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Abstract: We study various aspects of the matrix models calculating free energies and Wilson
loop observables in supersymmetric Chern–Simons–matter theories on the three-sphere. We first
develop techniques to extract strong coupling results directly from the spectral curve describing
the large N master field. We show that the strong coupling limit of the gauge theory corresponds
to the so-called tropical limit of the spectral curve. In this limit, the curve degenerates to a planar
graph, and matrix model calculations reduce to elementary line integrals along the graph. As
an important physical application of these tropical techniques, we study N = 3 theories with
fundamental matter, both in the quenched and in the unquenched regimes. We calculate the
exact spectral curve in the Veneziano limit, and we evaluate the planar free energy and Wilson
loop observables at strong coupling by using tropical geometry. The results are in agreement
with the predictions of the AdS duals involving tri-Sasakian manifolds.
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1. Introduction

Recently, the localization methods of [1] were extended to supersymmetric Chern–Simons–matter
theories in [2, 3, 4]. These methods provide matrix model representations for the Euclidean
partition function of these theories on the three-sphere, as well as of BPS Wilson loop VEVs. In
the case of the ABJM theory constructed in [5, 6], the resulting matrix models were solved at all
orders in the 1/N expansion [7, 8] by using previous results [9, 10, 11] on Chern–Simons matrix
models [12] and their large N topological string duals. This exact solution made possible the
calculation of exact interpolating functions in ABJM theory, testing in this way various strong
coupling predictions based on its AdS4 dual. In particular, the N3/2 behavior of the number of
degrees of freedom of the M2 brane theory [13] was derived in [8] by calculating the exact planar
free energy on the three-sphere.

The Chern–Simons–matter quiver theory of ABJM has been generalized in many directions,
by considering for example more complicated quivers or by adding flavor, i.e. matter multiplets in
the fundamental representation. The resulting theories have conjectural AdS duals which lead to
predictions for the strong coupling behavior of various observables. If the Chern–Simons–matter
theories have enough supersymmetry, the methods of [2] provide matrix model representations
for the partition function on the three-sphere and for Wilson loop VEVs. In general, these matrix
models are quite complicated, and solving them for all values of the coupling, even in the planar
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limit, is a difficult task. In this respect, the ABJM theory is rather exceptional since it can
be related to a well-known topological string theory, and this is what made possible to obtain
very explicit interpolating functions [7, 8]. In some more general cases, like the one considered
in [14], one can write down the planar resolvent in terms of contour integrals, but the resulting
expressions are not explicit enough to extract in a straightforward way the physical information
on the observables.

As a matter of fact, finding an exact solution to the matrix model at all values of the coupling
might be a Pyrrhic victory: if we just want to test the AdS predictions for a given Chern–Simons–
matter theory, we simply need the leading result at strong coupling. Therefore, we would like to
have a method to perform calculations in the matrix model directly in the strong coupling limit,
in the same way that we can use matrix model perturbation theory to obtain results in the weak
coupling limit.

The first goal of this paper is to develop techniques to perform such strong coupling compu-
tations. The basic idea is that, as emphasized in [8], the strong coupling behavior of the ABJM
theory corresponds to the limit of large complex structure for the spectral curve describing the
large N distribution of eigenvalues. It turns out that this limit has a number of simplifying
features that have been much studied recently in the mathematical literature: it is the so-called
tropical limit of the curve. In this limit, the spectral curve degenerates to a two-dimensional
graph, and the calculation of periods reduces to the computation of line integrals along this
graph. Many recent results in tropical geometry can in fact be adapted to our purposes, and we
obtain in this way simple methods to evaluate the strong coupling limit of observables in ABJM
theory.

The main reason to develop techniques based on tropical geometry is of course to be able
to go beyond ABJM theory and obtain strong coupling results for more complicated Chern–
Simons–matter theories from their matrix models. In this paper we will focus on the theories
with fundamental matter introduced in [15, 16, 17]. These theories have only N = 3 super-
symmetry, and they are simple toy models for the incorporation of flavors in the AdS/CFT
correspondence. As in other theories with fundamental matter, one can study them in the
quenched approximation, or one can consider the full unquenched regime, in which matter loops
are not suppressed. We show that both approaches can be incorporated in the matrix models
of [2]. The quenched approximation leads to a systematic expansion in powers of the number of
flavors, where each term can be computed as a correlator in ABJM theory. In order to study
the unquenched theory we find the exact planar resolvent of the N = 3 theory in the Veneziano
limit [18]. In both cases, quenched and unquenched, we can use tropical techniques to calculate
observables at strong coupling, testing in this way the AdS predictions for these theories made
in [15, 16, 17]. In particular, we reconstruct from the matrix model calculation the full volume
of the tri-Sasaki Einstein manifold appearing in their M-theory dual.

The organization of this paper is as follows. In section 2 we review the relevant Chern–
Simons–matter theories, their matrix model description, as well as their AdS duals. In section
3 we review the exact solution of the ABJM theory matrix model worked out in [7, 8], and we
show how to perform direct strong coupling calculations by using the tropical limit of the exact
solution. In section 4 we start our study of the N = 3 Chern–Simons–matter theories with flavors
and we present the matrix model analogue of the quenched expansion. We also evaluate the first
terms in this expansion at strong coupling by developing techniques based on tropical geometry.
In section 5 we solve the N = 3 theory in the Veneziano limit, we test the exact planar resolvent
at weak coupling, and we calculate the free energy and Wilson loop VEVs at strong coupling,
recovering in this way the AdS predictions. Finally, in section 6 we state our conclusions and
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open problems.
When the first version of this paper was being typed, the very interesting paper [19] appeared,

which has some overlap with our results. One of the goals of [19] is also to obtain results directly
at strong coupling in the matrix model, and they develop a simple and powerful technique to do
that based on a careful analysis of the eigenvalue density. Their main conclusion, that the density
of eigenvalues is piecewise linear in this regime, corresponds precisely to the tropical limit of the
spectral curves considered in this paper. In the Appendix we use the methods of [19] to re-derive
the free energy of the N = 3 theory with fundamental matter, and we clarify the relationship
between their approach and the tropical techniques of this paper.

2. Supersymmetric Chern–Simons–matter theories and matrix models

2.1 ABJM theory and matrix models

The ABJM theory [5, 6] is a supersymmetric quiver Chern–Simons–matter theory in three di-
mensions with gauge group U(N1)k × U(N2)−k and N = 6 supersymmetry. The Chern–Simons
actions have couplings k and −k, respectively. The theory contains in addition four hypermulti-
plets: there are two bifundamental chiral fields (A1, A2) in the representation (N1, N2), and two
bifundamental chiral fields (B1, B2) in the representation (N1, N2).

The ABJM matrix model, obtained in [2], gives an explicit integral expression for the parti-
tion function of the ABJM theory on S3, as well as for Wilson loop VEVs. This matrix model is
defined by the partition function

ZABJM(N1, N2, gs)

=
1

N1!N2!

∫ N1∏
i=1

dµi
2π

N2∏
j=1

dνj
2π

∏
i<j

(
2 sinh

(
µi−µj

2

))2 (
2 sinh

(
νi−νj

2

))2
∏
i,j

(
2 cosh

(
µi−νj

2

))2 e
− 1

2gs
(
∑

i µ
2
i−

∑
j ν

2
j ),

(2.1)
where the coupling gs is related to the Chern–Simons coupling k of the ABJM theory as

gs =
2πi

k
. (2.2)

The normalization of this matrix integral has been explained in [8]. It was shown in [7] that the
ABJM matrix model is closely related to the L(2, 1) lens space matrix model introduced in [12]
and further studied in [9, 10, 20]. This matrix model is defined by the partition function

ZL(2,1)(N1, N2, gs) =
1

N1!N2!

∫ N1∏
i=1

dµi
2π

N2∏
j=1

dνj
2π

∏
i<j

(
2 sinh

(
µi − µj

2

))2(
2 sinh

(
νi − νj

2

))2

×
∏
i,j

(
2 cosh

(
µi − νj

2

))2

e
− 1

2gs
(
∑

i µ
2
i+

∑
j ν

2
j ).

