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Abstract

We examine the behavior of the leading Regge trajectory of the open bosonic string in a

uniform electromagnetic background and present a consistent set of Fierz–Pauli conditions

for these symmetric tensors that generalizes the Argyres–Nappi spin-2 result. These equa-

tions indicate that String Theory does bypass the Velo–Zwanziger problem, i.e. the loss of

causality experienced by a massive high–spin field minimally coupled to electromagnetism.

Moreover, we provide some evidence that only the first Regge trajectory can be described

in isolation and show that the open–string spectrum is free of ghosts in weak constant back-

grounds. Finally, we comment on the roles of the critical dimension and of the gyromagnetic

ratio.
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1 Introduction

In Quantum Field Theory, the available types of fundamental particles reflect the irreducible

unitary representations of the Poincaré group [1, 2], which exist for arbitrary (integer or half–

integer) values of the spin, not only for the handful of choices that underlie the Standard

Model of Electroweak and Strong Interactions or General Relativity. One is thus confronted

with a challenging problem, since higher–spin systems [3] are apparently fraught with grave

difficulties, so much so that in Minkowski space minimal interactions of massless particles

of high spin with electromagnetism (EM) or gravity are not allowed [4, 5, 6] 1. Massive

high–spin particles certainly exist, in the form of hadronic resonances. Truly enough, these

particles are composite, so that the actual form factors describing their interactions are

complicated functions of the exchanged momenta. Still, in the quasi–collinear regime, when

the exchanged momenta are small compared to the particle masses, one expects that their

dynamics is governed by consistent local actions. Moreover, massive higher–spin modes

play a role in (open) string spectra, where they describe excitations that are generically

unstable, and where the finite string size puts them again somewhat on the par with extended

composite systems. Some of the most spectacular novelties of String Theory [9, 10], however,

including (planar) duality, modular invariance and open–closed duality, rest heavily on their

presence, and this is by itself a compelling motivation to take a closer look at their properties.

Even if one restricts the attention tomassive higher–spin fields, a number of known actions

readily exhibit pathological behavior in the simplest possible settings, and in particular in

constant external backgrounds [11, 12, 13]. A notorious example is provided by a charged

massive spin-2 field in a constant EM background in flat space, and it was indeed an early

analysis of this problem that led Fierz and Pauli [14] to stress the importance of a Lagrangian

formulation for higher–spin systems. Their suggestion actually opened a wide avenue of

research, with first complete results in the 1970’s [15, 16] and new additions up to recent

times [17, 18, 19, 20], but even the resulting Lagrangians, as we have anticipated, do not come

to terms with the original problem. Rather, in general they do not propagate the correct

number of degrees of freedom (DoF) in the presence of minimal EM couplings, nor do they

propagate their own DoFs only within the light cone. For spin s = 2, for instance, although

the first difficulty can be overcome by an apparently unique choice of the gyromagnetic

ratio [21], g = 1
2
, some of the modes suffer from lack of hyperbolicity or faster–than–light

1Minimal–like interactions do become available for massive fields or in the presence of a cosmological
constant [7], but in both circumstances they ought to be regarded as byproducts of higher–derivative “seeds”,
as recently stressed in [8].
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propagation. This is the vexing “Velo–Zwanziger problem” [11], which generally shows up

when massive charged fields with spin s > 1 are minimally coupled to an EM background.

The problem actually persists for a wide class of non-minimal extensions, so that constructing

consistent interactions for charged massive higher–spin fields with EM from a field–theory

vantage point appears to be a challenging task.

On the other hand, String Theory was originally meant to describe hadronic resonances,

a plethora of massive particles that, as we have already mentioned, typically carry high

spins, and actually electric charges as well, so that it should provide a valuable laboratory to

investigate these exotic types of EM interactions. And indeed, starting from the open bosonic

string, Argyres and Nappi built long ago a consistent Lagrangian [22] for a massive charged

spin-2 field coupled to a constant EM background. In this case the interactions reflect rather

basic properties of String Theory, since they are induced by the EM deformation of the

free string developed in [23]. The resulting Lagrangian is nonetheless highly non-minimal,

but both its equations of motion (EoMs) and the constraints they give rise to are strikingly

simple: they mimic those of the free theory after some field redefinitions, which makes their

consistency almost manifest.

The Lagrangian formulation attained via the BRST technique as in [22, 24, 25] requires

that the Fock space be extended to include world–sheet (anti)ghosts. Hence, it involves in

general a host of auxiliary fields, and the procedure becomes rather cumbersome already for

s = 3 [25]. A result of this complication is that it is not even clear, as of yet, whether the

open bosonic string cures the Velo–Zwanziger problem of its massive modes. And even if

this were the case, a number of related questions still await a proper answer, including the

following two. Does consistency call for physical fields belonging to all Regge trajectories

present at a given string mass level, or could a (sub)leading Regge trajectory be consistent

in isolation? Could one attain a consistent description in non-critical dimensions as well?

One would definitely like to arrive at a better understanding of these issues, and to some

extent we shall succeed. At the same time, while the BRST method gives gauge–invariant

Lagrangians for the modes of the open bosonic string in d = 26, it is important to stress

that gauge invariance alone does not guarantee that the resulting description be consistent,

since after all any action can be made gauge invariant via the Stückelberg formalism. In

fact, the classical consistency of a dynamical system, and of the Argyres–Nappi system in

particular, rests on the behavior of the EoMs in a unitary gauge. Truly enough, a Lagrangian

formulation does guarantee that the resulting EoMs be algebraically consistent, but this key

property can be also verified directly, taking the EoMs themselves at face value.
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In view of these considerations, we begin by formulating physical state conditions in the

presence of a constant EM background, without introducing any (anti)ghosts. These give

rise to (partially gauge–fixed) EoMs that the string fields must obey, and after removing

some leftover modes that are pure gauge one can investigate directly their consistency. One

can work at any given mass level, because one is actually dealing with deformed free strings,

and in this fashion it is possible to identify particular sets of fields that are required for

algebraic consistency. Given these EoMs, one can also analyze explicitly both the actual

propagating DoFs and their causal properties. The main results of this paper are thus a

relatively concise description of the consistent (non-minimal) EM interactions of massive

totally symmetric tensors of arbitrary spin that are present in String Theory and an explicit

proof that they provide a remedy for the Velo–Zwanziger problem, at least in d = 26. More

in detail, we show that any symmetric tensor belonging to the first Regge trajectory of

the open bosonic string can propagate independently, in a constant EM background, the

correct number of DoFs, and that these develop properly within the light cone. In addition,

we provide some evidence that fields belonging to subleading trajectories do not propagate

consistently by themselves. Let us emphasize, however, that our claims apply insofar as the

EM field invariants, among which Fµν F
µν is but one, are small in units of m2/e, where m is

mass of the higher–spin field and e is its electric charge. This is an important qualification:

if some invariant were O(1) in those units, a number of new phenomena would present

themselves, including Schwinger pair production [26] and Nielsen–Olesen instabilities [27].

Their very existence implies precisely that any effective Lagrangian for a charged particle

interacting with EM fields can be reliable, even well below its own cutoff scale, only with this

further proviso. The Velo–Zwanziger problem is particularly important precisely because it

appears well within the expected range of validity of the effective theory.

The paper is organized as follows. In Section 2 we reconsider the world–sheet description

of a charged bosonic open string in a constant EM background and perform a careful analysis

of the mode expansion and the Virasoro generators, with emphasis on the behavior in the

limit of vanishing total charge. Armed with this knowledge, in Sections 3 and 4 we translate

the physical state conditions for string states into the language of string fields. Section 3

is actually devoted to free strings, but it is meant to make the reader better equipped for

understanding the more complicated case of charged strings, which we consider in Section 4,

where we show explicitly that String Theory indeed cures the Velo–Zwanziger problem for

the symmetric tensors of the first Regge trajectory. In Section 5 we present a proof of

the corresponding no–ghost theorem, showing that the Hilbert space of string states has
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a non-negative inner product even in a (weak) constant EM background, which is crucial

for consistency. In Section 6 we take a closer look at spin-2 Lagrangians: in particular,

Section 6.1 investigates the role of the critical dimension in the consistency of the Argyres–

Nappi construction, while Section 6.2 elaborates on a possible route for its generalization to

arbitrary dimensions, and then solves a conundrum and clears up a misconception about the

gyromagnetic ratio of spin-2 particles. Finally, Section 7 contains some concluding remarks

and the two Appendices collect useful material on the massive s = 2 system and on the

bosonic string.

2 Open strings in a constant EM background

In this section we review in detail the mode expansion and the Virasoro algebra for a charged

bosonic open string in a constant EM background. The program originally started in [23] and

has received a wide attention in the literature, giving rise also to a number of applications

(see, for instance, [28, 29, 30], for recent discussions). The novelty of our treatment in this

section is a careful definition of the expansion that makes it possible to reach smoothly the

limits of neutral or free strings.

It will suffice to consider an open bosonic string whose endpoints lie on a space–filling

D–brane. A Maxwell field Aµ living in the world–volume of the D–brane couples to charges

e0 and eπ at the string endpoints, and this turns the string action into

S =
1

4πα′

∫

dτdσ(ẊµẊ
µ −X ′

µX
′µ) +

∫

dτdσ [e0δ(σ) + eπδ(σ − π)]Aµ(X)Ẋµ , (2.1)

where the world sheet is chosen to be a strip of width π with a conformally flat metric of

signature (−,+) and α′ is the string Regge slope. The Xµ are coordinates in the d = 26

target space, which we take to be Minkowski, while “dot” and “prime” denote derivatives

with respect to the world–sheet coordinates τ and σ.

