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On Solutions to the ”Faddeev-Niemi” Equations
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Recently it has been pointed out that the ”Faddeev-Niemi” equations that describe the Yang-
Mills equations of motion in terms of a decomposed gauge field, can have solutions that obey the
standard Yang-Mills equations with a source term. Here we present a general class of such gauge
field configurations. They might have physical relevance in a strongly coupled phase, where the
Yang-Mills theory can not be described in terms of a Landau liquid of asymptotically free gluons.

I. INTRODUCTION

In the weak coupling limit a Yang-Mills theory describes a Landau liquid of weakly interacting, asymptotically
free gluons. But it has been proposed by several authors that in the strong coupling regime where the physical
excitations are different from asymptotically free gluons, it might become more effective to describe the gauge field in
a decomposed representation. A proper field decomposition might also help to identify those field degrees of freedom
that become relevant when the theory enters its strongly coupled phase. In particular, the Cho-Duan-Ge [1], [2]
decomposition describes the gauge field in a manner that directly relates to magnetic monopoles, widely presumed to
be responsible for the confining properties of the theory. An on-shell refinement of this decomposition was presented
in [3], where it was also shown how the decomposition modifies the Yang-Mills equations. In [3], [4] it was argued that
for generic field configurations the ensuing on-shell decomposed Yang-Mills equations coincide with the conventional
Yang-Mills equations. See however [5] for an off-shell completion of the decomposition, and [6], [7] for a different
kind of manifestly complete decomposition based on the concept of spin-charge separation; for a properly spin-charge
separated gauge field the decomposed equations coincide with the original Yang-Mills equations.
In [4] it was pointed out that besides the generic solutions to the ”Faddeev-Niemi” (FN) equations in [3], there

can also be non-generic field configurations. In general these give rise to a source term in the original Yang-Mills
equations. In a recent article [8] it has been pointed out that these non-generic field configurations include a constant
strength color-electric field that has an obvious attractive physical appeal. Here we report on a more general class of
such non-generic solutions of the FN equations.

II. DECOMPOSING YANG-MILLS

The decomposed four dimensional SU(2) gauge field introduced in [3] is

Aµ = Cµn+ ∂µn× n+ ρ ∂µn+ σ∂µn× n (1)

Here n is a three component SU(2) Lie-algebra valued unit length vector field, Cµ is a vector field in R
4 (we use

Euclidean signature) and ρ, σ are two real scalar fields. The reason for the separation between the second and the
fourth term in (1) is that it allows us to identify the first two terms with the Cho-Duan-Ge connection [1], [2].
When (1) is substituted into the Yang-Mills action the ensuing equations of motion obtained by varying the variables

(Cµ, n, ρ, σ) yield the following FN equations [3],

n · ∇µFµν = 0 (2)

∂νn · ∇µFµν = 0 (3)

∂νn× n · ∇µFµν = 0 (4)

(∇νρ+∇νσ · n×)∇µFµν = 0 (5)
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In order to get a better understanding of relation between solutions of this set of equations and the original
Yang-Mills field equations we follow [4] to introduce a more geometrical framework. Namely, we use a right-handed
orthonormal triplet (eθ, eϕ,n) and define

κa
µ = ea · ∂µn (6)

so that

Aµ = Cµn+ (κ2
µe1 − κ1

µe2) + +(ρκ1
µ + σκ2

µ)e1 + (ρκ2
µ − σκ1

µ)e2

In these variables the FN equations read [4]

n · ∇µFµν = 0

κ+
ν e+ · ∇µFµν ≡ κ+

ν (∇µFµν)
+ = 0

∇νφ e− · ∇µFµν ≡ ∇νφ (∇µFµν)
− = 0 (7)

where the corresponding field strength tensor is

Fµν = n{(∂µCν −∂νCµ)− [1− (ρ2+σ2)]n ·∂µn×∂νn}+
1

4
∇µφ

[

κ+
ν (e

+ + e
−) + κ−

ν (e
+ − e

−)
]

− (µ ↔ ν)+ c.c. (8)

with

κ+
µ = κ1

µ + iκ2
µ

In [3] it was argued that these equations reproduce the original four dimensional Yang-Mills equations, for generic
κ+
ν and ∇νφ. Subsequently this was shown to be the case in two dimensions (coordinates x1 = x, x2 = y) [4],

where using antisymmetry of Fµν it was shown that the last two equations in (7) can be written as the following
homogeneous linear system,

Mα
β(∇Fyx)

β ≡ ≡









κ1
x −κ1

y −κ2
x κ2

y

κ2
x −κ2

y κ1
x −κ1

y

∇xρ −∇yρ ∇xσ −∇yσ
∇xσ −∇yσ −∇xρ ∇yρ















(∇yFyx)
1

(∇xFyx)
1

(∇yFyx)
2

(∇xFyx)
2






= 0 (9)

Consequently, for generic two dimensional field configurations that is field configurations for which the determinant
of the 4× 4 matrix M in (9) does not vanish, the FN equations (7) reproduce the original Yang-Mills equations [4]

∇µFµν = 0

Therefore, one may expect that for non-generic field configurations leading to the vanishing determinant in (9),
solutions of the FN equations may possibly not obey the original Yang-Mills equations. Indeed, recently [8] have
investigated solutions of (2)-(5) that do not obey the original four dimensional Yang-Mills equations. As an Ansatz
the authors considered essentially two dimensional (e.g. x3 and x4 independent) gauge fields in R

4. The ensuing
solutions of (7) that fail to satisfy the original Yang-Mills equations in R

4 are then obtained by looking for such two
dimensional decomposed gauge fields (1) for which the determinant of the 4 × 4 matrix M in (9) vanishes: In the
explicit Ansatz in [8] the elements on the second and fourth columns of this matrix are all zero. This leads to a
constant strength color-electric Yang-Mills field, a solution of the original Yang-Mills equations in the presence of an
external source [8]. Since a constant strength color-electric field has an obvious physical appeal, it is worth while to
study further the properties of the non-generic solutions of the FN equations.