(2.3)
The relation between the partition functions is simply

ZABJM(N1, N2, gs) = ZL(2,1)(N1,−N2, gs). (2.4)

Since the large N expansion of the free energy gives a sequence of analytic functions of N1, N2,
once these functions are known in one model, they can be obtained in the other by the trivial
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change of sign N2 → −N2. Equivalently, it can be shown [7, 4] that the ABJM matrix model is
the supergroup version of the lens space matrix model of [12, 9].

Natural observables in this theory are supersymmetric Wilson loop operators. The 1/6 BPS
Wilson loop has been constructed in [21, 22, 23] and it is labelled by a representation R of
U(N1). One of the main results of [2] is that the VEV of this Wilson loop in ABJM theory can
be obtained by calculating the normalized VEV of the matrix eµi in the matrix model (2.1), i.e.,

〈W 1/6
R 〉 = gs 〈TrR (eµi)〉ABJM , (2.5)

A 1/2 BPS loop W
1/2
R was constructed in [4] , where R is a representation of the supergroup

U(N1|N2). In [4] it was also shown that it localizes to the matrix model correlator in the ABJM
matrix model

〈W 1/2
R 〉 = gs 〈StrR U〉ABJM , (2.6)

where U is the diagonal matrix

U =

(
eµi 0
0 −eνj

)
. (2.7)

2.2 Flavored theory and its gravity dual

It is possible to flavor the ABJM theory by adding matter hypermultiplets in the fundamental

representation [15, 16, 17]. More precisely, one adds N
(i)
f multiplets (Qi, Q̃i), with i = 1, 2. The

fields Qi, i = 1, 2 are in the representations (N1, 1) and (1, N2), respectively, while Q̃i are in
the conjugate representations (N1, 1) and (1, N2), respectively. This matter content breaks the
N = 6 supersymmetry of the ABJM theory down to N = 3. Notice that the ABJM theory can
be obtained, formally, as the limit

N
(i)
f → 0 (2.8)

of the flavored theory. We will denote by

Nf = N
(1)
f +N

(2)
f (2.9)

the total number of flavours.

The partition function of this N = 3 theory can be also computed in terms of matrix models,
as explained in [2]. The inclusion of extra matter hypermultiplets just leads to the insertion of
determinant-type operators in the matrix integral (2.1):

ZN=3(N1, N2, N
(1)
f , N

(2)
f , gs)

=
1

N1!N2!

∫ N1∏
i=1

dµi
2π

N2∏
j=1

dνj
2π

∏
i<j

(
2 sinh

(
µi−µj

2

))2 (
2 sinh

(
νi−νj

2

))2
∏
i,j

(
2 cosh

(
µi−νj

2

))2
×

N1∏
i=1

(
2 cosh

µi
2

)−N(1)
f

N2∏
i=1

(
2 cosh

νi
2

)−N(2)
f

e
− 1

2gs
(
∑

i µ
2
i−

∑
j ν

2
j ).

(2.10)

The large N dual of the ABJM Chern–Simons–matter theory is given by type IIA string
theory on AdS4 × CP3, which lifts to M-theory on AdS4 × S7/Zk [5, 6]. It was conjectured in
[15, 16, 17] that, when N1 = N2 = N , the N = 3 theory with flavor has a type IIA large N dual
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where Nf D6 branes wrap the RP3 cycle inside CP3. This is the four-dimensional counterpart of
the original construction of [24], which adds flavor to AdS5 by wrapping D7 branes around an S3
inside S5. The flavored N = 3 theory also describes N M2 branes probing an eight-dimensional
hyperKähler cone M8 with Sp(2) holonomy. The base of this cone is a tri-Sasakian space X7.
The space M8 is a particular member of a family of hyperKähler cones M8(t) labeled by three
natural numbers t = (t1, t2, t3). These cones can be constructed as hyperKähler quotients

H3///U(1), (2.11)

where the U(1) action is characterized by the three charges t. The bases X7(t) of these cones give
an infinite family of tri-Sasakian manifolds known as Eschenburg spaces, see [25] for a detailed
study and references to the relevant literature. The dual to the N = 3 Chern–Simons–matter
theory with a total number of Nf fundamentals has charges

t = (Nf , Nf , k) . (2.12)

In the following, the eight-dimensional cone corresponding to this charge will be simply denoted
by M8.

At large N the above theory of N M2 branes is described by M-theory on the manifold

AdS4 ×X7, (2.13)

where X7 is the tri-Sasakian seven manifold corresponding to (2.12). This background is the
eleven-dimensional lift of the type IIA background with Nf D6 branes. The eleven-dimensional
metric and four-form flux are given by

ds211 = R2
X7

(
1

4
ds2AdS4 + ds2X7

)
,

G =
3

8
R3
X7
ωAdS4 ,

(2.14)

where ωAdS4 is the volume form with unit radius. The radius RX7 is determined by the flux
quantization condition

(2π`p)
6N =

∫
C7

?11G = 6R6
X7

vol(X7), (2.15)

where `p is the eleven-dimensional Planck length, and the volume of X7 (with unit radius) is
given by [25]

vol(X7) =
vol(S7)
k ξ2 (µ)

, (2.16)

where

ξ(µ) =
1 + µ√
1 + µ/2

, µ =
Nf

k
. (2.17)

Newton’s constant in four dimensions can be obtained by standard compactification of the
Einstein–Hilbert action in eleven dimensions,

1

16πG4
=
k1/2N3/2

12
√

2π
ξ (µ) . (2.18)

This conjectural large N dual of the N = 3 theory makes two quantitative predictions for the
strongly coupled N = 3 Chern–Simons–matter theory with flavors. First of all, the free energy
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of the N = 3 theory on S3 is given by the same expression that the one for the ABJM theory
[26, 8] but with the new Newton’s constant (2.18),

−FN=3(S3) =
π

2G4
=
π
√

2

3
N3/2k1/2ξ (µ) (2.19)

Another quantity that we are interested in is the VEV of supersymmetric Wilson loops. As
usual in the AdS/CFT correspondence, this can be calculated by evaluating the regularized area
of a fundamental string in the type IIA reduction of the M-theory background. The resulting
geometry is a warped compactification and we have not performed such a calculation. However,
it was pointed out in [16] that

R2
str ∼

1

4

R3
X7

Nf + k
=

2πN1/2√
Nf + 2k

(2.20)

and we then expect

〈W 〉 ∼ exp

(
2πN1/2√
Nf + 2k

)
(2.21)

for both the 1/2 and 1/6 BPS Wilson loops. Notice that when Nf → 0 one recovers the right
value for the ABJM limit.

3. Strong coupling limit and tropical geometry

The ABJM matrix model can be solved in the planar limit simply by borrowing the exact solution
of the lens space matrix model worked out in [9, 10]. Let us now review some ingredients of this
solution following the notations of [8].

Z = ez

−b −1/b 1/a a

C1
C1

C2

C2

D

D

z

A−A

πi + Bπi − B

Figure 1: Cuts in the z-plane and in the Z-plane.

At large N , the two sets of eigenvalues, µi, νj in (2.3) condense around two cuts. The cut of
the µi eigenvalues is centered around z = 0, while that of the νi eigenvalues is centered around
z = πi. We will write these cuts as

C1 = (−A,A), C2 = (πi−B, πi +B), (3.1)

in terms of the endpoints A,B. It is also useful to use the exponentiated variable

Z = ez, (3.2)
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In the Z plane the cuts (3.1) get mapped to

(1/a, a), (−1/b,−b), a = eA, b = eB, (3.3)

which are centered around Z = 1, Z = −1, respectively, see Fig. 1. We will use the same notation
C1,2 for the cuts in the Z plane. The total resolvent of the matrix model, ω(z) is defined as [10]

ω(z) = gs

〈
Tr

(
Z + U

Z − U

)〉
= gs

〈
N1∑
i=1

coth

(
z − µi

2

)〉
+ gs

〈
N2∑
j=1

tanh

(
z − νj

2

)〉
(3.4)

where U is given in (2.7).
We will denote by ω0(z) the planar limit of the resolvent, which was found in explicit form

in [10]. It reads,

ω0(Z)
dZ

Z
= log

(
1

2β

[
f(Z)−

√
f2(Z)− 4β2Z2

])dZ

Z
, (3.5)

where
f(Z) = Z2 − ζZ + 1. (3.6)

Here, β and ζ are “bare” parameters characterizing the resolvent. If we write

σ(Z) = f2(Z)− 4β2Z2 = (Z − a) (Z − 1/a) (Z − b) (Z − 1/b) (3.7)

we see that the parameters ζ, β are related to the positions of the endpoints of the cuts as follows