In this paper we only consider electromagnetic backgrounds whose field strength Fµν is

constant, so that one can choose the potential

Aµ = − 1
2
Fµν X

ν . (2.2)
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In units with α′ = 1
2
, the string sigma model then reads

S =
1

2π

∫

dτdσ(ẊµẊ
µ −X ′

µX
′µ) +

1

2

∫

dτdσ [e0δ(σ) + eπδ(σ − π)]FµνX
µẊν . (2.3)

As a result, the EoMs are those of the usual free string,

Ẍµ −X ′′
µ = 0 , (2.4)

while the boundary conditions are affected by the new terms and become

X ′
µ = −πe0FµνẊ

ν (σ = 0) , (2.5)

X ′
µ = +πeπFµνẊ

ν (σ = π) . (2.6)

Let us also define, for later use,

e ≡ e0 + eπ . (2.7)

2.1 Mode expansion

In solving this boundary value problem, one should take into account that the Fµν → 0 limit

ought to recover the free string mode expansion, which is recalled in Appendix B along with

some useful facts about the free mode functions. We denote with N0 (N1) the set of all natural

numbers including (excluding) 0, and we adopt for matrix multiplications a concise notation,

so that Aµνuν = Aµ
νu

ν ≡ (Au)µ, uµA
µν = uµA ν

µ ≡ (uA)ν , AµρB ν
ρ = Aµ

ρB
ρν ≡ (AB)µν ,

and we write ηµν as 1µν , and δµν as 1µ
ν .

We can thus present the solution [23] of Eqs. (2.4)–(2.6) in the form

Xµ(τ, σ) = xµ +

[(

e−G0

2
· e

G(τ+σ) −M+

G
+

e+G0

2
· e

G(τ−σ) −M−

G

)

α0

]µ

+
i

2

∑

m6=0

[(

1
m1+iG

) {

e−i(m1+iG)(τ+σ)−G0 + e−i(m1+iG)(τ−σ)+G0

}

αm

]µ
, (2.8)

where the matrices

G0 = tanh−1(πe0F ) , Gπ = tanh−1(πeπF ) , G =
1

π
[G0 +Gπ ] , (2.9)

are uniquely determined by the boundary conditions (2.5) and (2.6), while the matrices M±
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are additional functions of F whose forms will be specified shortly. No ambiguities are met

in these expressions, since G,G0,M± and their inverses are all functions of F only, and are

thus mutually commuting. Note, finally, that the matrices (m1 ± iG), with m 6= 0, are

always invertible whenever the EM field invariants are sufficiently small.

In writing the mode expansion (2.8) we required that, in the F → 0 limit, the αµ
m reduce

for any given m to the modes of the free string, so that the same must hold true for the

mode function matrices. This is readily seen to be the case for the “oscillator” modes in the

second line of Eq. (2.8), since G0 and G tend to zero in this limit. On the other hand, the

requirement that the coefficient matrix of αµ
0 reduces, in the limit, to Ψ̄0 = τ , poses on M±

the non-trivial condition that

M± = 1 ± γ G + O(G2) . (2.10)

As we shall see shortly, the constant γ, along with the whole O(G2) term, can be completely

determined requiring that the xµ’s in (2.8) be standard commuting center–of–mass coordi-

nates. This choice will also lead to a smooth limit of the resulting expressions in the dipole

(e0+ eπ = 0) or free (e0 = eπ = 0) cases, contrary to some claims that have appeared in [30].

Now notice that the matrix–valued functions (of τ and σ),

Ψ′
m(τ, σ) = i/2√

m1+iG
e−i(m1+iG)τ [ e−i(m1+iG)σ−G0 + ei(m1+iG)σ+G0 ] m ∈ N0 , (2.11)

form an orthonormal set, since

(Ψ′
m,Ψ

′
n) ≡

1

π

∫ π

0

dσΨ′†
m(τ, σ) ⋆Ψ

′
n(τ, σ) = δmn m,n ∈ N0 , (2.12)

if ⋆ is defined as

⋆ ≡ i
↔
∂τ − i tanhG0 δ(σ)− i tanhGπ δ(σ − π) . (2.13)

A constant has thus a non-vanishing norm, and moreover it is orthogonal to all other func-

tions in Eq. (2.11),

(1, 1) = −ieF , (1,Ψ′
m) = 0 m ∈ N0 , (2.14)

where e is the total string charge defined in Eq. (2.7). Therefore, in view of the mode
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expansion (2.8) one can write

αµ
m = (

√
m1+ iG)µν(Ψ

′
m, X)ν m ∈ N0 , (2.15)

taking into account the reality of Xµ and the relations

(Ψ′∗
m,Ψ

′∗
n ) = δmn, (Ψ′

m,Ψ
′∗
n ) = −(Ψ′∗

m,Ψ
′
n) = iδm0 m,n ∈ N0 , (2.16)

and one can let

αµ
−m = (

√
m1− iG)µν(Ψ′∗

m, X)ν m ∈ N0 . (2.17)

Upon quantization, the string modes αµ
m with m ∈ Z of Eqs. (2.15) and (2.17) become

operators that obey non-trivial commutation relations. In order to quantize the system, one

can first note that the canonical momentum for the sigma model (2.3) is

P µ(τ, σ) =
1

π
Ẋµ(τ, σ) − 1

2
[ e0δ(σ) + eπδ(σ − π) ]F µνXν(τ, σ) , (2.18)

and then require that X and P satisfy the equal time commutation relations

[Xµ(τ, σ), P ν(τ, σ′)] = iηµνδ(σ − σ′) , (2.19)

[Xµ(τ, σ), Xν(τ, σ′)] = [P µ(τ, σ), P ν(τ, σ′) ] = 0 . (2.20)

Using Eqs. (2.15), (2.17) and (2.18)–(2.20) it is then simple to show that

[αµ
m, α

ν
n ] = (mηµν + i Gµν) δm,−n m,n ∈ Z . (2.21)

Before computing the other commutators, let us elaborate on the meaning of these re-

sults. In physically interesting situations, away from instabilities, the matrices
√
m1± iG

are always invertible when m ∈ N1 so that, on account of Eq. (2.21),

aµm ≡
[

1√
m1+ iG

αm

]µ

, a†µm ≡
[

1√
m1− iG α−m

]µ

m ∈ N1 (2.22)

are an infinite set of creation and annihilation operators:

[ aµm, a
†ν
n ] = ηµνδmn, [ aµm, a

ν
n ] = [ a†µm , a

†ν
n ] = 0 m,n ∈ N1 . (2.23)

When m = 0, however, one cannot reach this point starting from (2.21), since
√
G is not

9



invertible when F 6= 0 in some Lorentz frame (and obviously so when eF = 0). The αµ
0 = α∗µ

0 ,

on the other hand, are well–defined, and their commutation relations read

[αµ
0 , α

ν
0 ] = i Gµν . (2.24)

Naively, one would expect that αµ
0 play the role of a covariant momentum, since after all

it reduces to the string momentum ᾱµ
0 = pµ when F vanishes. Furthermore, the string

Hamiltonian is

H ≡
∫ π

0

dσ[P µẊµ −L ] =
1

2π

∫ π

0

dσ(Ẋ2 +X ′2) = 1
2

∑

m∈Z
α−m · αm , (2.25)

where the last equality is due to a consequence of the mode expansion (2.8), namely

(Ẋ ±X ′)µ(τ, σ) =
∑

m∈Z

[

e−i(m1+iG)(τ±σ)∓G0

]µ

ν
αν
m σ ∈ [0, π] . (2.26)

In view of Eqs. (2.23) and (2.25), therefore,

H = 1
2
α2
0 + (Stringy Oscillator Contributions) , (2.27)

whereas for a charged point particle the Hamiltonian would read

H = 1
2
p2cov , (2.28)

where pµcov is the covariant momentum. This vindicates the identification of αµ
0 with the

covariant momentum, up to a matrix redefinition that is needed since

[ pµcov, p
ν
cov ] = ieF µν . (2.29)

Comparing Eqs. (2.24) and (2.29), one is thus led to conclude that

αµ
0 = Qµ

ν p
ν
cov , QQT =

G

eF
, (2.30)

so that the covariant derivative,

Dµ ≡ ipµcov , (2.31)
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finally obeys the desired commutation relation:

[Dµ, Dν ] = −ieF µν . (2.32)

Notice that the matrix Q reduces to unity in the F → 0 limit, and that one can choose it to

be symmetric, letting

Q =

√

G

eF
. (2.33)

For future reference, it is actually convenient to define a different covariant derivative,

Dµ ≡
(

√

G/eF
)µν

Dν = i αµ
0 , (2.34)

such that

[Dµ,Dν ] = − i Gµν . (2.35)

Now one can easily compute the commutators [xµ, αν
m], starting from the relation

[Xµ(τ, σ), (Ẋ +X ′)ν(τ, σ′)] = [Xµ(τ, σ), Ẋν(τ, σ′)] = iπηµνδ(σ − σ′) , (2.36)

and from Eqs. (2.8) and (2.26), with the end result

[ xµ, αν
m ] =

i

2

[

e−G0M+ + eG0M−
]µν

δm0 . (2.37)

The identification of xµ as center–of–mass coordinates now demands that

[xµ, pνcov] = iηµν , (2.38)

and in view of Eqs. (2.30), (2.33) and (2.37) this leads to

e−G0M+ + eG0M− = 2

√

G

eF
. (2.39)

Finally, starting from the fundamental commutator

[Xµ(τ, σ), Xν(τ, σ′)] = 0 , (2.40)
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and making use of the mode expansion (2.8) and of Eqs. (2.21) and (2.37), one can see that

[ xµ, xν ] = 0 , (2.41)

so that the center–of–mass coordinates are indeed mutually commuting, on account of

Eq. (2.39).