III. SOLVING THE FN EQUATIONS

We shall now show that there are additional familiar and physically appealing field configurations that solve the
FN equation but are described by the original Yang-Mills equations with a source term. In particular, it appears that
many known classical solutions of Yang-Mills theory that give rise to a source term, are sourceless solutions of (7).
Since the structure of (7) is relatively simple, we expect that its non-generic solutions can be described in quite

general terms. Here we look only for configurations that appear as solutions to

∇µφ = 0 (10)
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For these field configurations only the n-component of (8) survives,

Fµν → nGµν ≡ n{(∂µCν − ∂νCµ)− [1− |φ|2]n · ∂µn× ∂νn} ≡ n{Fµν − (1− |φ|2)Hµν} (11)

where

Fµν = ∂µCν − ∂νCµ, (12)

Hµν = n · ∂µn× ∂νn (13)

Gµν = Fµν +Hµν (14)

Let us now analyze how (10) impacts on the FN equations. Obviously, the third equation in (7) is identically fulfilled.
The second equation leads to

ρ(κ1
νκ

2
µ − κ2

νκ
1
µ)Gµν = 0, (15)

(1 + σ)(κ1
νκ

2
µ − κ2

νκ
1
µ)Gµν = 0 (16)

which for nontrivial case i.e., ρ 6= 0 and σ 6= −1 is equivalent to an orthogonality condition

HµνGµν = 0 (17)

where we use

Hµν = κ1
µκ

2
ν − κ2

µκ
1
ν

Finally, the first equation in (7) gives

∂µGµν = 0 (18)

To summarize, the FN equations in the sector defined by (10) are equivalent to the Maxwell equations for Gµν (18)
and constrain (17).

Consider the full Yang-Mills equations for the choice (10)

∇µFµν = ∂µFµν +Aµ × Fµν = ∂µn Gµν + n ∂µGµν +Aµ × n Gµν (19)

However, assuming that fields obey the FN equations we get

∇µFµν = Jν (20)

where we find the following generally non-vanishing external current

Jν = (ρ ∂µn× n− σ ∂µn)Gµν (21)

Now, we are able to present several examples of sourceless configurations of the FN equations which are solutions to
the Yang-Mills equations with the above source term. In the simplest case we assume

Hµν ≡ 0

which identically solves the constraint. Although this tensor identically vanishes, the unit vector field n does not need
to be trivial. It may for example simply depend arbitrarily on one single space-time coordinate, lets say n = n(xλ),
where λ is a fixed index. Thus, we are left with U(1) gauge theory for Cµ

∂µFµν = 0

Solution discussed in [8] belongs to this class., it can be easily generalized to a configuration for which the field tensor
is independent of the coordinate Fµν = const. Namely,

Cµ = aµ + bµνxν

where bµν is an arbitrary four dimensional constant matrix. Then

Fµν = bνµ − bµν
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and the external current reads

Jν = (ρ ∂λn× n− σ ∂λn) (bνλ − bλν) (22)

where no summation on λ is assumed.
The constancy of the field tensor is by no means essential to our construction. For example, one can consider the
plane wave solution propagating along z-axis with frequency ω

C0 = Cz = 0

C1 = a sinω(z − t)

C2 = a cosω(z − t)

It solves the sourceless FN equations whereas for the full Yang-Mills equation there is a source

Jν = aω (ρ ∂xn× n− σ ∂xn) cosω(z − t) ·







−1
0
0
1






(23)

Observe that the external current vanishes if the so-called valence degrees of freedom are absent ρ = σ = 0 [1].
This may indicate a particularly close relation in (2 + 1) dimensions between the FN and Yang-Mills equations, due
to the fact that in (2+1) dimensional case the nonabelian gauge field has 3 on-shell degrees of freedom. Then, it is
sufficient to use the Cho-Duan connection containing only the U(1) field Cµ (one field degree of freedom) and n (two
field degrees of freedom).

IV. CONCLUSIONS

In conclusion, we have generalized the observation made in [8], that the ”Faddeev-Niemi” equations have physically
appealing solutions that solve the original Yang-Mills equation with a source term. The formalism that we have
presented allows a more systematic analysis of such solutions. Since the decomposed representation of the Yang-Mills
field is presumed to identify those excitations that become important in strongly coupled phases of the Yang-Mills
theory that can not be described in terms of asymptotically free gluons and conventional weak coupling perturbation
theory, it should be of interest to better understand the relevance of the solutions of the ”Faddeev-Niemi” equations
to the non-perturbative structure of Yang-Mills theories.
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