ζ =
1

2

(
a+

1

a
− b− 1

b

)
, β =

1

4

(
a+

1

a
+ b+

1

b

)
. (3.8)

All the relevant planar quantities can be expressed in terms of period integrals of the one-form
ω0(z)dz. The ’t Hooft parameters

ti = gsNi, i = 1, 2, (3.9)

are given by the period integrals

ti =
1

4πi

∮
Ci
ω0(z)dz, i = 1, 2. (3.10)

The total ’t Hooft parameter
t = t1 + t2 (3.11)

is related to the modulus β as
β = et. (3.12)

The planar free energy F0 satisfies the equation

I ≡ ∂F0

∂t1
− ∂F0

∂t2
− πit = −1

2

∮
D
ω0(z)dz, (3.13)

where the D cycle encloses, in the Z plane, the interval between −1/b and 1/a, see Fig. 1.
Another quantity that can be computed as a period integral is the 1/6 BPS Wilson loop, since
[7] 〈

W
1/6
〉
0

=

∮
C1

dZ

4πi
ω(Z). (3.14)
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The 1/2 BPS Wilson loop is then given by〈
W

1/2
〉
0

=

∮
C1

dZ

4πi
ω(Z) +

∮
C2

dZ

4πi
ω(Z) =

∮
∞

dZ

4πi
ω0(Z). (3.15)

We finally recall that the solution to the original ABJM matrix model can be obtained by simply
setting

t1 = 2πiλ1, t2 = −2πiλ2, (3.16)

where

λi =
Ni

k
(3.17)

are the ’t Hooft parameters of the ABJM model.
In order to make contact with the algebro-geometric formalism based on the spectral curve,

notice that if we denote
Y = ω0(Z) (3.18)

one finds the following equation for an algebraic curve in C∗ × C∗:

Y +
Z2

Y
−
√
z1
z2

(
Z2 − 1√

z1
Z + 1

)
= 0, (3.19)

where the parameters z1, z2 are related to ζ, β as

ζ =
1√
z1
, β =

√
z2
z1
. (3.20)

The curve (3.19) is the mirror curve to the toric Calabi–Yau manifold known as local P1×P1, and
the parameters z1, z2 become complex coordinates for the moduli space of the mirror Calabi–Yau.

In order to make contact with the AdS dual, one has to calculate the gauge theory/matrix
model quantities at strong coupling. In [7, 8] this was done essentially by computing exact
interpolating functions at all couplings and then going to the strong coupling regime. However,
the calculation of interpolating functions might become hard, specially in more complicated
generalizations of ABJM theory like the theories with matter considered in [15, 16, 17]. In
particular, one would like to have a computational framework to do calculations directly at
strong coupling, without going through the determination of exact interpolating functions. We
will now propose such a framework, and we will illustrate it by considering the ABJM theory.

As explained in [8], the strong coupling limit of the ABJM theory corresponds to the large
radius limit of this Calabi–Yau moduli space. This is the limit where

z1, z2 → 0. (3.21)

It is well-known that in this regime there are two natural period integrals T1, T2 given by

−T1 = log z1 + ω(1)(z1, z2),

−T2 = log z2 + ω(1)(z1, z2),
(3.22)

where

ω(1)(z1, z2) = 2
∑
k,l≥0,

(k,l)6=(0,0)

Γ(2k + 2l)

Γ(1 + k)2Γ(1 + l)2
zk1z

l
2 = 2z1 + 2z2 + 3z21 + 12z1z2 + 3z22 + · · · (3.23)
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We then see that in the limit (3.21) one has

Re (Ti)→∞, i = 1, 2, (3.24)

and we can write, up to exponentially suppressed corrections,

z1 ≈ e−T1 , z2 ≈ e−T2 . (3.25)

The ’t Hooft parameters of the ABJM model are large in this limit, and they behave like [7, 8]

λi ∼
T1T2
8π2

, i = 1, 2. (3.26)

We now ask the following question: what is the behavior of the planar resolvent, or equiva-
lently the spectral curve (3.19), in this limit? Notice that the coefficients of (3.19), regarded as an
equation for an algebraic curve, become exponentially large or small (or they remain constant).
This kind of behavior has been very much studied recently in the mathematical literature and
it is known as the tropical limit of the algebraic curve (or the ultradiscretization of the algebraic
curve), see for example [27, 28]. This limit is only non-trivial if we scale z, y in the same way,
where

z = log Z, y = log Y, (3.27)

i.e. we have to consider the limit in which

Re(z), Re(y)→∞ (3.28)

as well. For generic values of z, y in this regime there is only one dominating term in (3.19), and
the equation cannot be satisfied. To have a nontrivial equation we need at least two dominating
terms which cancel each other. This gives us a set of linear equations on Re(z) and Re(y).
Therefore, the “ultradiscrete” limit of the curve can be represented as a collection of segments
in the real plane. On each of these segments there is a linear relation between z and y. It is
an easy exercise to show that, for our particular example (3.19), the resulting diagram can be
represented as in Fig. 21. This diagram is called a tropical curve.

This two-dimensional plane can be understood as the base of the fibration

C∗ × C∗ → R2

(Z, Y ) 7→ (log |Z|, log |Y |).
(3.29)

The fiber is S1 × S1 and it is parametrized by the imaginary parts of (z, y). A linear relation of
the form mz = ny+c, m, n ∈ Z gives a line in R2 with a fiber S1 ⊂ S1×S1 with winding number
(n,m). Thus the lines in the picture correspond, in the original curve, to thin tubes connected
at the vertices. This type of picture is familiar from local mirror symmetry: as emphasized in
[29], the mirror curve of a toric manifold, like (3.19), can be regarded as the thickening of the
toric diagram in which lines become cylinders or tubes. In the strong coupling or large radius
limit, the tubes become thinner and we get back the toric skeleton, which is now interpreted as
a tropical curve.

In order to do calculations at strong coupling we have to understand what happens to the
period integrals in the regime (3.24). It can be shown rigorously (see for example [28]) that, in

1In writing the linear equations for the segments, we have neglected constant imaginary parts, which are small
in the tropical limit.
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y=
z{
T 2
/2

z=T1/2
y=
2z{
(T1
{T2
)/2

y
=
(T
1{
T
2)
/
2

logjZj

logjYj

z=-T1/2

y=
{(
T
1
{
T
2)
/
2

y=
z+
T 2
/2

y=
2z+

(T1
{T2
)/2

Figure 2: The strong coupling limit of the curve (3.19) can be represented as a set of segments where the
relation between z and y is linear. This limit is nothing but the “ultradiscretization” or “tropicalization”
of the spectral curve.

logjZj

{b

a

{1/b

 1/a

{T1/2¼ {A

 C

T1/2¼A

Figure 3: The tropical limit of the cuts of the Z-plane, represented here as a cylinder.

the limit (3.24), the periods of differentials on the original curve can be computed directly on the
tropical curve, and they reduce to simple contour integrals along the two-dimensional diagram
in Fig. 2. We then have to determine what is the tropical limit of the contours. To do this, we
first note that in the limit (3.24) the endpoints of the cuts behave like

A ≈ log ζ ≈ T1/2 ≈ T2/2,
a ≈ −b ≈ ζ ≈ eA,

1

a
≈ −1

b
≈ e−A.

(3.30)

Let us now represent the C∗ domain of the variable Z as an infinite cylinder, as in Fig. 3. This
picture also shows the contour C ≡ C1 around the cut [1/a, a] in the tropical limit. Since our curve
(3.19) is a double covering of this cylinder, we can build it out of two copies of C∗ glued along
the cuts shown in Fig. 3. To see this in detail, let us look at the diagram shown in Fig. 2 and let
us thicken it in order to reconstruct the original curve (3.19). If we remove the two horizontal
segments, the thickening gives two infinite tubes which can be parametrized by z. Each of these
tubes can be identified in turn with a copy of C∗. In order to recover the full curve, we have
to add the thickened horizontal segments. They give two horizontal tubes connecting the two

– 10 –



{A

A

A{A y

z

 C

Figure 4: The contour C around [1/a, a] becomes a parallelogram around the tropical curve.