In order to find M± explicitly, one can now demand that the mode expansion (2.8) be

symmetric under the flip operation σ → (π − σ), to be combined with the interchange of

the charges at the endpoints, e0,π → eπ,0, and with the flip properties of the oscillators,

αm → (−1)mαm. In view of (2.10) it is clear that the M± do not transform under such a

flip. Therefore, Eq. (2.39) gives

e−GπM+ + eGπM− = 2

√

G

eF
, (2.42)

and thus Eqs. (2.39) and (2.42) finally lead to

M± =

√

G

eF
sech

[

1
2
(Gπ −G0)

]

e±πG/2 = 1± 1
2
πG+O(G2) . (2.43)

Let us note that, if the string is a dipole, so that e0 = −eπ, G vanishes but G0 remains

finite, while the covariant momentum reduces to the ordinary momentum. From Eqs. (2.30),

(2.33) and (2.43), one can see that the mode expansion (2.8) of the charged string reduces

smoothly to a corresponding expression for the neutral one,

Xµ
neut(τ, σ) = xµ +

[

τ − (σ − π/2) πe0 F
√

1− (πe0F )2

]µν [

1
√

1− (πe0F )2

]

νσ

pσ

+
i

2

∑

m6=0

1
m

[

e−im(τ+σ)−G0 + e−im(τ−σ)+G0

]µ

ν
αν
m . (2.44)

It is important to notice that this expression differs from Eq. (2.26) of [30], and moreover

that the charged string mode functions are not quite given by (2.11). Rather, they are

Ψm(τ, σ) = i/2√
m1+iG

e−i(m1+iG)τ
[

e−i(m1+iG)σ−G0 + ei(m1+iG)σ+G0

]

m ∈ N1 ,(2.45)

Ψ0(τ, σ) =
e−G0

2
· e

G(τ+σ) −M+

G
+

e+G0

2
· e

G(τ−σ) −M−

G
, (2.46)

together, of course, with a constant mode. While Ψm = Ψ′
m for all m ∈ N1, Ψ0 is in fact
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a linear combination of Ψ′
0 and the constant mode. The latter fact is crucial, in that it

guarantees a smooth F → 0 limit. The inner product is still defined according to Eqs. (2.12)

and (2.13), so that the following orthogonality relations for m,n ∈ N0 hold:

(Ψm,Ψn) = δmn(1− δm0) , (1, 1) = −ieF , (1,Ψm) = i
√

eF/Gδm0 . (2.47)

These mode functions naturally split once more into two mutually orthogonal subsets,

particle–like {1,Ψ0}, and string–like {Ψm∈N1
}, and the infinitely many string–like modes

form an orthonormal set of functions with respect to the inner product of Eq. (2.12). The

two particle–like modes have a non-vanishing inner product, and the norm of Ψ0 vanishes

while that of 1 is O(F ). Everything thus parallels the relations (B.4) and (B.5) for free

strings, because of the particular linear combination appearing in (2.46), and in the present

case Eq. (B.6) generalizes to

xµ = i(Ψ0, X)µ , pµcov = −i (1+ eFΨ0, X)µ . (2.48)

2.2 Virasoro generators

As we have seen already, the world–sheet action under consideration differs from the free

string Polyakov action only by boundary terms. The latter, however, do not depend on

the world–sheet metric, since they are obtained via the pullback of target–space one–forms.

Therefore, the constraints that are to be imposed after gauge fixing take the same form as

in the free theory:

(Ẋ ±X ′)2 = 0 . (2.49)

With the Virasoro generators Ln defined as

∑

n∈Z
Ln e

−in(τ±σ) ≡ 1
2
(Ẋ ±X ′)2(τ, σ) , (2.50)

one can formally extend the range of σ to [−π, π] with the help of Eq. (2.26), to write

Ln =
1

4π

∫ π

−π

dσ ein(τ+σ)(Ẋ ±X ′)2(τ, σ) = 1
2

∑

m∈Z
αn−m · αm . (2.51)

The final expression is identical to that of the free theory, but as we have seen the αm’s

now have the commutation relations (2.21). One can work out the commutation relations
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obeyed by the Virasoro generators, paying attention as usual to the central extension. The

end result is the emergence, in the constant EM background, of an additive contribution to

L0, so that

L0 → L0 +
1
4
TrG2 , (2.52)

but up to this shift the Virasoro algebra,

[Lm, Ln] = (m− n)Lm+n + 1
12
d(m3 −m)δm,−n , (2.53)

remains precisely as in the free theory. The shift, however, has an important effect, since it

reflects itself in deformed masses for the open–string excitations.

3 Physical state conditions for free strings

Having spelled out the key properties of the (charged) open string modes, the corresponding

Virasoro generators and their algebra, we can now turn to the physical state conditions for

(charged) string states. In this section we actually begin by considering free strings, as this

provides some valuable insights for the more complicated study of charged strings, which

will be the subject of the next section.

Let us begin by recalling that a string state |Φ〉 is called “physical” if it satisfies the

conditions (see e.g. [9, 10])

(Ln − δn0)|Φ〉 = 0 n ∈ N0 . (3.1)

Actually, in view of the Virasoro algebra, it suffices to demand that

(L0 − 1)|Φ〉 = 0 , (3.2)

L1|Φ〉 = 0 , (3.3)

L2|Φ〉 = 0 . (3.4)

Once Eqs. (B.13)–(B.15) are used, for the symmetric tensors of the leading Regge trajectory

these physical state conditions translate into the well–known Fierz–Pauli conditions, namely

the Klein–Gordon equation and the conditions that their divergences and traces vanish.
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3.1 Massless level: N = 1

The generic state at this level is

|Φ〉 = Aµ(x) a
†µ
1 |0〉 . (3.5)

In this case Eq. (3.4) is empty, and one thus obtains the Maxwell equations in the Lorenz

gauge,

2Aµ = 0 , ∂µAµ = 0 , (3.6)

for the massless vector field Aµ. Notice that these equations are invariant under the on–shell

gauge transformation

δAµ = ∂µ α , 2α = 0 . (3.7)

3.2 First massive level: N = 2

In this case a generic state takes the form

|Φ〉 = hµν(x) a
†µ
1 a

†ν
1 |0〉 +

√
2 i Bµ(x) a

†µ
2 |0〉 , (3.8)

and Eqs. (3.2)–(3.4) give

(2− 2)hµν = 0 , (2− 2)Bµ = 0 , (3.9)

∂µhµν −Bν = 0 , hµµ + 2∂µBµ = 0 . (3.10)

One can verify that these equations possess, in an arbitrary space–time dimension d, the

on–shell gauge symmetry

δhµν = (∂µξν + ∂νξµ)−
(

10
d+4

)

ηµν ∂ · ξ , (3.11)

δBµ = 2ξµ +
(

d−6
d+4

)

∂µ ∂ · ξ , (3.12)

where the gauge parameter ξµ satisfies the condition

(2− 2) ξµ = 0 . (3.13)

One could have arrived at the string field equations (3.9) and (3.10) via the BRST con-

struction, following [31]. There would be more fields to begin with than those present in (3.8),
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but one could (partially) gauge fix the EoMs using the BRST symmetry, which holds only in

the critical dimension, to finally recover Eqs. (3.9) and (3.10). The gauge symmetry (3.11)–

(3.13) actually holds in an arbitrary number of dimensions, and is thus more general than

what the BRST method would give. In fact, proceeding from a field theory perspective, one

can also build rather naturally, at least for the first few mass levels, a generalization of the

BRST symmetry that is available in an arbitrary number of space–time dimensions [32].

One can now gauge away the vector field Bµ, in any number of space–time dimensions,

making use of the gauge parameter ξµ, and thus end up with the spin-2 Fierz–Pauli system

(2− 2)hµν = 0 , ∂µhµν = 0 , hµµ = 0 , (3.14)

so that hµν is a massive spin-2 field, with (mass)2 = 2 (or 1/α′ taking into account our choice

of units), that obeys the Fierz–Pauli conditions.

It is also possible to arrive at (3.14) by a gauge–fixing procedure that does not involve

solving a differential equation for the gauge parameter. To this end, one can define a new

vector field B′
µ whose gauge variation is algebraic in ξµ ,

B′
µ ≡ Bµ +

(

d−6
10

) [

∂νhµν +
1
8

(

d+4
d−1

)

∂µh
ν
ν

]

, δB′
µ =

(

d+4
5

)

ξµ . (3.15)

It is now evidently possible to choose B′
µ in such a way that Bµ = 0, whence Eq. (3.14)

follows.

3.3 Second massive level: N = 3

A generic state at this mass level is

|Φ〉 = φµνρ(x) a
†µ
1 a

†ν
1 a

†ρ
1 |0〉 + i√

2
[ hµν(x) + Aµν(x) ] a

†µ
2 a

†ν
1 |0〉 − 1√

3
Bµ(x) a

†µ
3 |0〉 , (3.16)

where Aµν is an antisymmetric tensor while both φµνρ and hµν are symmetric tensors.

Eqs. (3.2)–(3.4) give rise to

(2− 4)φµνρ = 0 , (2− 4)[hµν + Aµν ] = 0 , (2− 4)Bµ = 0 , (3.17)

3∂µφµνρ − hνρ = 0 , ∂µAµν − ∂µhµν + 2Bν = 0 , (3.18)

3φµ
µν + ∂µhµν + ∂µAµν −Bν = 0 , (3.19)
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and in the critical dimension, d = 26, this system is invariant under the on–shell gauge

transformations

δφµνρ = ∂(µλνρ) + η(µνξρ) , (3.20)

δhµν = 12λµν + 3ηµν∂ · ξ + 3∂(µξν) + 3∂(µ(∂ · λ)ν) , (3.21)

δAµν = −15∂[µξν] − 3∂[µ(∂ · λ)ν] , (3.22)

δBµ = 36ξµ + 18(∂ · λ)µ − 9
2
∂µ∂ · ξ , (3.23)

where λµν = λνµ and the gauge parameters are subject to the conditions

(2− 4)λµν = 0 , (2− 4)ξµ = 0 , (3.24)

λµµ = −2∂ · (∂ · λ)− 17
2
∂ · ξ . (3.25)

Just as in the preceding N = 2 case, here it should be possible to render the gauge symmetry

valid for arbitrary values of d by judicious modifications of the coefficients appearing in the

gauge transformations and in the trace constraint (3.25). We hope to return to this point

for the complete spectrum in a future publication [32].

It is possible to gauge away the vector field Bµ using the parameter ξµ. On the other

hand, because of the trace constraint (3.25) on the gauge parameter λµν , one can only set

to zero the traceless part of hµν . This gauge fixing thus reduces the system to 2

(2− 4)φµνρ = 0 , (2− 4)Aµν = 0 , (2− 4)h = 0 , (3.26)

3∂µφµνρ = ηνρh , ∂µAµν = ∂νh , 3φµ
µν + ∂µAµν = −∂νh , (3.27)

where hµµ ≡ d h . One can now show that h is an auxiliary scalar field: as is well known,

it is essential for writing a local Lagrangian for a massive spin-3 field, but it is set to zero

on–shell if Eqs. (3.26) and (3.27) are combined with their traces and divergences. Once h is

eliminated, the system reduces to

(2− 4)φµνρ = 0 , ∂µφµνρ = 0 , φµ
µν = 0 . (3.28)

(2− 4)Aµν = 0 , ∂µAµν = 0 . (3.29)

Eq. (3.28) are the Fierz–Pauli conditions for a massive spin-3 symmetric tensor field, φµνρ,

2In this step, one can forego the need to solve differential equations for the gauge parameters, as we have
already seen for the N = 2 case.
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that belongs to the first Regge trajectory for the open bosonic string and whose squared

mass is 2/α′ (taking into account our choice of units), while Eq. (3.29) are the corresponding

equations for an antisymmetric rank-2 field of the same mass 3. These are the two physical

fields that appear at the second massive level of the open bosonic string, and in the free

theory their EoMs are completely decoupled.

