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1. Introduction

In recent years, important efforts have been devoted tolalewng efficient methods for the
calculation of multi-leg and multi—-loop diagrams, reatize.g., by unitarity—based methods or by
traditional Feynman diagram approachgk, [1].

The computation of cross sections at next-to-leading offide) or next-to-next-to-leading
order (NNLO) requires the separate evaluation of real artdaliradiative corrections, which are
given in the former case by multi-leg tree—level and in thetdy multi-leg loop matrix elements
to be integrated over the multi—particle phase—space ddltlgsical process. The loop—tree duality
relation at one—loop presented in R¢f. [2], as well as othethots relating one—loop and phase—
space integrals[][$] 4] 5], recast the virtual radiativeeions in a form that closely parallels the
contribution of the real radiative corrections. The usehif tlose correspondence is meant to
simplify calculations through a direct combination of raald virtual contributions to NLO cross
sections. Furthermore, the duality relation has analogit#sthe Feynman Tree Theorem (FTT),
(B, @1, but offers the advantage of involving only singlesaf the one—loop Feynman diagrams.

In this talk we will present the equivalence of the FFT andlithutheorems at one-loop level
and extend it to higher order loops, with the aim of applyitigp INLO and NNLO cross sections.

2. The Duality Theorem at One L oop

We start by considering a general one—ldépleg diagram, as shown in Fig. 1., which is
represented by the scalar integral:

N
LY (p1, P2, -+, PN) :/f l] Gr(q) - (2.1)

The four—-momenta of the external legs are dengied e {1,2,...N}. All are taken as outgoing
and ordered clockwise. We use dimensionally regularizesymals with the number of space—time
dimensions equal td, and introduce the following shorthand notation:

/Ki...;_i/(gjf;‘d.--. 2.2)

The FFT and the duality theorem, both depend on the poletsteiof the Feynman and the ad-
vanced propagators. These are defined as

N 1 1
q')_qiz—minriO’ o —mP—i0qo '
with g; being thed—dimensional four momentum, whose energy (time comporisrg),. The
poles of both kinds of propagators in the compigy—plane are placed at:

ofo=+\/a@—mE—i0, offy~+y/ag2—mP+i0, (2.4)

respectively. Thus, the pole with positive (negative) gparf the Feynman propagator is slightly
displaced below (above) the real axis, while both polesegfeetident of the sign of energy) of the
advanced propagator are slightly displaced above the xealldsing the elementary identity:

1 1 :
0" PV <;> Fimo(x) , (2.5)

Gr (

Ga(gi) = (2.3)
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wherePV denotes the principal value, we find the following relati@iviceen the two propagators:

Ga(Gi) =Gr(q)+8(a),  8(q) =2mi 8(q?)3(cf —mP). (2.6)

We define the advanced loop integral from the usual definibthe loop integral by replacing
Feynman with advanced propagators:

N
LS (P, P2, -+, PN) :/ rlGA(Qi) (2.7)
=
Then by closing a contour on the lowérpo—complex-plane and computing the integral with the
residue method, we notice that:

LY (p1, P2y, PN) =0, 2.8)

since all the poles of the advanced propagators are in thaveosalf-plane. Replacing the ad-
vanced propagators with Feynman propagators[ER.(2.6sfiwe at the relation:

LO (p1, P2y, ) = — | L (P 2oy PN) + -+ L e (P1s P2y PN) | - (2.9)
This equation is the FFT at one loop. It relates the one lotggmal to multiple cut integrals. Each
delta functiong(qi) in the multiple cut terms, replaces the corresponding Feynpropagator, by
cutting the internal line with momentum.
Rather than starting fromgl), we apply directly the residue theorem to the computation of
L. Closing the integration contour at infinity in the directiof the negative imaginary axis,
according to the Cauchy theorem, one picks up one pole fram efstheN Feynman propagators.

N
@ — _ 927 .
L (p17 p2,..., pN) = 27 /flzRe%lmqi"o<0} JI:![GF(qJ) (210)
In Ref. [2], it is shown that the residue of these poles is mivg:
1 2
RESima <0} 27 110 [ dtaosi (). (2.12)
The value of the rest of the propagators at the residue, isrstmbe [2] :
6@ = @12)
F\4j = - 5 .
J#I {qiz_mz:_io} |1 qu - mf —i0n (Qj - Qi)
wheren is a future-like vector:
Nu=No,n) , No>0,n*=nun*>0. (2.13)
We finally obtain:
N ~
LY (py. P2, pn) = — / 5 (a) [ Golai;aj) , (2.14)
i; o i !;II i Y]
where 1
Go(0i:0)) = — (2.15)

q; —nt —i0n(aj — G)
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Figure 1. Momentum configuration of the one—loop and two—loop N—psmatar integral. Note, that in
the two—loop case|@nd py can be equal to zero and hence the number of internal lineglifgar from the
number of external momenta.

is thedual propagator, which depends on the veajorThis is the duality theorem. We notice that
since all the internal momenta depend on the same loop momet! dependence on it drops
out and thda0 prescription depends solely on the external momenta. i$lais important trait and
we will try to generalize it, in the next section, to more Isoprhe presence of the vectgy; is
a consequence of using the residue theorem and the fachthetgidues at each of the poles are
not Lorentz—invariant quantities. The Lorentz—invariaraf the loop integral is recovered after
summing over all the residues.