{A

A

y

z

 D

Figure 5: The contour D around [−1/b, 1/a] becomes a non-trivial cycle around the shrinking tube.

copies of C∗ at z ≈ −A and z ≈ A. Notice that these locations are the positions of the small cuts
drawn in Fig. 3. Since the solid and dashed pieces of C depicted in Fig. 3 lie on different copies
of C∗, we conclude that the contour C around the cut [1/a, a] becomes, in the tropical limit, the
two-dimensional contour around the parallelogram shown in Fig. 4.

Let us now consider the contour D in Fig. 1, which encircles the cut [−1/b, 1/a]. This cut
corresponds to the horizontal tube at z ≈ −A, therefore the contour becomes a non-trivial cycle
around the tube. In the tropical limit it can be schematically drawn as in Fig. 5.

We can now use this formalism to compute some interesting physical quantities at strong
coupling. For simplicity we will restrict ourselves to the ABJM slice N1 = N2. The resolvent is

ω0(z) = y(z) dz. (3.31)
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We first determine the relation between the ’t Hooft parameter and the modulus A as follows:

2πiλ = t1 =
1

4πi

∮
C
y(z) dz ≈ −A

2

πi
, (3.32)

which leads to
A ≈ π

√
2λ (3.33)

in agreement with the result (3.26) from [7, 8]. The 1/6 BPS Wilson loop is given by a integral
around the contour C: 〈

W
1/6
〉
0

=

∮
C

dz

4πi
ezy(z). (3.34)

In the tropical limit, this becomes an elementary integral around the parallelogram shown in
Fig. 4. We then find,〈

W
1/6
〉
0
≈ 1

4πi

(∫ A

−A
(z −A) ez dz −

∫ A

−A
(z +A) ez dz

)
≈ iA

2π
eA. (3.35)

Using (3.33) we find 〈
W

1/6
〉
0
≈ i

2

√
2λeπ

√
2λ (3.36)

which is the result obtained in [7] from the exact interpolating function, up to an overall phase
(this is due to the fact that we neglected constant subleading imaginary pieces in the equations
for the segments of the tropical curve).

Another quantity that we can compute is the free energy at strong coupling. From (3.13)
we find,

∂F0

∂λ
= −πi

∮
D
y dz = πi

∮
D
z dy ≈ −πiAmonD y, (3.37)

where monD denotes the monodromy along the cycle D. Since a ∼ b → ∞ and Z ∼ 1/a ∼ 1/b,
we have

y ≈ 2 log
{√

Z − 1/a−
√
Z + 1/b

}
+ const., (3.38)

and
monD y = 2πi. (3.39)

We conclude that
∂F0

∂λ
≈ 2π2A ≈ 2π3

√
2λ (3.40)

which is the result obtained in [8]. Of course, the interest of this tropical formalism is the
generalization to more complicated situations. This we will do in the next section, where we will
consider the ABJM theory with fundamental matter introduced in section 2.

4. Quenched flavor in Chern–Simons–matter theories

4.1 The quenched approximation in the matrix model

In studying theories with fundamental matter multiplets in the context of the AdS/CFT corre-
spondence, there have been essentially two approaches. In the first one, called the quenched or the
probe approximation, one assumes that the number of flavors is much smaller than the number of
colors. Since the flavor multiplets are usually obtained by adding branes to the original theory,
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the quenched approximation is equivalent to treating these branes as probes, and one assumes
that they do not backreact on the background (see [30] for a review and a list of references for
this approach). One can go beyond the quenched approximation and consider unquenched flavor,
where the full backreaction of the branes is taken into account, see [31] for a recent review with
references. It turns out that these two approaches have counterparts in the study of the matrix
model (2.10) including flavor multiplets. We will first set up the matrix model analogue of the
quenched approximation, and we will consider the full unquenched theory in the next section.

In the matrix model (2.10), the inclusion of fundamental flavors leads to the insertion of two
determinant-like operators

Nj∏
j=1

(
2 cosh

µj
2

)−N(i)
f

= exp

−N (i)
f

Nj∑
j=1

log
(

2 cosh
µj
2

) , i = 1, 2. (4.1)

We can treat these insertions as operators which perturb the partition function without changing
the spectral curve or resolvent of the ABJM theory. To see how this works in practice, we write
the partition function (2.10) as a normalized vev in the ABJM theory,

ZN=3(N1, N2, N
(1)
f , N

(2)
f , gs) = 〈e−W〉ABJMZABJM(N1, N2, gs) (4.2)

where

W = N
(1)
f W1 +N

(2)
f W2 (4.3)

and

W1 =

N1∑
i=1

log
[
2 cosh

µi
2

]
, W2 =

N2∑
j=1

log
[
2 cosh

νi
2

]
. (4.4)

We can then calculate the free energy of the N = 3 theory as a cumulant expansion,

FN=3(N1, N2, N
(1)
f , N

(2)
f , gs) = FABJM(N1, N2, gs) +

∞∑
k=1

(−1)k

k!
〈Wk〉(c)ABJM (4.5)

where (c) denotes as usual the connected vev. SinceWk is a polynomial of degree k in the number

of flavours N
(i)
f , the above cumulant expansion is an expansion around N

(i)
f = 0. Equivalently,

we can introduce the Veneziano parameters [18]

t
(i)
f = gsN

(i)
f . (4.6)

The perturbative series (4.5) is an expansion in the Veneziano parameters around t
(i)
f = 0, which

is valid for

t
(i)
f � 1, (4.7)

or equivalently

N
(i)
f � min(N1, N2), (4.8)

which corresponds indeed to a quenched approximation. Each term in this series is given by an
integrated correlator in the ABJM theory, which is computed with the master field described by
the resolvent (3.5). Since the spectral curve is not changed, this is equivalent to neglecting the
backreaction of the D-branes on the original geometry. Diagramatically, the genus g correction
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to 〈Wk〉(c)ABJM gives the contribution of k “quark” loops to the genus g free energy, where all
gluon diagrams of genus g have been resummed.

A similar perturbative scheme can be constructed for the calculation of operators O in the
matrix model (like for example Wilson loops):

〈O〉N=3 =
〈Oe−W〉ABJM

〈e−W〉ABJM
= 〈O〉ABJM +

∞∑
k=1

(−1)k

k!
〈OWk〉(c)ABJM (4.9)

The operator vevs appearing in (4.5) and (4.9) can be computed by using the connected corre-
lation functions of the ABJM model. These are defined by

W (Z1, · · · , Zh) =

〈
Tr

1

Z1 − U
· · ·Tr

1

Zh − U

〉(c)

(4.10)

where U is given in (2.7). These correlators have a genus expansion

W (Z1, · · · , Zh) =
∞∑
g=0

g2g−2+hs Wg(Z1, · · · , Zh) (4.11)

which can be computed systematically with the techniques started in [32] and culminated in
[33, 34] (for the Chern–Simons matrix models analyzed in this paper, one has to consider the
slightly modified version of these techniques considered in [35, 36]). Let us consider for example
the operators

Oa(X) = Tr fa(X), Ôb(Y ) = Tr gb(Y ), a = 1, · · · , h1, b = 1, · · · , h2, (4.12)

where

X = diag (eµi) , Y = diag (eνi) . (4.13)

In this notation, the operators (4.4) are written as

W1(X) = Tr log
(
X

1
2 +X−

1
2

)
, W2(Y ) = Tr log

(
Y

1
2 + Y −

1
2

)
. (4.14)

We have then the following result for the connected correlators of these operators,

〈O1(X) · · · Oh1(X)Ô1(Y ) · · · Ôh2(Y )〉(c) =∮
C1

dX1

2πi
· · ·
∮
C1

dXh1

2πi

∮
C2

dY1
2πi
· · ·
∮
C2

dYh2
2πi

W (X1, · · · , Xh1 , Y1, · · · , Yh2)

· f1(X1) · · · fh1(Xh1)g1(Y1) · · · gh2(Yh2).