4 Physical state conditions in an EM background

The construction of a generic string state in the presence of a constant EM background

follows the same lines as in the free theory, because the two cases rest on identical sets of

creation and annihilation operators. While the Virasoro generators themselves are different,

their algebras are the same in both cases, so that the physical state conditions still read

(L0 − 1)|Φ〉 = 0 , (4.1)

L1|Φ〉 = 0 , (4.2)

L2|Φ〉 = 0 , (4.3)

where now

L0 = −1
2
D2 +

∞
∑

m=1

(m+ iG)µν a
†µ
m a

ν
m + 1

4
TrG2

≡ −1
2
D2 +

(

N + 1
4
TrG2

)

+ i
∞
∑

m=1

Gµν a
†µ
m a

ν
m , (4.4)

L1 = −i
[√

1 + iG
]

µν
Dµaν1 +

∞
∑

m=2

[

√

(m+ iG)(m− 1 + iG)
]

µν
a†µm−1a

ν
m , (4.5)

L2 = −i
[√

2 + iG
]

µν
Dµaν2 + 1

2

[√
1 +G2

]

µν
aµ1a

ν
1

+

∞
∑

m=3

[

√

(m+ iG)(m− 2 + iG)
]

µν
a†µm−2a

ν
m , (4.6)

3In d = 4, Aµν is equivalent to a massive vector field, and Eq. (3.29) is clearly consistent with this fact.
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and Dµ was defined in Eq. (2.34). Notice that here we are going to define the number

operator N in such a way that its eigenvalues N are integers, just as for free strings:

N ≡
∞
∑

n=1

n a†n · an . (4.7)

This expression coincides indeed with its free–string counterpart when it is expressed in

terms of the “a” operators, and as a result the two differ when expressed in terms of the “α”

operators. In the presence of an EM background, our definition appears more convenient

than the one used in [22, 24, 25].

4.1 Level N = 1

The generic state at this level is

|Φ〉 = Aµ(x) a
†µ
1 |0〉 . (4.8)

Eq. (4.3) is empty, while Eqs. (4.1) and (4.2) reduce to

[

D2 − 1
2
TrG2

]

Aµ − 2 i G ν
µ Aν = 0 , (4.9)

Dµ
(√

1 + iG · A
)

µ
= 0 , (4.10)

on account of the commutation relations (2.23) and of the usual definition of the oscillator

vacuum. Letting

Aµ ≡
(√

1+ iG · A
)

µ
, (4.11)

these field equations can be cast in the form

[

D2 − 1
2
TrG2

]

Aµ − 2iG ν
µ Aν = 0 , (4.12)

DµAµ = 0 , (4.13)

and their algebraic consistency can be easily verified. Notice that in the presence of a constant

EM background the spin-1 field has acquired a new contribution to its mass, 1
4α′

TrG2. The

divergence constraint (4.13) guarantees that the number of dynamical DoFs is not affected.

That the propagation of the spin-1 field is causal can be shown along the lines of [22], but

we postpone the proof until Section 4.4.
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4.2 Level N = 2

A generic state at this mass level is

|Φ〉 = hµν(x) a
†µ
1 a

†ν
1 |0〉 +

√
2 i Bµ(x) a

†µ
2 |0〉 , (4.14)

and after the field redefinitions

Hµν ≡
(√

1 + iG · h ·
√
1− iG

)

µν
, (4.15)

Bµ ≡
(

√

1 + i
2
G · B

)

µ

, (4.16)

one is led to

(

D2 − 2− 1
2
TrG2

)

Hµν − 2 i (GH−HG)µν = 0 , (4.17)
(

D2 − 2− 1
2
TrG2

)

Bµ − 2 i G ν
µ Bν = 0 , (4.18)

DµHµν − (1 + iG) ρ
ν Bρ = 0 , (4.19)

Hµ
µ + 2DµBµ = 0 . (4.20)

Let us emphasize that, for consistency, in the presence of this non-trivial background the

system should have the same number of dynamical fields as in the free case, and therefore

the vector field Bµ should continue to be non-dynamical. On the other hand, it is simple

to see that the system (4.17)–(4.20) does not give rise to any algebraic relation between Bµ
and the other fields, while Eq. (4.18) contains second derivatives of Bµ. Therefore, Bµ can

be non-dynamical only if it is pure gauge.

In order to see that this is actually the case, let us begin by writing the most general

on–shell gauge transformation for the system,

δHµν = [J · D]µ ξν + [J · D]ν ξµ + 1
2
(Kµν +Kνµ)(D · ξ) , (4.21)

δBµ = (L · ξ)µ + [M · D]µ(D · ξ) , (4.22)

where the matrices J,K, L, and M are functions of G, and the gauge parameter ξµ satisfies

the condition:
(

D2 − 2− 1
2
TrG2

)

ξµ − 2 i G ν
µ ξν = 0 . (4.23)

To see that Eqs. (4.21)–(4.22) define indeed the most general on–shell gauge transformation,
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let us take G to be small, so that one can restrict the attention to terms up toO(G), and let us

examine the possible occurrence of additional higher–derivative terms in Eqs. (4.21)–(4.22).

Any such term should be O(G), in view of the free limit of the transformations, Eqs. (3.11)–

(3.12). It is then simple to realize that, in principle, Eqs. (4.21) and (4.22) can accommodate

terms with odd and even numbers of derivatives, respectively. Moreover, in any such term

G should be contracted with ξ , since otherwise one could eliminate it using the relation

GµνDµDν ∼ TrG2. One thus finds that any possible correction of (4.22) should contain D2ξ ,

which however would allow to lower the number derivatives by two units, due to the on–shell

condition (4.23). In conclusion, the form of (4.22), with at most two derivatives, is the most

general one. Once this is ascertained, looking at the field equations (4.17)–(4.20) one can

conclude that no higher derivative terms can be present in Eq. (4.21) if the transformation

is to be a symmetry.

One can verify that Eqs. (4.17)–(4.20) are invariant under the gauge transformation if

J = 1+ 3
2

(

d−6
d+4

)

i G , (4.24)

K = −
(

10
d+4

) [

1+ 1
20
(d− 6)G2

]

, (4.25)

L = 2 · 1+ 3
2

(

d−6
d+4

)

i G , (4.26)

M =
(

d−6
d+4

) [

1 + 1
2
i G
]

. (4.27)

However, the gauge transformations (4.21)–(4.23) are a symmetry only in the critical di-

mension d = 26. In this case one can actually gauge away the vector field Bµ, ending up

with

(

D2 − 2− 1
2
TrG2

)

Hµν−2 i (GH−HG)µν = 0 , DµHµν = 0 , Hµ
µ = 0 , (4.28)

so that Hµν is a massive spin-2 field, with

(mass)2 =
1

α′

(

1 + 1
4
TrG2

)

, (4.29)

that possesses a suitable non-minimal coupling to the background EM field. It is manifest

that the system (4.28) preserves the right number of DoFs, namely 1
2
(d+1)(d−2). That this

type of systems admit only causal propagation is shown in Section 4.4 for the more general

case of spin-s tensors, retracing the arguments of Argyres and Nappi [22]. The Fierz–Pauli

system (4.28) is indeed related to the Argyres–Nappi Lagrangian of [22], as we shall see in

Section 6.1, but only in d = 26. In fact, we have already seen here that away from the
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critical dimension the vector field Bµ cannot be gauged away. This is to be contrasted with

the behavior in the absence of the EM background, since we have seen in the previous section

that in the free theory the vector field is pure gauge in any number of space–time dimensions.

To conclude let us remark that, while setting to zero Bµ via Eq. (4.22) results in a

differential equation in ξµ, this can still be solved as a power series in GD2. One can indeed

covariantize the redefinition (3.15), letting

B′
µ = Bµ +

(

d−6
10

) [

DνHµν +
1
8

(

d+4
d−1

)

DµHν
ν

]

. (4.30)

The gauge variation of B′
µ then becomes

δB′
µ = L′

µνξ
ν +O(GD2ξ) , (4.31)

where L′
µν is algebraic and invertible for small enough G. In order to remove Bµ, one is thus

led to an iterative definition of ξµ:

ξµ = −L′−1
µνB′ν +O(GD2ξ) . (4.32)

4.3 Level N = 3

In Section 3 we have seen that at this mass level there are two distinct physical fields: a

symmetric rank-3 tensor and an antisymmetric rank-2 tensor. The complete gauge fixing of

the system, however, leaves an additional auxiliary scalar field. Our analysis of the N = 2

level leads one to expect that even in the presence of a non-trivial background one ought

to be able to gauge away unphysical states, at least in the critical dimension. Given this

premise, for the N = 3 level, one is entitled to begin by considering the state

|Φ〉 = φµνρ(x) a
†µ
1 a

†ν
1 a

†ρ
1 |0〉 + i√

2
[Aµν(x) + ηµνh(x) ] a

†µ
2 a

†ν
1 |0〉 , (4.33)

where φµνρ and Aµν are, respectively, a symmetric 3-tensor and an antisymmetric 2-tensor,

while h is a scalar. When applied to this state, after the field redefinitions

Φµνρ ≡ (
√
1 + iG ) α

µ (
√
1 + iG ) β

ν (
√
1 + iG ) γ

ρ φαβγ , (4.34)

Aµν ≡ (
√
1 + iG ) α

µ (
√
1 + iG ) β

ν Aαβ , (4.35)
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Eqs. (4.1)–(4.3) give

(

D2 − 4− 1
2
TrG2

)

Φµνρ + 2 i Gα
(µΦνρ)α = 0 , (4.36)

(

D2 − 4− 1
2
TrG2

)

Aµν − 2 i (G α
µ Aαν −A α

µ Gαν) = 0 , (4.37)
(

D2 − 4− 1
2
TrG2

)

h = 0 , (4.38)

3DµΦµνρ = 1
2

[

{
√

(1 + i
2
G)(1 + iG)

} α

ν
{Aαρ + (

√
1 +G2 )αρ h}+ (ν ↔ ρ)

]

, (4.39)

DµAµν = Dµ
[

(
√
1 +G2 )µν h

]

, (4.40)

3Φµ
µν +Dµ

[(
√

1+
i
2
G

1+iG

)µρ

{Aρν + (
√
1 +G2 )ρν h}

]

= 0 . (4.41)

As expected, these equations reduce to those of the free theory, Eqs. (3.26)–(3.27), in the

limit G→ 0, and one can verify their algebraic consistency making use of the commutation

relations (2.35). One can also conclude that, just as in the free case, the scalar field h must

be auxiliary. In order to see this, let us compute the trace of Eq. (4.39) and let us apply

Dν from the left to Eq. (4.41). Subtracting the two resulting equations and making use of

Eq. (4.40), one can then obtain

h = −
[

Tr
√

(1 + i
2
G)(1− iG)

]−1

Tr

[
√

1+
i
2
G

1+iG
· A
]

. (4.42)

Substituting this expression for h into the system (4.36)–(4.41), one is finally left with five

independent equations, which are generalizations of Eqs. (3.28)–(3.29) in the presence of a

constant EM background, and whose algebraic consistency can be directly verified.

