizhnik-Zamolodchikov equa-

tions, [11] and are given by

F (1)
1 (x) = x−2∆ (1− x)∆A−2∆ F

(

− 1

2κ
,
1

2κ
; 1 +

N

2κ
, x

)

(9.6)
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F (1)
2 (x) = −x

1−2∆ (1− x)∆A−2∆

2κ+N
F

(

1− 1

2κ
, 1 +

1

2κ
; 2 +

N

2κ
, x

)

(9.7)

F (2)
1 (x) = x∆A−2∆ (1− x)∆A−2∆ F

(

−N − 1

2κ
,−N + 1

2κ
; 1− N

2κ
, x

)

(9.8)

F (2)
2 (x) = −Nx∆A−2∆ (1− x)∆A−2∆ F

(

−N − 1

2κ
,−N + 1

2κ
;−N

2κ
, x

)

(9.9)

where F is the hypergeometric function,

∆ =
N2 − 1

2N(N + k)
, ∆A =

N

N + k
, 2κ = −N − k (9.10)

are the conformal dimensions of the fundamental and adjoint affine primaries and the

( , ,Adjoint) OPE coefficient h is given by

h =
1

N2

Γ
[

N−1
N+k

]

Γ
[

N+1
N+k

]

Γ2
[

k
N+k

]

Γ
[

k+1
N+k

]

Γ
[

k−1
N+k

]

Γ2
[

N
N+k

] (9.11)

We now take the t’ Hooft limit of the correlation function, defined in section 3.1 to obtain

∆ =
λ

2(1 + λ)

[

1− 1

N2

]

, ∆A =
λ

1 + λ
(9.12)

∆A − 2∆ =
λ

1 + λ

1

N2
(9.13)

h =
1

N2

Γ
[

λ
λ+1

(

1− 1
N

)]

Γ
[

λ
λ+1

(

1 + 1
N

)]

Γ2
[

1
1+λ

]

Γ
[

1+ λ
N

λ+1

]

Γ
[

1− λ
N

λ+1

]

Γ2
[

λ
1+λ

]

=
1

N2
+O

(

1

N3

)

(9.14)

F (1)
1 (x) = x−

λ
1+λ [1−

1

N2 ](1− x)
λ

1+λ
1

N2 F

(

λ

1 + λ

1

N
,− λ

1 + λ

1

N
;

1

1 + λ
, x

)

(9.15)

= x−
λ

1+λ +O
(

1

N2

)

F (1)
2 (x) =

λ

N
x

1+ λ

N2

1+λ (1− x)
λ

1+λ
1

N2 F

(

1 +
λ

1 + λ

1

N
, 1− λ

1 + λ

1

N
;
2 + λ

1 + λ
, x

)

(9.16)

=
λ

N
x

1
1+λ F

(

1, 1;
2 + λ

1 + λ
, x

)

+O
(

1

N2

)

F (2)
1 (x) = x

λ
1+λ

1

N2 (1− x)
λ

1+λ
1

N2 F

(

λ

1 + λ

(

1− 1

N

)

,
λ

1 + λ

(

1 +
1

N

)

; 1 +
λ

1 + λ
, x

)

(9.17)

= F

(

λ

1 + λ
,

λ

1 + λ
; 1 +

λ

1 + λ
, x

)

+O
(

1

N2

)
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= (1− x)
1

1+λ F

(

1, 1; 1 +
λ

1 + λ
, x

)

+O
(

1

N2

)

F (2)
2 (x) = −N x

λ
1+λ

1

N2 (1− x)
λ

1+λ
1

N2 F

(

λ

1 + λ

(

1− 1

N

)

,
λ

1 + λ

(

1 +
1

N

)

;
λ

1 + λ
, x

)

(9.18)

= −N x
λ

1+λ
1

N2 (1− x)−
λ

1+λ [1−
1

N2 ] F

(

− λ

1 + λ

1

N
,

λ

1 + λ

1

N
;

λ

1 + λ
, x

)

= −N (1− x)−
λ

1+λ +O
(

1

N2

)

Using the above we find

G11 = |x|− 2λ
1+λ +O

(

1

N2

)