(4.15)

This leads to a systematic 1/N expansion by using (4.11). The planar limit of the one-point
functions is given by the equivalent expressions

〈O(X)〉0 = t1

∫ a

1/a
ρ1(µ)f(µ)dµ, 〈O(Y )〉0 = t2

∫ −1/b
−b

ρ2(ν)g(ν)dν. (4.16)
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4.2 Quenched expansion at weak coupling

We will now present some concrete examples of the quenched approximation, calculated at weak
coupling. The results can be tested with perturbative calculations in the matrix model. For

simplicity, we will set N
(2)
f = 0, and we will focus on the free energy. The first order correction

in N
(1)
f to the planar free energy is given by

−〈W1〉0 = −
∮
C1

dZ

2πi
log
(
Z

1
2 + Z−

1
2

)
W0(Z), (4.17)

where

W0(Z) =
1

2Z
ω0(Z). (4.18)

The second order planar correction is

1

2!
〈W2

1 〉(c)0 =
1

2!

∮
C1

dX1

2πi

∮
C1

dX2

2πi
log

(
X

1
2
1 +X

− 1
2

1

)
log

(
X

1
2
2 +X

− 1
2

2

)
W0(X1, X2) (4.19)

and W0(X1, X2) is the two-cut, two-point planar correlator of the matrix model. It is related to
the Bergmann kernel of the spectral curve B(X1, X2) by [33]

W0(X1, X2) = B(X1, X2)−
1

(X1 −X2)
2 (4.20)

and it was first calculated by Akemann [37] in the useful form:

W0(X1, X2) =
1

4(X1 −X2)2

(√
(X1 − a)(X1 − 1/a)(X2 + b)(X2 + 1/b)

(X1 + b)(X1 + 1/b)(X2 − a)(X2 − 1/a)

+

√
(X1 + b)(X1 + 1/b)(X2 − a)(X2 − 1/a)

(X1 − a)(X1 − 1/a)(X2 + b)(X2 + b)

)
+

(a+ 1/b)(b+ 1/a)

4
√
σ(X1)σ(X2)

E(k)

K(k)
− 1

2(X1 −X2)2
,

(4.21)

where σ(Z) is given in (3.7).

An efficient way to calculate the above integrals at weak coupling is to perform the change
of variables

X =
a− a−1

2
y +

a+ a−1

2
, (4.22)

and expand the integrand in series in ti around ti = 0. The coefficients of the resulting series are
relatively simple integrals, which can be computed by deforming the contour in terms of residues
at infinity. The result one obtains is

〈W1〉0 =
t21
8

+
1

96
t21 (t1 + 6t2) +

1

64
t21t

2
2 +

1

3072
t21t

2
2

(
t21 − 12t1t2 + t22

)
+ · · · ,

1

2!
〈W2

1 〉(c)0 =
t21
64

+
1

64
t21t2 −

1

6144
t21
(
t21 + 24t1t2 − 48t22

)
+ · · ·

(4.23)
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This can be explicitly checked against a direct calculation of the matrix integral. Indeed, we find
in matrix model perturbation theory

FN=3 = FABJM −N (1)
f

[
gs
N2

1

8
+ g2s

(
N3

1

96
− N2

1N2

16
− 5N1

192

)
+ g3s

(
N2

1N
2
2

64
+
N2

1

192

)
+ · · ·

]
+ (N

(1)
f )2

[
g2s
N2

1

64
− g3s

(
N2

1N2

64
+
N1

128

)
− g4s

(
N4

1

6144
− N3

1N2

256
− N2

1N
2
2

128
− 11N2

1

248
− 3N1N2

512

)
+ · · ·

]
(4.24)

whose planar part agrees with (4.23).

4.3 Quenched expansion at strong coupling

Since the correlation functions (4.10) are given by contour integrals of meromorphic differentials,
we can compute them with the tropical techniques that we introduced in the last section. We

will focus on the free energy on S3, and we will assume for simplicity that N
(2)
f = 0 so that

N
(1)
f = Nf . We can write

−〈W1〉0 = − 1

4πigs

∮
C

ω0(z)f(z)dz (4.25)

where

f(z) = log
(

2 cosh
z

2

)
. (4.26)

In the tropical limit in which z is large the function f simplifies as

f(z) ≈ |z|
2
. (4.27)

Then, the contour integral (4.25) becomes

−
∮
C
ω0(z)f(z)dz ≈

A∫
−A

|z|
2

(z +A) dz −
A∫
−A

|z|
2

(z −A) dz = A3 ≈
(
2π2λ

)3/2
(4.28)

and the first correction of order O(Nf ) to the free energy is

−π
4
NfN

√
2λ . (4.29)

The next order O(N2
f ) is much harder to compute with this technique, but it still can be

done. Since this correction involves the two-point correlation function, which is essentially equal
to the Bergmann kernel of the curve, what we have to do is to find the tropical limit of this
kernel. To do this, we first discuss the tropical limit of holomorphic forms.

In tropical geometry a tropical holomorphic 1-form is a locally constant real 1-form with
a “conservation” condition in the vertices, and which is zero on the external legs (for basic
notions of tropical geometry see e.g. [27]). The dimension of the space of holomorphic 1-forms
is obviously equal to the number of independent cycles of the graph, which coincides with the
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genus of the complex curve. In our case this space is a one-dimensional space with a basis h such
that

h = ±dz (4.30)

on the left and right sides of the parallelogram in Fig. 2, respectively, and

h = ±dy (4.31)

on the upper and lower sides. We also have h = 0 on the external legs.
One can realize a tropical holomorphic 1-form as a limit of a complex holomorphic 1-form:

as we have seen, for each edge of the tropical curve we have an integer direction vector (n,m).
Then one can associate the integral of a complex holomorphic 1-form around the corresponding
tube with the value of the tropical one form on this vector. In this way, the “conservation”
condition in the vertices is a trivial consequence of holomorphicity. Since the external legs of the
graph correspond to marked points on the complex curve, the absence of poles of the complex
holomorphic 1-form at these points corresponds to the condition that the tropical holomorphic
1-form is zero on the external legs. In our particular case one can show explicitly that, in the
tropical limit,

dZ√
σ(Z)

≈ e−Ah . (4.32)

The general notions of tropical Jacobian, Abel-Jacobi map and theta function were introduced
in [38]. In our case the tropical Jacobian of our tropical curve Ctrop is just

Jtrop = R/LZ ∼= S1 (4.33)

where

L =

∮
C
h = 8A (4.34)

is the perimeter2 of the parallelogram. The tropical version of the Abel-Jacobi map is

utrop : Ctrop → Jtrop

p 7→ utrop(p) =

∫ p

p0

h mod LZ
(4.35)

which equals the length of a path between the points p and p0. It can be obtained as a tropical
limit of the ordinary Abel-Jacobi map:

u(p) ≈ i

2π
utrop(p). (4.36)

The tropical theta function (with an odd characteristic) is

θtrop(v) = max
n∈Z

{
−1

2
Ln2 + n(v − L/2)

}
. (4.37)

One can easily show that

θ′trop(v) =
[ v
L

]
(4.38)

2As usual in tropical geometry, the length of the edge is a “geometric” length with an extra weight (n2+m2)−1/2.
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where [·] denotes the floor function. Thus

θ′′trop(v) = δ(v modLZ) . (4.39)

This tropical theta function can be obtained as a limit of the ordinary theta function with an
odd characteristic

Θ(z) =
∑
n∈Z

eπiτn
2+2πi(z+τ/2) . (4.40)

In the tropical limit we have

τ ≈ iL

2π
→ i∞, (4.41)

so one exponential will dominate the others in the sum. Thus one can deduce that

log Θ
( v

2πi

)
≈ θtrop(v) , (4.42)

Any Bergmann kernel can be written as

B = Bsing +Bhol , (4.43)

where Bsing is given by (see e.g. [39])

Bsing(p1, p2) = d1d2 log Θ(u(p1)− u(p2)) (4.44)

and Bhol is a holomorphic part. In our case it should be chosen such that∮
C

B = 0 . (4.45)

In the tropical limit
Bhol(p1, p2) ≈ const · h(p1)h(p2) , (4.46)

while

Bsing(p1, p2) ≈ d1d2θtrop(utrop(p2)− utrop(p1)) = −δ(utrop(p2)− utrop(p1))h(p1)h(p2)

≡ −hdiag(p1, p2) ,
(4.47)

where hdiag is supported on the diagonal and has the property∮
C×C

hdiag(p1, p2)f(p1, p2) =

∮
C

h(p)f(p, p). (4.48)

Imposing the condition (4.45) we get

B(p1, p2) ≈ Btrop(p1, p2) = −hdiag(p1, p2) +
h(p1)h(p2)

L
. (4.49)

We can now compute the second order correction at order O(N2
f ) (4.19) by using tropical

techniques. It is given by

N2
f

2!