Note that the right–hand side of (4.42) does not vanish for G 6= 0. Therefore, if one were

to remove the scalar h from the generic state (4.33), and thus from (4.36)–(4.41), the system

would be plagued by algebraic inconsistencies, in the form of an unwarranted constraint on

the field Aµν that does not exist in the absence of the background. Therefore, any Lagrangian

that can consistently describe the behavior of the two physical fields at level N = 3 in an

EM background must contain an auxiliary scalar mode. String Theory of course takes care

of the problem, since the construction of the spin-3 system includes, in the first place, a

scalar field of this type.

The most important novelty introduced by the background is that the auxiliary scalar

is connected, via Eq. (4.42), to the field Aµν of the second Regge trajectory. A consistent

Lagrangian description of Aµν thus calls for the presence of h. On the other hand, h is also

23



the auxiliary scalar for the spin-3 field of the first Regge trajectory, so that fields belonging to

the second Regge trajectory cannot be described consistently without the leading trajectory.

At the same time, Lagrangians are bound to mix the trajectories, and in order to see this in

further detail let us set Φµνρ = 0 in Eqs. (4.36)–(4.41). The trace of Eq. (4.39) would then

give

h = −
[

Tr
√

(1 + i
2
G)(1 + iG)(1 +G2)

]−1

Tr

[

√

(1 + i
2
G)(1 + iG) · A

]

, (4.43)

and if Eqs. (4.42) and (4.43) were to hold one would be led to the unwarranted constraint

GµνAµν +O(G2) = 0 . (4.44)

The system (4.36)–(4.41), that involves fields from both Regge trajectories, is however al-

gebraically consistent, and its Lagrangian [25] can also be obtained via the BRST method,

integrating out auxiliary fields and performing a complete gauge fixing.

Next, one would like to know whether String Theory can consistently describe, in a

constant EM background, a single spin-3 field of the leading Regge trajectory. With this in

mind, let us set to zero the physical field Aµν of the subleading trajectory. Interestingly, this

choice does not conflict in any way with the algebraic consistency of the system (4.36)–(4.41),

which now reduces to the Fierz–Pauli system

(

D2 − 4− 1
2
TrG2

)

Φµνρ + 2 i Gα
(µΦνρ)α = 0 , (4.45)

DµΦµνρ = 0 , (4.46)

Φµ
µν = 0 . (4.47)

This is indeed a consistent set of equations, which describes a massive spin-3 field with

(mass)2 =
1

α′

(

2 + 1
4
TrG2

)

, (4.48)

and the proper number of propagating DoFs. String Theory also guarantees that this system

comes from a Lagrangian, the Klishevich Lagrangian of [25], with Aµν set to zero and after a

complete gauge fixing. We have not shown whether that Lagrangian yields the Fierz–Pauli

system away from the critical dimension, but we do not expect it, since for spin 2 the answer

is negative, as we shall see in Section 6.1.
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4.4 Arbitrary mass level: N = s

Let us now focus on the first Regge trajectory, that at this level contains a symmetric rank-s

tensor, and let us investigate the consistency of the string field equations that result from

the physical state conditions (4.1)–(4.3). To begin with, we thus write the string state

|Φ〉 = φµ1µ2...µs
(x) a†µ1

1 a†µ2

1 ... a†µs

1 |0〉 , (4.49)

so that, on account of Eqs. (4.4)–(4.6), the physical state conditions (4.1)–(4.3) give

[

D2 − 2(s− 1)− 1
2
TrG2

]

φµ1...µs
+ 2 i Gα

(µ1
φµ2...µs)α = 0 , (4.50)

sDµ
[

(
√
1 + iG ) α

µ φαµ2...µs

]

= 0 , (4.51)

1
2
s(s− 1)

[

(
√
1 + iG )αµ1(

√
1 + iG ) µ2

α φµ1µ2...µs

]

= 0 . (4.52)

It is now convenient to define the symmetric field

Φµ1µ2...µs
≡ (
√
1 + iG ) α1

µ1
(
√
1 + iG ) α2

µ2
...(
√
1 + iG ) αs

µs
φα1α2...αs

, (4.53)

since Eqs. (4.50)–(4.52) then give

[

D2 − 2(s− 1)− 1
2
TrG2

]

Φµ1...µs
+ 2 i Gα

(µ1
Φµ2...µs)α = 0 , (4.54)

DµΦµµ2...µs
= 0 , (4.55)

Φµ
µµ3...µs

= 0 . (4.56)

One can easily show that these equations are algebraically consistent. They form a Fierz–

Pauli system for a massive spin-s field, with a deformed mass, so that now

(mass)2 =
1

α′

(

s− 1 + 1
4
TrG2

)

, (4.57)

and it is manifest that the system gives the correct count of DoFs. Eqs. (4.54)–(4.56) follow,

at least in d = 26, from a Lagrangian determined by the BRST method. We have not derived

it, since these relatively simple EoMs suffice for the analysis of the Velo–Zwanziger problem,

to which we now turn.

The promised proof of causal propagation for generic spin s can be obtained adapting

to our case the arguments of Argyres and Nappi [22], and thus resorting to the method of

characteristic determinants reviewed briefly in Appendix A.2. In fact, we have seen that the
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highest–derivative terms appearing in the EoMs boil down to the scalar operator D2 acting

on the fields. From the definition (2.34) of Dµ, it is then clear that the vanishing of the

characteristic determinant is tantamount to the condition

(G/eF )µν nµ n
ν = 0 , (4.58)

where G is defined in Eq. (2.9).

One can perform a Lorentz transformation to reduce F to the block skew–diagonal form4,

F µ
ν = diag (F1 , F2 , F3 , ... ... ) , with the blocks given by

F1 = a

(

0 1

1 0

)

, Fi 6=1 = bi

(

0 1

−1 0

)

, (4.59)

where a and bi’s are real–valued functions of the EM field invariants, such that in physically

interesting cases their values are always small. Notice that because of the Lorentzian sig-

nature the first block F1 is different from the Fi 6=1’s. The same Lorentz transformation will

clearly render G block skew–diagonal as well, Gµ
ν = diag (G1 , G2 , G3 , ... ... ) , with

G1 = f(a)

(

0 1

1 0

)

, Gi 6=1 = g(bi)

(

0 1

−1 0

)

, (4.60)

where

f(a) ≡ 1

π
[ tanh−1(πe0a) + tanh−1(πeπa) ] , (4.61)

g(bi) ≡
1

π
[ tan−1(πe0bi) + tan−1(πeπbi) ] . (4.62)

Let us stress that if the EM field invariants are small, these functions are always well–

defined and their absolute values are much smaller than unity. Given the forms (4.59) and

(4.60), one can finally see that (G/eF ), where e = e0 + eπ, is the diagonal matrix

(

G

eF

)µ

ν

= diag

[

f(a)

ea
,
f(a)

ea
,
g(b2)

eb2
,
g(b2)

eb2
,
g(b3)

eb3
,
g(b3)

eb3
, ... ...

]

. (4.63)

One can now notice that the functions (4.61) and (4.62) satisfy the inequalities

f(a)

ea
≥ 1 , 0 <

g(bi)

ebi
≤ 1 , (4.64)

4Leaving aside an exceptional set of nilpotent fields obeying Fm = 0 for some m.
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so that, in view of (4.63), any solution nµ of (4.58) must be space–like:

n2 ≥ 0 . (4.65)

This is a direct transposition of the s = 2 argument of [22], and is of course a Lorentz

invariant statement. We can thus conclude that the propagation of the first Regge trajectory

is indeed causal, thanks to the special form of Eqs. (4.54)–(4.56), and in particular thanks

to the structure of the non-minimal kinetic terms.

5 No–ghost theorem

The Argyres–Nappi [22] and Klishevich [25] Lagrangians, or for that matter the generalized

Fierz–Pauli conditions of Section 4.4, contain non-standard kinetic contributions, so that it

becomes interesting to investigate whether the flat–space no–ghost theorem extends to this

case. We can now show that the no–ghost theorem (see e.g. [10]) continues to hold in the

regime of physical interest that we identified in the Introduction.

No modifications of the standard arguments are needed in purely magnetic backgrounds,

since in this case the two light–cone coordinates are still subject to standard Neumann

boundary conditions. As a result, the Hilbert space spanned by the α±
m operators maps

exactly into that of the free string.

In generic backgrounds where electric fields are also present, matters are more subtle, since

the light–cone directions are affected. However, a no–ghost theorem can still be proved via

arguments that follow rather closely those used for the free string. To this end, it suffices to

retrace the proof presented by Polchinski in [10], pp. 139–141. To begin with, one can block–

diagonalize the external field strength, a step that can be carried out for generic constant

Fµν backgrounds. When an electric field is present, one can then modify Eq. (4.4.7) of [10],

turning it into

[α±
m, α

∓
n ] = − [m± if(a)] δm,−n , [α+

m, α
+
n ] = [α−

m, α
−
n ] = 0 , (5.1)

where f(a) is a skew eigenvalue of G, defined in Eq. (4.61). When f(a) = 0, the argument

of [10] clearly holds directly, while when f(a) does not vanish one can replace Eq. (4.4.8)
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of [10] with

N lc =
∑

m∈Z, m6=0

1

m− if(a) α
+
−m α

−
m . (5.2)

The next step is to decompose QB as in Eq. (4.4.9) of [10], letting α+
0 play the role of k+.