Finally we note that using the following relation betweerldand Feynman propagators

3 (o) Go(ai; ;) = & (ar) [ Gr (a5) + B (a; — ) 3(ay)] . (2.16)

wheref (q) = 6(nq), we can show that FFT and the duality theorem are equivaignt [

3. Duality theorem at two loops

Our main goal is to write down the extension of the dualityotieen in two- and higher loops
keeping the dependence of tlieprescription at the dual propagator, on external momeniia o
Also, we want to formulate it in such a way that we have the sammber of cuts as the number
of loops. At two loops the generic graph witltlegs is shown in Fig. 1. All momenta are taken
outgoing and we now have two integration momefitel. To extend the duality theorem beyond
one loop, it is useful to extend the definition of propagatdrsingle momenta, to combinations of
propagators of sets of internal momenta. To this endyldte any set of loop momenta. We define
the following functions of Feynman, advanced and dual pyapas:

Grm(ak) = [ Grm(a@)
i€ay

Gp(+ak) = H o(+a) [] Go(+ai:+q;)- (3.1)
i€ay Jeax
j#i

The minus sign in the definitions above, signifies a crlangbeirﬂOW of the momenta of the set.
For a single momentungy = {i} we defineGp(+ax) = é (£q;). The relation between the three
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kind of propagators (see E[.(R.6)), in the any-loop extdridam, is now:
Ga(ak) = Gr (ak) + Gp(ak) - (3.2)

With the notation described above, the one loop theoremPEg) can now be written in the
compact form:

L® (s, P2, Pr) /GF ai) /GD ay) (3.3)

When we have the union of several subsets of moméita; a; U... U an we can write the dual
propagator function in terms of these subsets, by using titpiicative properties of[(3]1):

GD(CY]_UC{QU...UGN) = z |_| C{|1 |_| G|: C{|2 (3.4)
B UBY ireBy ey
=B

An example, that will be used shortly for the two-loop caseyhenN =2, e.g.fc=a1U 0> :
Gp (a1Uaz) = Gp(a1)Gp(a2) + Gp(a1)Gr (a2) +Gr(a1)Gp(az) . (3.5)

Let us now turn to the two loop case. Unlike the one-loop, thelmer of external momenta
may be different from the number of internal momenta. The i@ of the internal lines are again
denoted byg; and are explicitely given by

01+ P Jieap
G=14 fl2+Pii-1 e (3.6)
li+l+py-1 ,icaz,

whereay, with k= 1,2, 3, are defined as the set of lines, propagators respectietiyed to the
momentag;, for the following ranges of.

oa1={0,1,...r}, ao={r+1r+2..,1}, az={l+11+2,.. N} (3.7

The expression for the two-lodg-leg scalar integral is:

L(2>(p17p2,---7pN)=A | Gr(opUaUa3) . (3.8)
2

Using the duality theorem sequentially, first for the loopmemta/; and the expressiof (3.5), we
arrive at the dual representation of the two-loop scalagira,

L@(py,pay-...pn) =~ || {Gol(as)Go(as) + Go(as) Ge(as) + Gr(1) Gol(aw)} G (az).
e (3.9)
The first term of the integrand on the right-hand side of [E§)(® the product of two dual func-
tions, and therefore already contains double cuts. We dmodify this term further. The second
and third terms of[(3]9) contain only single cuts and we tpmyathe duality theorem again, i.e.,
use [3B) forl,. A subtlety arises at this point since due to our choice of mm flow,a; and
a, appearing in the third term of (3.9), flow in the opposite senldence, in order to apply the
duality theorem to the second loop, we have to reverse theantum flow of one of these two



Tree-Loop Duality German Rodrigo

(a) (b) (c) (d)
Figure 2: Master topologies of three—loop scalar integrals. Eacleinal line a; can be dressed with an
arbitrary number of external lines, which are not shown here

loop lines. We choose to change the directiorgfnamelyqg, — —q; for i € a;. Thus, applying
(B-3) to the last two terms of (3.9) and expanding all parteims of the single loop lines of (3.7)
leads to