1

(2πi)2

∮
C×C

B(p1, p2) log
(

2 cosh
z1
2

)
log
(

2 cosh
z2
2

)
, (4.50)
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since the double pole subtracted in (4.20) does not contribute to the double contour integral. In
the tropical limit this integral reads∮

C×C

Btrop

∣∣∣z1
2

∣∣∣ ∣∣∣z2
2

∣∣∣ =
1

25A

(∫
C
h|z|

)2

− 1

22

∫
C

h|z|2 =
1

22

{(
6A2

)2
8A

− 16A3

3

}

= − 5

3 · 23 A
3.

(4.51)

Using (3.33) we obtain that the correction of order O(N2
f ) is

5N2
fπ
√

2

96
λ3/2. (4.52)

On the other hand, the AdS prediction for the free energy is given by (2.19). The quenched
approximation is obtained by expanding this quantity for small Nf . Since

ξ(µ) = 1−
∞∑
k=1

(1 + 2k)(2k − 3)!!

4k k!
(−µ)k = 1 +

µ

4
− 5µ2

32
+ · · · (4.53)

we find

FN=3(S3) = −π
√

2

3
N3/2k1/2 − π

4
NfN

√
2λ+

5π
√

2

96
N2
fλ

3/2 +O(N3
f ). (4.54)

We then see that the tropical computations (4.29), (4.52) reproduce correctly the first two terms
in this expansion.

One can try to compute the next corrections by calculating the tropical limit of the connected
correlators (4.10) for h ≥ 3, but as we will see in the next section it is possible to solve the planar

theory at all values of N
(i)
f (i.e. in the Veneziano limit) and calculate the tropical limit directly.

5. Unquenched flavor in Chern–Simons–matter theories

We now solve the matrix model (2.10) in the planar limit, but for all values of N
(i)
f , by using the

techniques of [10, 14].

5.1 Exact resolvent in the Veneziano limit

The starting point in the calculation of the resolvent are the saddle-point equations

µi
gs

+
N

(1)
f

2
tanh

(µi
2

)
=

N1∑
j 6=i

coth
µi − µj

2
−

N2∑
a=1

tanh
µi − νa

2
,

−νa
gs

+
N

(2)
f

2
tanh

(νi
2

)
=

N2∑
b 6=a

coth
νa − νb

2
−

N1∑
i=1

tanh
νa − µi

2
.

(5.1)

We will solve instead the problem

µi +
t
(1)
f

2
tanh

(µi
2

)
=
t1
N1

N1∑
j 6=i

coth
µi − µj

2
+

t2
N2

N2∑
a=1

tanh
µi − νa

2
,

νa −
t
(2)
f

2
tanh

(νi
2

)
=
t2
N2

N2∑
b 6=a

coth
νa − νb

2
+

t1
N1

N1∑
i=1

tanh
νa − µi

2
,

(5.2)

– 19 –



analytically in the parameters t1,2 and t
(1,2)
f , and then we will perform the analytic continuation

t2 → −t2. (5.3)

The procedure to solve this type of equations is as in [9, 10, 14]. We first introduce exponentiated
variables

Zi = eµi , Wa = eνa . (5.4)

In terms of these variables the saddle–point equations read

logZi +
t
(1)
f

2

Zi − 1

Zi + 1
=t1

N1 − 1

N1
+ t2 +

2t1
N1

N1∑
j 6=i

Zj
Zi − Zj

− 2t2
N2

N2∑
a=1

Wa

Zi +Wa
,

logWa −
t
(2)
f

2

Wa − 1

Wa + 1
=t1 + t2

N2 − 1

N2
+

2t2
N2

N2∑
b 6=a

Wb

Wa −Wb
− 2t1
N1

N1∑
i=1

Zi
Wa + Zi

.

(5.5)

The resolvent ω0(Z) is defined as in (3.4), and it will have two cuts corresponding to the set of
eigenvalues. Let [a, b], [c, d] ⊂ R be the cuts corresponding to −Wa and Zi, respectively. In terms
of the planar resolvent we have,

logZ +
t
(1)
f

2

Z − 1

Z + 1
=

1

2
(ω0(Z + i0) + ω0(Z − i0)) ,

log(−W )−
t
(2)
f

2

W + 1

W − 1
=

1

2
(ω0(W + i0) + ω0(W − i0)) .

(5.6)

As in [14] we now define the functions,

F (Z) =
√
σ(Z)

∫ d

c
dX

f(X)

Z −X ,

G(Z) =
√
σ(Z)

∫ b

a
dX

g(X)

Z −X ,

(5.7)

where

f(x) =
1√
|σ(x))|

log x+
t
(1)
f

2

x− 1

x+ 1

 ,

g(x) = − 1√
|σ(x))|

log(−x)−
t
(2)
f

2

x+ 1

x− 1

 .

(5.8)

It is then easy to show that the planar resolvent, defined again by the VEV (3.4), is given by

ω0(Z) =
1

π
(F (Z) +G(Z)). (5.9)

One can check that, as in the ABJM matrix model,

ab = 1, cd = 1. (5.10)
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This follows from the symmetry of the saddle point equations under Z → Z−1, W → W−1,
together with the conditions on the endpoints imposed by the asymptotic behavior of ω0(z) at
infinity,

ω0(z) ∼ t, z →∞. (5.11)

From now on we will denote the two independent endpoints as a, b, as in the ABJM model, so
that the cuts are [1/a, a] and [−b,−1/b]. The two equations

t1 =

∮
C1

dZ

4πi

ω0(Z)

Z
, t2 =

∮
C2

dZ

4πi

ω0(Z)

Z
(5.12)

determine them a, b as a function of t1, t2. Here, Ci encircle [1/a, a] and [−b,−1/b], respectively.
We can now calculate the planar resolvent explicitly. It is given by two pieces. The first one

is, ∫ a

1/a

dX

Z −X
logX√
|σ(X)|

−
∫ −1/b
−b

dX

Z −X
log (−X)√
|σ(X)|

, (5.13)

which is simply the resolvent of the lens space matrix model (3.5). The second piece is

t
(1)
f

2

∫ a

1/a

dX

Z −X
X − 1

X + 1

1√
|σ(X)|

+
t
(2)
f

2

∫ −1/b
−b

dX

Z −X
X + 1

X − 1

1√
|σ(X)|

. (5.14)

These integrals can be expressed in terms of elliptic functions. In order to do so we use the
results∫ a

1/a

dX

(Z −X)
√
|σ(X)|

=
2
√
ab

1 + ab

1

(Z − a)(Z + b)

(
(a+ b)Π(n+(Z), k) + (Z − a)K(k)

)
,

∫ −1/b
−b

dX

(Z −X)
√
|σ(X)|

=
2
√
ab

1 + ab

1

(Z − a)(Z + b)

(
−(a+ b)Π(n−(Z), k) + (Z + b)K(k)

)
,

(5.15)
where

k2 =
(a2 − 1)(b2 − 1)

(1 + ab)2
, n+(Z) = −a

2 − 1

1 + ab

Z + b

Z − a, n−(Z) = − b
2 − 1

1 + ab

Z − a
Z + b

. (5.16)

Defining the auxiliary function

J(a, b, Z, s) =

2
√
ab

1 + ab

1

Z + s

((
(a+ b)

Z − s
(Z − a)(Z + b)

Π(n+(Z), k) +
Z − s
Z + b

K(k)

)
− (Z → −s)

)
,

(5.17)

we finally obtain

ω0(Z) = ωABJM
0 (Z) +

√
σ(Z)

2π

(
t
(1)
f J(a, b, Z, 1) + t

(2)
f J(−b,−a, Z,−1)

)
, (5.18)

where ωABJM
0 (Z) is the resolvent in the theory without matter, and it is given in (3.5). The

asymptotic behavior (5.11) determines

t = log (β)

−
√
ab

π(1 + ab)

(
t
(1)
f ((b+ 1)K(k)− (a+ b)Π(na, k)) + t

(2)
f (−(a+ 1)K(k) + (a+ b)Π(nb, k))

)
,

(5.19)
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where we have used the notation

na =
1− a2
1 + ab

, nb =
1− b2
1 + ab

. (5.20)

The relation (5.19) reduces to (3.12) when both t
(1)
f and t

(2)
f go to zero.