, G22 = |1− x|− 2λ
1+λ +O

(

1

N2

)

(9.19)

G12 =
λ

N
|x|− 2λ

1+λ x̄ F

(

1, 1;
2 + λ

1 + λ
, x̄

)

− 1

N
(1−x)|1−x|− 2λ

1+λ F

(

1, 1; 1 +
λ

1 + λ
, x

)

+O
(

1

N2

)

(9.20)

In the limit λ→ ∞ of the leading order in 1/N result we obtain

G11 =
1

|x|2 + · · · , G22 =
1

|1− x|2 + · · · (9.21)

G12 =
λ

N

1

x(1− x̄)
+ · · · (9.22)

where we have used F (1, 1, 1, x) = 1
1−x

.

This is the free-fermion four-point function.

In the limit λ→ 0 we obtain instead

G11 = 1− 2λ log |x|+ · · · , G22 = 1− 2λ log |1− x|+ · · · , G12 = − 1

N
+ · · · (9.23)

9.1 On the large-N and large-λ limits.

We will now consider the commutativity of the two limits N → ∞ and λ → ∞, in one of

the dynamical functions of the WZW model, namely the structure constant h, and show

that the two limits do not commute.

We start from (9.11) and expand the OPE coefficient in a double expansion

h =

∞
∑

n=1

∞
∑

m=−2

Wn,m

N2nλm
(9.24)
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Taking the large-N limit first while keeping λ fixed we obtain

lim
N→∞

h =
∞
∑

n=1

Zn(λ)

N2n
(9.25)

with

Z1 = 1 , Z2 =
λ2

(λ+ 1)2

[

ψ′
(

λ

1 + λ

)

− ψ′
(

1

1 + λ

)]

(9.26)

Z3 =
λ4

12(1 + λ)4

[

6

[

ψ′
(

1

1 + λ

)

− ψ′
(

λ

1 + λ

)]2

− ψ′′′
(

1

1 + λ

)

+ ψ′′′
(

λ

1 + λ

)

]

(9.27)

Taking then the λ→ ∞ limit we obtain

lim
λ→∞

Z2 = −λ2 +O
(

1

λ

)

(9.28)

lim
λ→∞

Z3 = 2λψ′′(1)− 6ψ′′(1) +O
(

1

λ

)

(9.29)

from which we read in the range 1 ≤ n ≤ 3, −2 ≤ m ≤ 0

W1,0 = 1 , W2,−2 = −1 , W3,−1 = 2ψ′′(1) , W3,0 = −6ψ′′(1) (9.30)

all other being zero in that range.

On the other hand taking the large-λ limit first we obtain

lim
λ→∞

h =
∞
∑

n=−2

Hn(N)λ−n (9.31)

with

H−2 = − 1

N4
, H−1 =

2

N4

[

2γE + ψ

(

1

N

)

+ ψ

(

− 1

N

)]

(9.32)

H0 = −3ψ
(

1 + 1
N

)2
+ 16γEψ

(

− 1
N

)

+ ψ
(

− 1
N

)2
+ 16γEψ

(

1
N

)

+ ψ
(

1
N

)2

2N4
− (9.33)

−8ψ
(

1 + 1
N

)

ψ
(

1− 1
N

)

+ 3ψ
(

1− 1
N

)2

2N4
+

2− 4γE(1 + 2γE)

N4
+

+
1

N2
− π

N5
cot

( π

N

)

+
2ψ′ (− 1

N

)

− 2ψ′ ( 1
N

)

N5

We now take the large-N limit to obtain

lim
N→∞

H−1 =
2ψ′′(1)

N6
+O(N−8) (9.34)

lim
N→∞

H0 =
1− 4γE + π2

3

N4
+

15π2 + π4 − 180ψ′′(1)

45N6
+O(N−8) (9.35)
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from which we deduce

W2,−2 = −1 , W3,−1 = 2ψ′′(1) , W2,0 = 1−4γE+
π2

3
, W3,0 =

15π2 + π4 − 180ψ′′(1)

45
(9.36)

while the rest are zero.

Comparing (9.30) and (9.36) we observe that the two limits do not commute.
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