On the other hand, Q1 and R can be defined exactly as in Eqs. (4.4.13) and (4.4.14) of [10],

since α−
0 never appears in their definitions. This also means that a convenient (overcomplete)

basis for the string states is provided by the Fock basis for α±
m6=0, together with the coherent

states that are eigenstates of α+
0 . One thus finds that the first line of Eq. (4.4.15) of [10]

should be replaced by

S ≡ {Q1, R} =
∞
∑

m=1

{

[m+ if(a)] b−m cm + [m− if(a)] c−m bm − α+
−m α

−
m − α−

−m α
+
m

}

,

(5.3)

but the rest of the proof carries over verbatim.

6 Spin-2 Lagrangians

In the previous sections we have investigated the consistency of our systems at the level of

EoMs. While Lagrangians can be built along the lines of String Theory, they are certainly

more complicated than the Fierz–Pauli–like conditions that we have displayed in Section

4.4. For one matter, as we have seen, they are bound to mix the leading Regge trajectory

with others. In the next subsection we follow the opposite path, and provide a corollary

to [22], showing how their Lagrangian gives rise to a consistent spin-2 Fierz–Pauli system

in the critical dimension d = 26. In Section 6.2 we then linearize the Lagrangian in the

EM field strength and suggest a possible field theory program for building consistent La-

grangians in arbitrary dimensions. We also discuss the gyromagnetic ratio and conclude with

a comparative study of the linearized Argyres–Nappi [22] and Federbush [21] Lagrangians.

6.1 Argyres–Nappi Lagrangian and Fierz–Pauli Conditions

The Argyres–Nappi Lagrangian [22] is

LAN = H∗
µν

(

D2 − 2− 1
2
TrG2

)

hµν − 2iH∗
µν(Gh− hG)µν −H∗ (D2 − 2− 1

2
TrG2

)

H
−H∗

µν

{

DµDρ[(1 + iG)h] ν
ρ − 1

2
DµDνH + (µ↔ ν)

}

+H∗DµDνHµν , (6.1)
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where Dµ was defined in Eq. (2.34),

Hµν ≡ (1 + iG) α
µ (1 + iG) β

ν hαβ , (6.2)

and for brevity we write H rather than Hµ
µ. One can simply verify that this Lagrangian is

Hermitian and that its variation gives rise to the equations of motion

Rµν ≡
(

D2 − 2− 1
2
TrG2

)

Hµν − 2i(GH−HG)µν − (1 +G2)µν
(

D2 − 2− 1
2
TrG2

)

H
+1

2
{[(1 + iG) · D]µ [(1 + iG) · D]ν + [(1 + iG) · D]ν [(1 + iG) · D]µ}H

−{[(1 + iG) · D]µDρHρν + [(1 + iG) · D]ν DρHρµ}+ (1 +G2)µνDαDβHαβ

= 0 . (6.3)

One would like to know whether these equations can be turned into a Fierz–Pauli system

in an arbitrary number of space–time dimensions. To this end, let us first take the trace of

Eq. (6.3), which gives

Rµ
µ ≡

{

(d− 2 + TrG2)− 2iG
}αρDρDβHαβ −

{

(d− 2 + TrG2)−G2
}αβ DαDβH

+(d− 1 + TrG2)
(

2 + 1
2
TrG2

)

H = 0 . (6.4)

On the other hand, the divergence of Eq. (6.3) gives

DµRµν ≡ −{(1 + iG)(2 + iG)} α
ν DβHαβ − {iG(1 + iG)} α

ν Dα(DρDσHρσ)

+
{

(1 + iG)
[(

2− 1
2
iG+ 3

2
G2
)

+ iG
(

D2 − 1
2
TrG2

)]} α

ν
DαH

= 0 . (6.5)

One can then apply to Eq. (6.5) the operator [2D · (1 + iG)−1]
ν
from the left to obtain

[

2D · (1 + iG)−1
]ν DµRµν ≡

{

(4− TrG2)−G2
}αβ DαDβH + 1

2
TrG2

(

1 + TrG2
)

H
−
{

(4− TrG2)− 2iG
}αρDρDβHαβ = 0 . (6.6)

Matters simplify considerably if one adds Eqs. (6.4) and (6.6), obtaining

(d− 6 + 2TrG2)(DαDβHαβ −D2H) +
[

2(d− 1) + 1
2
TrG2(d+ 4 + 2TrG2)

]

H = 0 . (6.7)
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Finally, applying to Eq. (6.5) the operator [D · {(1 + iG)(2 + iG)}−1]
ν
yields

[

D · {(1 + iG)(2 + iG)}−1
]ν DµRµν ≡ −

[

1 +

(

iG

2 + iG

)µν

DµDν

]

(DαDβHαβ −D2H)

−
[

1
4
TrG2 + 1

2
(5 + TrG2)

(

iG

2 + iG

)µν

DµDν

]

H

= 0 . (6.8)

One can now apply the operator
[

1 + {iG(2 + iG)−1}µν DµDν

]

to Eq. (6.7), multiply

Eq. (6.8) by (d− 6 + 2TrG2) and add together the results, obtaining

[

2(d− 1) + 1
4
TrG2(d+ 14 + 2TrG2)− 1

2
(d− 26)

(

iG

2 + iG

)µν

DµDν

]

H = 0 . (6.9)

Notice that in an EM background this reduces to an algebraic expression only in the critical

space–time dimension d = 26, whence one obtains the trace constraint

H = 0 , (6.10)

so that the situation is quite different from the free case considered in Appendix A.1.

When (6.10) holds, (6.7) sets to zero the double divergence of H, which in its turn yields the

divergence constraint from Eq. (6.5). Given the trace and divergence constraints, one can

now obtain
(

D2 − 2− 1
2
TrG2

)

Hµν − 2i(G · H −H ·G)µν = 0 . (6.11)

The end result is indeed the deformed Fierz–Pauli system (4.28). As we have seen, this

follows from the Argyres–Nappi Lagrangian (6.1) only in the critical dimension d = 26.

6.2 Space–time dimensionality and gyromagnetic ratio

It is important to notice that the constraint (6.9), which would follow from the Argyres–

Nappi Lagrangian in an arbitrary number of dimensions, can be recast in the form

[

2(d− 1) + 1
4
TrG2(d+ 14 + 2TrG2) + 1

2
(d− 26) Tr

(

G2

4 +G2

)]

H

−1
2
(d− 26)

(

G2

4 +G2

)µν

DµDνH = 0 , (6.12)

30



so that for d 6= 26 it actually fails to be purely algebraic only at O(G2). As a result, if we

restrict ourselves to terms that are at most linear in the EM field strength Fµν , the Argyres–

Nappi Lagrangian still gives rise to correct constraints and causal propagation away from the

critical dimension. More importantly, the number of space–time dimensions does not play

any role in this case, up to O(F ). One could thus argue that appropriate O(F 2) terms can

always be added, pushing the desired features to O(F 2), and so on. While this is definitely

possible when d = 26, there is no apparent reason why such corrections cannot be added for

other dimensions as well. On top of this, one would need of course correction terms that

contain derivatives of Fµν if the latter were not constant 5.

Therefore, it becomes interesting to write explicitly the Argyres–Nappi Lagrangian up to

terms linear in Fµν , restoring the dependence on α′ and regarding 1/α′ as a generic value

m2. The result is

LAN = −|Dµhνρ|2 + 2|Dµh
µν |2 + |Dµh|2 + (h∗µνD

µDνh+ c.c.)−m2(h∗µνh
µν − h∗h)

+ 8ieTr(h · F · h∗) + δLkin +O(F 2) , (6.13)

where δLkin is a kinetic deformation of O(F ), given by

δLkin = − i(e/m2)(Fh∗ − h∗F )µν
[

D2hµν − (DµDρh ν
ρ +DνDρh µ

ρ ) + 1
2
D(µDν)h

]

− i(e/m2)Dµ(Fh∗ − h∗F )µν(Dρh
ρν −Dνh) + h.c. . (6.14)

As was already mentioned, the Lagrangian (6.13) describes consistently a massive spin-2

system coupled to a constant EM background, up to O(F ).
On the other hand, we note that the spin-2 Federbush Lagrangian of [21],

LF = −|Dµϕνρ|2 + 2|Dµϕ
µν |2 + |Dµϕ|2 + (ϕ∗

µνD
µDνϕ+ c.c.)−m2(ϕ∗

µνϕ
µν − ϕ∗ϕ)

+ ieTr(ϕ · F · ϕ∗) , (6.15)

is, up to dimension-4 operators, the only Lagrangian that propagates the correct number

of DoFs of a massive spin-2 field in a non-vanishing external EM field Fµν . However, it

does not have the same “dipole” coefficient as the linearized Argyres–Nappi Lagrangian,

nor does it contain, to begin with, dimension-6 kinetic deformations. And indeed, as shown

in Appendix A.2, while Eq. (6.15) gives the correct DoF count, it does not take care of

5This type of construction would have a number of potential applications, which include the improvement
of the holographic model for d-wave superconductors of [33].
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hyperbolicity and/or causality. Therefore, it is interesting to investigate the connection

between these two Lagrangians.

At first sight, the connection is simple: up to field redefinitions, one can conclude that

the kinetic deformation present in the Argyres–Nappi Lagrangian is

δLkin = − 4 i eTr(h · F · h∗) + O(F 2) , (6.16)

so that to linear order in F the Argyres–Nappi and Federbush Lagrangians differ only in

the coefficient of the dipole term. This coefficient is 4ie in the first case, while it is ie in

the second. The first gives a gyromagnetic ratio g = 2, while the second gives g = 1
2
.

Intriguingly enough, g = 2 is a special value that guarantees the absence of high–energy

strong coupling in an important forward “Compton” scattering amplitude [34, 35], and

amusingly all open–string charged states have g = 2 [34]. Upon reflection, this result seems

paradoxical, because the Federbush dipole term is the only one that guarantees the correct

number of propagating DoFs, and the number of DoFs cannot be changed by a local field

redefinition! Actually there is no paradox here, simply because the extra propagating DoF

shows up only at O(F 2) [11]. Thus, while the linearized Lagrangian is enough to determine

the gyromagnetic ratio implied by the Argyres–Nappi model, it is insufficient to manifest

the subtler problems associated with propagation in external fields. And indeed, expanding

the Argyres–Nappi Lagrangian to O(F 2) one would find that the kinetic term of the extra

DoF is pushed to higher orders, so that a complete cancelation of the offending mode is

guaranteed only by the full, non-polynomial action.