5.2 Weak coupling limit in the unquenched theory

In order to test the above expressions, we can compute the expansion of the resolvent at weak

’t Hooft coupling (i.e. around ti = 0) but for arbitrary t
(i)
f . To do this, the first step is to express

the endpoints of the cuts in terms of the ’t Hooft parameters. The period integrals for ti can
be expanded around a = 1, b = 1, and these series expansions can be inverted. At the first few
orders in ti we find

a = 1 +
1√
T
(1)
f

2
√
t1 +

1

T
(1)
f

2t1 +
1

6
(
T
(1)
f

)3/2
7− 1

T
(1)
f

 3

2
t
3/2
1 +

1(
T
(1)
f

)3/2 1

2

√
t1t2

+
1

2
(
T
(1)
f

)2
3− 1

T
(1)
f

 t21 +
1(

T
(1)
f

)2 t1t2 + · · · ,

b = 1 +
1√
T
(2)
f

2
√
t2 +

1

T
(2)
f

2t2 +
1

6
(
T
(2)
f

)3/2
7− 1

T
(2)
f

 3

2
t
3/2
2 +

1(
T
(2)
f

)3/2 1

2

√
t2t1

+
1

2
(
T
(2)
f

)2
3− 1

T
(2)
f

 t22 +
1(

T
(2)
f

)2 t2t1 + · · · .

(5.21)

In these equations,

T
(1)
f = 1 +

t
(1)
f

4
, T

(2)
f = 1−

t
(2)
f

4
. (5.22)

When t
(i)
f = 0 we recover the mirror map at the orbifold point of [9]. As a test of these results,

we can calculate the coefficient of 1/Z in the resolvent, which by (3.4) computes the planar VEV
of the supertrace of U in the matrix model (2.10), as in (2.6):

2 〈Str U〉0 = ζ

+
t
(1)
f

2π
√
ab(1 + ab)

(
(1 + ab)2E(k) + (b− a+ a2b+ 3ab2)K(k)− 4ab(a+ b)Π(na, k)

)
+

t
(2)
f

2π
√
ab(1 + ab)

(
(1 + ab)2E(k) + (a− b+ ab2 + 3a2b)K(k)− 4ab(a+ b)Π(nb, k)

)
.

(5.23)
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At weak coupling we find,

〈Str U〉0 = t1 − t2 +
1

2T
(1)
f

t21 −
1

2T
(2)
f

t22

+
1

4
(
T
(1)
f

)2
1− 1

3T
(1)
f

 t31 +
t21t2

4
(
T
(1)
f

)2 − t1t
2
2

4
(
T
(2)
f

)2 − 1

4
(
T
(2)
f

)2
1− 1

3T
(2)
f

 t32 + · · ·

(5.24)
which indeed agrees with a perturbative calculation in the matrix model. Notice that the result
is, at each order in the ’t Hooft parameters, a rational function of the Veneziano parameters.
Each term in the above expansion corresponds to the contribution of a planar “gluon” diagram
(with a boundary associated to the insertion of U) in which we have summed over all the “quark”
loops, i.e. the “gluons” are quenched and the “quarks” are dynamical.

Based on [4], one should expect that the VEV (5.24) computes (twice) the VEV of the 1/2
BPS Wilson loop operator. However, in order to assert this one should first check that the
construction of [4] of this operator extends to the flavored theory that we are considering here.
In any case, the formulae (3.13), (3.14) remain valid in the flavored theory, since the 1/6 BPS
Wilson loop operator can be constructed for all Chern–Simons–matter theories considered in
[2]. We will now evaluate these formulae in the unquenched theory at strong coupling, by using
tropical techniques.

5.3 Strong coupling limit in the unquenched theory

For simplicity we will set N
(2)
f = 0, Nf = N

(1)
f . We will write (5.18) as

ω0(z) = y(z) dz, y(z) = yp(z) + µ ym(z). (5.25)

In this equation, µ is defined in (2.17),

yp(z) = ωABJM
0 (z) (5.26)

is the equation of the spectral curve (3.5) in the ABJM model, and

ym(z) =
1

2

∮
C

dX

2πi

1

Z −X
X − 1

X + 1

√
σ(Z)√
σ(X)

. (5.27)

In the tropical limit ζ ≈ eA is large, and we will set

β = eK (5.28)

where K is a parameter to be determined. In the ABJM model with N1 = N2 one has K = 0.
We will shortly determine the value of K in the theory with unquenched flavor, in the tropical
limit. We will assume that A > 0, |K| < A, which will be justified a posteriori.

The integral (5.27) can be evaluated “tropically.” To do this we use the tropical limit (4.32)
of the holomorphic one-form, as well as the limits

Z

Z −X ≈ Φ(x, z) ≡
{

1, if x < z

−e−(x−z), if x > z
(5.29)
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{A
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K

{K

ym

z{A A

A{K

{(A{K) 0

Figure 6: The two-dimensional graphs representing the tropical limits of yp(z) (left) and ym(z) (right).

and

e−A
√
σ(Z)

Z
≈ ±Ξ(z) ≡ ±


−e−(x−z), if z < −A
1, if −A < z < A

−ez−A, if z > A

(5.30)

Here the ± sign corresponds to the two determinations of the square root. One finally obtains

ym(z) ≈ ± 1

2
Ξ(z)

∮
C

hxΦ(x, z) signx, (5.31)

where hx is defined in (4.32) but with z replaced by x. In this result, signx/2 can be interpreted
as the derivative of |x|/2, which is the tropical limit of the potential deformation, see (4.27),
and in principle we can generalized it to other deformations. The tropical limit of ym(z) can be
rewritten as

ym(z) ≈ ± 1

2

∫
Cz

hx signx = ±
{
A−K + (A− |z|), if −A < z < A,

A−K, otherwise,
(5.32)

where Cz is a line connecting two different points on the curve with the same value of z. Equiv-
alently one can obtain (5.32) by taking the tropical limit in the explicit expression (5.18). The
tropical limit of the two-valued functions yp(z), ym(z) can be represented by the two-dimensional
graphs shown in Fig. 6. Of course, the diagram for yp(z) is nothing but the tropical curve rep-
resented in Fig. 2.

We now want to find the relation between A and K. To do this, we will impose for simplicity
that N1 = N2 = N in the N = 3 Chern–Simons–matter theory. This means that the total ’t
Hooft parameter t = t1 + t2 vanishes. It follows from (5.12) that this sum can be evaluated by
deforming the sum of the contours C1 and C2 to infinity and the origin, so we obtain

resZ=∞ ω0(Z)− resZ=0 ω0(Z) = 0, (5.33)
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Figure 7: The tropical curve representing the tropical limit of the resolvent (5.18) of the N = 3 theory.

which leads to
K =

µ

1 + µ
A. (5.34)

Notice that in the limit µ = 0 we correctly reproduce K = 0. With this relation at hand we can
already add the two graphs to obtain the tropical curve representing the new resolvent ω0(z),
which is shown in Fig. 7. The calculation of the different periods reduces, like before, to trivial
line integrals on the plane. We first have to relate A to the ’t Hooft parameter. We have, for the
period (5.12),

2πiλ = t1 =
1

4πi

∮
C
y(z) dz ≈ −(1 + µ/2)A2

πi
(5.35)

and we find

A ≈ π
√

2λ√
1 + µ/2

, (5.36)

which is the deformation of the relationship (3.33) in the ABJM theory. For the planar free
energy we have, as in the period integral (3.37) for the ABJM theory,

∂F0

∂λ
= −πiAmonDy. (5.37)

The monodromy of ym(z) can be computed as (3.38). Indeed, the main contribution to the
integral for ym is given by the vicinity of 1/a, and we have

ym ≈
∞∫

1/a

dX

X − Z

√
(Z − 1/a)(Z + 1/b)√
(X − 1/a)(X + 1/b)

= log
{√

Z − 1/a−
√
Z + 1/b

}
− log

{√
Z − 1/a+

√
Z + 1/b

}
.

(5.38)

Then the monodromy around the cut [−1/b, 1/a] is

monDym ≈ 2πi . (5.39)
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We conclude that
∂F0

∂λ
≈ 2π2A(1 + µ), (5.40)

or equivalently,

F0(λ) ≈ 1

3
π3
√

2λ3
1 + µ√
1 + µ/2

. (5.41)

This is in perfect agreement with the AdS prediction (2.19). Notice in particular that we have
been able to reconstruct the full nontrivial function ξ(µ) involved in the volume of the tri-Sasakian
target space (2.16).

Finally, we can calculate the vev of the 1/6 BPS Wilson loop, which is given again by (3.34)
but now with the new resolvent. We obtain,〈

W
1/6
〉
0
≈ 1

4πi

(∫ A

−A
ez (z −A− µ(A− |z|)) dz −

∫ A

−A
ez (z +A+ µ(A− |z|)) dz

)

≈ i

2

√
2λ

1 + µ/2
exp

(
π

√
2λ

1 + µ/2

)
.

(5.42)

With some more work one can show that the would-be 1/2 BPS Wilson loop has the same leading,
exponential dependence. This is in perfect agreement with the AdS prediction (2.21), and the
exponent should be equal to the regularized area of a fundamental string in the corresponding
type IIA background. Notice that, as the number of flavors grows, the exponent decreases.
This might be interpreted as a conformal avatar of the screening effect on Wilson loops due to
unquenched flavor.

6. Conclusions

The two main results of this paper are the following. First, we have shown that the strong
coupling limit of Chern–Simons–matter theories corresponds, in the matrix models of [2], to the
tropical limit of the spectral curve. In this limit, the curve becomes a two-dimensional graph
and the period integrals which give the main observables of the matrix model can be computed
in a very simple way by evaluating line integrals along the graph. Second, we have obtained
the planar resolvent of the matrix model describing the ABJM theories with flavor introduced
in [15, 16, 17], including all planar loops of fundamental matter. In other words, we have solved
the Veneziano limit of these flavored theories. The unquenched regime at strong coupling can be
studied by applying our tropical techniques to the exact resolvent, and we have reproduced in
detail the AdS predictions of the conjectural large N duals. In particular, we have reconstructed
from a gauge theory calculation the volume of the tri-Sasaki Einstein manifolds involved in these
AdS duals.

There are many interesting problems which deserve further research. It would be interesting
to analyze with our tropical techniques other Chern–Simons–matter theories, like for example the
two-node quiver with arbitrary levels introduced and studied in [40]. The exact planar resolvent
was recently written down in [14], and our techniques should lead to explicit expressions for its
free energy at strong coupling. Since this theory has a conjectural large N dual described by
massive type IIA supergravity, one might be able to test directly in the matrix model many of
the results recently discussed in [41].

On a more mathematical level, we have seen that the quenched approximation to the flavored
theories studied in this paper involves in a natural way the tropical limit of the connected matrix
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model correlators (4.10). These correlators can be computed with the topological recursion of
Eynard and Orantin [34], and in section 4 we have described the tropical limit of one of the
basic building blocks of this recursion, namely the tropical Bergmann kernel. It would be very
interesting to see if the full topological recursion can be formulated directly in the tropical limit.
This would give a powerful formalism to study perturbations of ABJM theory and it might find
other applications in the future.

It seems that, in the Chern–Simons–matter theories with less supersymmetry, the planar
resolvent is much more complicated than in ABJM theory, and in particular we don’t longer have
the underlying local Calabi–Yau geometry that we had in (3.19). For example, the resolvent in
(5.18) involves elliptic functions, in contrast to (3.5). The tropical limit is however given by a
graph which ressembles very much a blown-up toric Calabi–Yau manifold (see Fig. 7). It would
be important to understand at which extent the solution to these Cherm–Simons–matter matrix
models can be encoded in a toric Calabi–Yau.
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A. Strongly coupled density of eigenvalues and tropical geometry

In this Appendix we rederive some of the results for the N = 3 theory by using the approach of
[19], and we compare it in detail to our tropical methods.

The starting point of [19] is an analysis of the ABJM matrix model (2.1) in the ABJM slice,
at large N but fixed k, which corresponds to the strongly coupled limit of the theory. This
analysis makes possible to re-derive in a particularly simple and beautiful way the result of [8].
Let us see how this is done, following closely the steps in [19]. The behaviour at large N of the
equilibrium eigenvalues of the matrix model is, as derived in [8],

µk = N1/2xk + i`k, νk = N1/2xk − i`k, k = 1, · · · , N, (A.1)

where xk, `k are of order one at large N . At large N the eigenvalues xk, `k become dense, so
that

k

N
→ ξ ∈ [0, 1] (A.2)

and they are described by the functions

ρ(x) =
dξ

dx
, `(x). (A.3)

It is shown in [19] that, when N is large, the free energy of the matrix model can be written as

−F = N3/2

[
k

π

∫
dxxρ(x)`(x) +

∫
dx ρ2(x)f (2`(x))− m

2π

(∫
dx ρ(x)− 1

)]
. (A.4)
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Here, f(t) is a periodic function of t, with period 2π, and given by

f(t) = π2 − t2, t ∈ [−π, π]. (A.5)

The last term in (A.4) involves, as usual, a Lagrange multiplier m imposing the normalization of
ρ(x). Notice that our sign convention for the free energy is the same as in [8] and opposite to the
one chosen in [19]. Varying this functional w.r.t. ρ(x) and `(x) one obtains the two equations

2πρ(x)f ′ (2`(x)) = −kx,
4πρ(x)f (2`(x)) = m− 2kx`(x),

(A.6)

which are solved by

ρ(x) =
m

4π3
, `(x) =

π2kx

2m
. (A.7)

The support of ρ(x), `(x) is the interval [−x∗, x∗]. One fixes x∗ and m from the normalization
of ρ and by minimizing −F . This gives

x∗ = π

√
2

k
, m =

2π3

x∗
. (A.8)

Evaluating the free energy for the functions (A.7) and the values (A.8) of x∗, m, one reproduces
the result of [8] for the free energy.

The above results can be easily compared with our tropical analysis. The value of x∗ gives
(up to a factor N1/2) the position of the endpoint A, and it is in accord with the value of (3.33),
since

A = N1/2x∗. (A.9)

The fact that the density ρ(x) is constant follows from our result for the tropical limit of the
curve. Indeed, the density of eigenvalues (normalized as to have an integral along the cut equal
to one) is given by the well-known formula

ρ(z) =
1

8π2λ
disc y(z) (A.10)

where disc y(z) is the discontinuity of the curve through the cut [−A,A]. In our case this is just
the constant 2A, and it is given by the horizontal separation between the two diagonals in Fig. 4.
Changing variables from z = N1/2x to x we find indeed,

ρ(x) =

√
2k

4π
, (A.11)

in precise agreement with the result of [19].
The inclusion of fundamental matter in the approach of [19] is straightforward. −F includes

now the extra term
N3/2Nf

2

∫
dx ρ(x)|x| (A.12)

which is the large N limit of the operator in the exponential of (4.1) (as in (4.27)). The new
saddle point equations are

2πρ(x)f ′ (2`(x)) = −kx,
4πρ(x)f (2`(x)) = m− 2kx`(x)− πNf |x|,

(A.13)
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with solution

ρ(x) =
m− πNf |x|

4π3
, `(x) =

kπ2x

2 (m− πNf |x|)
. (A.14)

Normalization of the density and minimization of −F lead to

x∗ =
2π√

2k +Nf

, m = 2π2
k +Nf√
2k +Nf

. (A.15)

A straightforward calculation of −F reproduces (2.19).
Let us now compare this with the tropical approach. First of all, we have again the equality

(A.9) between the endpoints of the cut in both approaches, involving now the value of x∗ obtained
in (A.15) and the value of A obtained in (5.36). The density of eigenvalues in the theory with
matter can be obtained from the planar resolvent (5.25) as

ρ(x) =
N1/2

8π2λ
disc (yp(z) + µym(z)) , (A.16)

where µ is defined in (2.17). From Fig. 6 and (5.32) we read off immediately

1

2
disc yp(z) = A−K, 1

2
disc ym(z) = 2A−K − |z|, (A.17)

and we deduce

ρ(x) =
N1/2

4π2λ

[
(1 + µ)A− µN1/2|x|

]
. (A.18)

Plugging in the value of A (5.36), we recover precisely the form of ρ(x) given in (A.14). This
shows explicitly that the piece-wise linear densities obtained with the method in [19] correspond
to the tropical curves obtained in this paper.
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