The existence of a kinetic deformation in the Argyres–Nappi Lagrangian was overlooked

in [13], where it was claimed that no spin-2 Lagrangian propagating the correct number of

degrees of freedom could solve the Velo–Zwanziger problem. This conclusion follows if one

assumes from the beginning a canonical spin-2 kinetic term, and is of course in contradiction

with the explicit solution found in [22]. Since the problem with the number of DoFs first

manifests itself at O(F 2), it can be solved precisely via terms like those in Eq. (6.14), which

are tantamount to a non-derivative Pauli coupling to linear order in F , but which alter the

constraint equations to quadratic order.
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7 Concluding Remarks

The main issue addressed in this paper is whether String Theory can cure the Velo–Zwanziger

problem for a single massive charged spin-s particle in an external EM background. The

answer is in the affirmative, at least for the first Regge trajectory of the open bosonic string,

whose symmetric tensors can be exposed in isolation to constant EM backgrounds. In fact,

we showed that all fields of this type can be described without including other dynamical

fields, in that their generalized Fierz–Pauli conditions

[

D2 − 1
α′

(

s− 1 + 1
4
TrG2

)]

Φµ1...µs
+ 1

α′
i Gα

(µ1
Φµ2...µs)α = 0 ,

Dµ Φµµ2...µs
= 0 , (7.1)

Φµ
µµ3...µs

= 0 ,

are consistent (in an arbitrary number of space–time dimensions) even in the presence of a

constant EM field strength. Moreover, thanks to the special form of their non-minimal kinetic

contributions, these equations result in a causal propagation, thus providing a solution to

the Velo–Zwanziger problem for this class of fields. On the other hand, we have seen in

explicit examples that, in general, fields belonging to subleading trajectories cannot have

consistent interactions with an external EM background without additional fields belonging

to other trajectories. Our findings thus resonate with the fact that the Vasiliev systems

[36], non-linear equations for symmetric tensors of arbitrary rank, can be formulated in an

arbitrary number of dimensions. Conversely, it is natural to regard these systems as an

effective description of the first Regge trajectory of the open bosonic string in a special

regime where the remaining excitations decouple.

One may wonder whether the system (7.1) acquires a gauge symmetry when the mass,
(

s− 1 + 1
4
TrG2

)

/α′, is set to zero. With a finite α′, within the regime of physical interest,

this happens only for s = 1 when TrG2 = 0. On the other hand, for s > 1 this would entail

the α′ →∞ limit, but then a physically meaningful description would require that eF → 0,

so that α′eF approaches a finite limit. As a result, the higher–spin fields become free in the

limit, consistently with the no–go theorems of [5, 6], which state that massless fields with

s > 1 cannot carry an electric charge.

How unique is the resolution of the original Fierz–Pauli problem that String Theory

provides? After all, as was first noted in [22], the causality proof (that we retraced in

Section 4.4 in order to extend it to spin-s fields) and other consistency issues are not affected

if one makes the replacement G→ 2α′eF . The complicated function G of the field strength
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reflects key properties of the string, which can be torn apart by “strong” electric fields

(2πα′e| ~E| ∼ 1), and has possibly important lessons in store on the interactions with non-

constant backgrounds [22, 25]. Even slowly varying field strengths, however, are very difficult

to study quantitatively since the string sigma model becomes non-linear in the first place.

String Theory provides a remedy for the Velo–Zwanziger problem but calls for kinetic

deformations of the minimal Lagrangian. It does it in a judicious way, of course: kinetic

deformations generically introduce extra DoFs or ghosts, but the ones present in String

Theory do not. While proving this statement is relatively straightforward – it is essentially

the free–string no–ghost theorem – we are not aware of any proof to this effect directly in

the Lagrangian theory of massive higher–spin fields. At any rate, non-minimal terms are

expected to lower the cutoff of the effective field theory from that implied by minimal ones,

and non-constant external backgrounds would lower it even further. No simple improvement

of the theory thus appears to bypass the upper bound for the cutoff proposed in [37].

How about the critical dimension, d = 26? For free massive higher spins, it is apparently

possible to evade it rather naturally for low–lying excitations, proceeding from a field theory

vantage point, at the price of making some terms in the Lagrangian or in the (Stückelberg)

gauge transformations more complicated [32]. For charged fields in a constant EM back-

ground, if one looks only at the EoMs, the dimensionality of space–time does not play any

role. What String Theory guarantees is rather that the EoMs come from a Lagrangian in

d = 26, where the critical dimension is required in order that the BRST charge be nilpotent.

Since nilpotency of the BRST charge is essential in proving the no–ghost theorem, we do

not know if Eqs. (7.1) define a physical, ghost–free system in dimension other than 26.

In some sense, the very appearance of the tensor G may be regarded as evidence that the

underlying theory is inherently non-local, since for instance two distinct charges, e0 and eπ,

enter Eq. (2.1), rather than the single charge that a point particle may possess. It is natural

to expect that the fully interacting theory will not be local, and some indications to this

effect can be extracted from the limiting behavior of string amplitudes, as in [38].

Finding similar models for massive charged higher–spin fermions starting directly from

charged open superstrings (or from type-0 strings [28, 39], which contain a plethora of sym-

metric spinor–tensors) in an EM background, although possible in principle, seems rather

complicated, and apparently no attempts have been made in this direction. It might be very

instructive to look more closely at the indications provided by String Theory for the first

few cases, and in particular for the massive spin-3/2 excitation of the superstring, to see

whether they agree with the proposal of [40].
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A Higher–spin systems and EM backgrounds

In this Appendix we review some basic facts about massive higher–spin fields and their

couplings with an EM background, with special emphasis on some difficulties that are en-

countered. We refer mostly to the case of a massive spin-2 field, and mention briefly about

symmetric tensors of arbitrary rank. The reader can find more details and recent results on

free higher–spin fields of mixed symmetry in [3, 20].

A.1 The Fierz–Pauli s = 2 system

Let us begin by reviewing the key properties of the free massive s = 2 case, which is described

in any number of space–time dimensions by the Fierz–Pauli Lagrangian [14]

LFP = −1
2
(∂µϕνρ)

2 + (∂µϕ
µν)2 + 1

2
(∂µϕ)

2 − ∂µϕµν∂νϕ− 1
2
m2[ϕ2

µν − ϕ2] , (A.1)

where for brevity we use the symbol ϕ rather than ϕµ
µ . The corresponding EoMs read

Rµν ≡ (2−m2)ϕµν−ηµν(2−m2)ϕ+∂µ∂νϕ−(∂µ∂ρϕρν+∂ν∂
ρϕρµ)+ηµν∂

α∂βϕαβ = 0 . (A.2)

Taking divergences and the trace of Eq. (A.2) leads to

∂µRµν ≡ −m2(∂µϕµν − ∂νϕ) = 0 , (A.3)

∂µ∂νRµν ≡ −m2(∂µ∂νϕµν − 2ϕ) = 0 , (A.4)

Rµ
µ ≡ (d− 2)(∂µ∂νϕµν − 2ϕ) + [(d− 1)m2]ϕ = 0 , (A.5)
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and combining Eqs. (A.4) and (A.5) one arrives at an interesting consequence,

[(d− 1)m2]ϕ = 0 , (A.6)

so that for m2 6= 0 and d > 1 one is led to the dynamical trace constraint

ϕ = 0 . (A.7)

The transversality condition follows from Eq. (A.3), so that finally Eq. (A.2) reduces to the

Klein–Gordon equation

(2−m2)ϕµν = 0 , (A.8)

which is of course manifestly hyperbolic and causal. Along with the transversality condition,

Eqs. (A.7)–(A.8) are the simplest instance of a Fierz–Pauli system, that draws its origin from

the Lagrangian (A.1) in an arbitrary number of space–time dimensions, as we have seen.

Trace and divergence conditions are crucial to arrive at the correct number of propagating

DoFs. In d dimensions, a symmetric rank-2 tensor has 1
2
d(d + 1) independent components;

the divergence condition eliminates d of them and finally the trace condition removes one

more. All in all, one is thus left with 1
2
(d+1)(d−2) components, which is the correct number

of propagating DoFs for a massive spin-2 field.

In general, for a symmetric tensor of arbitrary rank s, the Fierz–Pauli system takes the

form

ηµ1µ2 φµ1µ2...µs
= 0 , (A.9)

(2−m2)φµ1...µs
= 0 , (A.10)

∂µ1 φµ1...µs
= 0 . (A.11)

Its counterpart a for Fermi field, with spin s = n+ 1
2
, contains a γ-trace condition, the Dirac

equation and a divergence condition:

γµ1 ψµ1µ2...µn
= 0 , (A.12)

( 6∂ − m)ψµ1...µn
= 0 , (A.13)

∂µ1 ψµ1...µn
= 0 . (A.14)
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A.2 Massive s = 2 field and the Velo–Zwanziger problem

One can complexify the spin-2 field in the Lagrangian (A.1) and try to minimally couple it

to a constant EM background, following [21]. Because covariant derivatives do not commute,

the minimal coupling is ambiguous, so that one is actually led to a family of Lagrangians

containing one parameter, which one can call the gyromagnetic ratio g (see e.g. [13]):

L = −|Dµϕνρ|2 + 2|Dµϕ
µν |2 + |Dµϕ|2 + (ϕ∗

µνD
µDνϕ+ c.c.)−m2(ϕ∗

µνϕ
µν − ϕ∗ϕ)

+ 2iegTr(ϕ · F · ϕ∗) . (A.15)

The resulting EoMs are

0 = Rµν ≡ (D2 −m2)ϕµν − ηµν(D2 −m2)ϕ+ 1
2
D(µDν)ϕ− [DµD

ρϕρν +DνD
ρϕρµ]

+ ηµνD
αDβϕαβ + iegFρµϕ

ρ
ν + iegFρνϕ

ρ
µ . (A.16)

Combining the trace and the double divergence of Eq. (A.16) now gives

(

d−1
d−2

)

m4ϕ = ie(2g − 1)F µνDµD
ρϕρν + (g − 2)e2F µρF ν

ρ ϕµν − 3
4
e2F µνFµν ϕ . (A.17)

The first term on the right–hand side signals a potential DoF breakdown, since a constraint

of the free theory is turned into a propagating field equation unless g = 1
2
. The unique

minimally coupled model that does not give rise to a wrong DoF count has therefore g = 1
2
,

and the result is precisely the Federbush Lagrangian of [21]. With this choice, the divergences

and the trace of Eq. (A.16) reduce to

Dµϕµν −Dνϕ = 3
2
(ie/m2) [F ρσDρϕσν − FνρDσϕ

σρ + FνρD
ρϕ] , (A.18)

DµDνϕµν −D2ϕ = 3
2
(1/m2)

[

Tr(F · ϕ · F )− 1
2
TrF 2ϕ

]

, (A.19)

ϕ = − 3
2

(

d−2
d−1

)

(e/m2)2
[

Tr(F · ϕ · F )− 1
2
TrF 2ϕ

]

. (A.20)

The trace constraint can also be recast in the form

ϕ = −
3
2

(

d−2
d−1

)

(e/m2)2Tr(F · ϕ · F )
1− 3

4

(

d−2
d−1

)

(e/m2)2TrF 2
, (A.21)

an expression that is never singular away from the instabilities of [26, 27], i.e. in the phys-

ically interesting situations where |TrF 2| ≪ (m2/e)2. Still, unlike in the free theory, the

trace does not vanish in the presence of the EM background.
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However, one still needs to see whether the dynamical DoFs propagate in the correct

number and causally. To this end, let us isolate the terms in Eqs. (A.16) that are of second

order in derivatives,

R(2)
µν = D2ϕµν−[Dµ(D

ρϕρν −Dνϕ) + (µ↔ ν)]−1
2
D(µDν)ϕ+ηµν(D

αDβϕαβ−D2ϕ) , (A.22)

where the last can be actually dropped in view of (A.19) while the constraint equations (A.18)

and (A.20) can be substituted in the second and third terms. The end result,

R(2)
µν = 2ϕµν − 3

2
(ie/m2)

[

F ρσ∂ρ∂(µϕν)σ + Fρ(µ∂ν)(∂σϕ
σρ − ∂ρϕ)

]

+ 3
2

(

d−2
d−1

)

(e/m2)2
[

F ρσF λ
σ ∂µ∂νϕρλ − 1

2
TrF 2∂µ∂νϕ

]

, (A.23)

is the counterpart, for the model, of the Klein–Gordon equation.

Following [11], one can now resort to the characteristic determinant method to investigate

the causal properties of the system, replacing i∂µ with nµ, the normal to the characteristic

hypersurfaces, in the highest derivative terms of the EoMs. The determinant ∆(n) of the

resulting coefficient matrix determines in fact the causal properties of the system, and in

particular if the algebraic equation ∆(n) = 0 has real solutions for n0 for any ~n, the system

is hyperbolic, with maximum wave speed n0/|~n|. On the other hand, if there are time–like

solutions nµ for ∆(n) = 0, the system admits acausal propagation. Note that the procedure

is akin to solving the EoMs in the eikonal approximation, letting

ϕµν = ϕ̂µν exp(itn · x) , t→∞ . (A.24)

The coefficient matrix determined by (A.23) takes the form

M
(αβ)

(µν) (n) = −1
2
n2δ(αµ δ

β)
ν + 3

4
(ie/m2)

[

nρF
ρ(αn(µδ

β)
ν) − n(µF

(α
ν) n

β) + 2n(µF
ρ

ν) nρη
αβ
]

− 3
2

(

d−2
d−1

)

(e/m2)2 nµnν

[

F αρF β
ρ − 1

2
TrF 2ηαβ

]

. (A.25)

This expression should indeed be regarded as a matrix whose 1
2
d(d + 1) rows and columns

are labeled by pairs of Lorentz indices (µν) and (αβ). In particular in four dimensions its

determinant reads

∆(n) = (n2)8
[

n2 −
(

e
m2

)2
(

F̃ · n
)2
] [

n2 +
(

3e
2m2

)2
(

F̃ · n
)2
]

, (A.26)
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where F̃µν ≡ 1
2
ǫµνρσF

ρσ, so that

(F̃ · n)2 ≡ (n0
~B + ~n× ~E)2 − (~n · ~B)2 . (A.27)

Let us now consider four–dimensional EM invariants such that ~B · ~E = 0, ~B2 − ~E2 > 0,

which entails that ~B2 is non-vanishing in all Lorentz frames. One can always find a vector

~n, perpendicular to ~B, for which the characteristic determinant vanishes if

n0

|~n| =
1

√

1−
(

3e
2m2

)2 ~B2

, (A.28)

thanks to the last factor appearing in (A.26). As a result, superluminal propagation can

occur even for infinitesimally small values of ~B2, and the propagation itself ceases to occur

whenever ~B2 ≥
(

2
3
m2/e

)2
. Actually, one can always find a Lorentz frame where the pathology

shows up, and in particular the magnetic field ~B2 can reach the critical value in a frame

where ~E2 =
(

2
3
m2/e

)2 − ǫ, with ǫ arbitrarily small. This is the most serious aspect of the

problem: it persists even for very small values of the EM field invariants, far away from

the instabilities of [26, 27], where one would expect to be dealing with well–behaved and

long–lived propagating particles. This is the so–called Velo–Zwanziger problem [11], which

as we have just recalled arises already at the classical level 6. It is important to note that

the pathology is not a special property of the spin-2 case, but it is expected to persist for

all charged massive particles with s ≥ 3/2, since it originates from the very existence of

longitudinal modes of massive high–spin particles [43].

B The bosonic string: notation and conventions

In this Appendix we spell out a few basic facts about the open bosonic string that have some

bearing on our derivations. As in the main body of the paper we work with signature (−,+)

on the world sheet and in units such that α′ = 1
2
. The standard open strings with Neumann

boundary conditions are then described by the coordinate functions

Xµ
free(τ, σ) = xµ + τ ᾱµ

0 +
i

2

∑

m6=0

1

m

[

e−im(τ+σ) + e−im(τ−σ)
]

ᾱµ
m , (B.1)

6The pathology in the corresponding quantum mechanical theory, for s = 3/2, was found much earlier by
Johnson and Sudarshan [41]. From a canonical viewpoint, the equal time commutation relations become ill–
defined in an EM background. That the Johnson–Sudarshan and Velo–Zwanziger problems have a common
origin was later shown in [42].
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where xµ is the center–of–mass coordinate while the term proportional to τ is the corre-

sponding momentum. The mode functions are thus, aside from a constant,

Ψ̄m(τ, σ) = i/2√
m
e−imτ [ e−imσ + eimσ ] m ∈ N1 , (B.2)

Ψ̄0(τ, σ) = τ , (B.3)

which obey orthogonality relations that can be presented in the convenient form

(Ψ̄m, Ψ̄n) ≡
1

π

∫ π

0

dσΨ̄∗
m(τ, σ) ⋆ Ψ̄n(τ, σ) = δmn(1− δm0) m,n ∈ N0 , (B.4)

where ⋆ ≡ i
↔
∂τ = i

−→
∂τ − i

←−
∂τ . The constant mode, just like Ψ̄0, is orthogonal to all Ψ̄m∈N1

and

has a vanishing norm for the inner product (B.4), but is not orthogonal to Ψ̄0

(1, 1) = 0 , (1, Ψ̄m) = iδm0 . (B.5)

The mode functions split naturally into two mutually orthogonal subsets, particle–like {1, Ψ̄0},
and string–like {Ψ̄m∈N1

}, and the infinitely many string–like modes form an orthonormal set

of functions. For the free string their orthonormality relation is usually presented in a more

familiar form that does not involve τ , but this form extends naturally to the case of a con-

stant EM background, as reviewed in Section 2.1. The two particle–like modes have zero

norm and a non-vanishing mutual inner product, so that

xµ = i(Ψ̄0, X
µ) , pµ = −i(1, Xµ) . (B.6)

The free string modes ᾱm in (B.1) obey the commutation relations

[ ᾱµ
m, ᾱ

ν
n ] = mηµνδm,−n m,n ∈ Z , (B.7)

that correspond to the G→ 0 limit of Eq. (2.21). The oscillators ᾱm6=0 define an infinite set

of creation and annihilation operators,

aµm = 1√
m
ᾱµ
m , a†µm = 1√

m
ᾱµ
−m m ∈ N1 , (B.8)

so that one can consider general linear combinations of terms obtained applying creation
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operators to the ground state:

|Ψ〉 =

∞
∑

s=1

∞
∑

mi=1

ψ(m1m2...ms)
µ1µ2...µs

a†µ1

m1
a†µ2

m2
... a†µs

ms
|0〉 . (B.9)

Given a set of integers (m1, m2, ..., ms), the coefficient function ψ
(m1m2...ms)
µ1µ2...µs

is a rank-s Lorentz

tensor, generically of mixed symmetry, that is interpreted as a field associated to the corre-

sponding string state, and as such is a function of the string center–of–mass coordinates.

Of particular interest are the string states that are eigenstates of the number operator,

N ≡
∞
∑

n=1

n a†n · an , (B.10)

whose integer eigenvalues N determine the masses of the open–string states according to

(mass)2 = 2(N − 1) =
1

α′ (N − 1) , (B.11)

where in the last step we have reinstated α′.

A “physical” string state is to satisfy some conditions that involve the Virasoro generators

Ln = 1
2

∑

m∈Z
ᾱn−m · ᾱm n ∈ N0 . (B.12)

L0, L1, and L2 are particularly important, since all other generators with n ∈ N0 can be

recovered from their commutators. In terms of the “a” operators they read

L0 = −1
2
2+

∞
∑

m=1

ma†m · am ≡ −1
2
2+N , (B.13)

L1 = − i ∂ · a1 +

∞
∑

m=2

√

m(m− 1) a†m−1 · am , (B.14)

L2 = −
√
2 i ∂ · a2 + 1

2
a1 · a1 +

∞
∑

m=3

√

m(m− 2) a†m−2 · am . (B.15)

As we have pointed out, demanding that L0, L1 and L2 annihilate a physical state translates

precisely, in terms of the coefficient fields, into the Fierz–Pauli conditions (A.9)–(A.11).
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