L@ (p1, p2,.--, Pn) (3.10)
:/Z/é {GD(al)GD(Gz)GF(ag)+GD(—01)GF(02)GD(03)+G*(01)GD((12)GD(C¥3)},
where
G"(ak) = Gr (ak) + Gp(ak) + Gp(—0k) - (3.11)

In (B-10), thei0 prescription of all the dual propagators depends on exteromenta only. Through
(B.13), however[(3.10) contains also triple cuts, giverthgycontributions with thre€p (ak). The
triple cuts are such that they split the two—loop diagrar tnto disconnected tree—level diagrams.
By definition, however, the triple cuts are such that thergisnore than one cut per loop lirg.

4. Duality theorem at three loops and beyond

Beyond two loops, the duality theorem applies in a similannea. We expect to find at
least the same number of cuts as the number of loops, andtppdependent disconnected tree
diagrams built by cutting up to all the loop lines. For the case of three loops there are four
master topologies, shown in Fig. 2. As an example, the blagkejraph, Fig. 2a, is in terms of
dual propagators:

Lt():;)ske{ppra---»pN) Z/él/éz A Gp(a1Uaz) Gp(azUay) . (4.1)

If we expand all existing dual functions i (#.1) in terms ofaifunctions of single loop lines by
using [3.%) and apply the duality theorem to the third loop,altain

Lé?ske£p17p27---7pN) = —/é /g /K {GD(027G37_G4) Gr(a1) + Gp(a1, a3, —aa) Ge(a2)
1 2 3
+Gp(—0a1,02,04) Gr(03) + Gp(—a1, 02,03) G (aa)
+ GD(_alv az,as, a4) + GD(Cfl, az, 03, —04) + GD(_al7 az, 03, —04)} ; (42)

where for brevity we use the notatio@p(as,...,an) = ﬂ{\‘:lGD(ai). For more details and the
expressions for the rest of the topologies, we refer theere@d3].
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5. Scattering Amplitudes

The duality relation can be extended to compute scattermglitudes. Since the application
of duality affects only propagators, we can write down thalegue of Eq[(2.34) for amplitudes:

gy(1-loop) _ __ F(1~loop). (5.1)

The expression? (1719 js obtained in the following manner: start from any diagranaz(1-'°°p)
and consider all possible replacements of each FeynmaagatmGr (q; ) with the cut propagator.
The uncut propagators are replaced by the correspondirgpthzagators. Ed.(5.1) establishes a
correspondence between one-loop Feynman diagrams andhdise ppace integral of tree-level
diagrams|[2]. The duality relation for amplitudes is validany unitary and local field theory. In
spontaneously broken gauge theories, it holds in the 't HBeynman gauge and in the unitary
gauge. In unbroken gauge theories, the duality relatioalid in the 't Hooft-Feynman gauge, and
in physical gauges where the gauge veatois orthogonal to the dual vectg, i.e.,n-n =0. This
excludes gauges when is time-like. This choice of gauges at one-loop avoids theeapance of
extra unphysical gauge poles, which in some gauges, mardm@&ome poles of higher order. At
higher loop orders, the gauge poles will be absent with theeszhoice of gauges, and the duality
relation can be extended straightforwardly to the ampditiedel too.

For higher orders in pertubation theory, Eq)(5.1), geieealto:

o (N—loop) _ (_l)NfQZ(N*bOP)’ (5.2)

where.e7 (N=109P) is the dual counterpart of the loop quantitgN-1°°P) which is obtained from the
Feynman graphs in7(N~1°%P) by sequentially applying on each loop the duality theorem[l,

it was discussed how to evaluate the on-shell scatterinditaiohg, of N external particles, from
the tree-level forward scattering amplitude Nf- 2 particles, with two additional external legs
of momentag and —g. The naive generalization fd-loops, requires the evaluation of tree-level
scattering amplitudes with an even number of external legisgj and—qj, wherei runs from one
to the number of loops (see aldd [9]). Care has to be takergthauhen dealing with tadpoles
and self energy insertions due to the appearence of kineahainhgularities. These issues where
already discussed ifi|[2] and are left for future investmyati

6. Conclusions

We have rederived the tree—loop duality theorem at one-doder, which was introduced in
Ref. [2], in a way which is more suitable for extending it tgheér loop orders. By applying itera-
tively the duality theorem, we have given explicit repredagaons of the two— and three—loop scalar
integrals. Dual representations of the loop integrals waimplex dual prescription depending only
on the external momenta can be obtained at the cost of irdhoglextra cuts, which break the loop
integrals into disconnected diagrams. The maximal numbeuts agrees with the number of loop
lines, and the cuts are such that there does not appear naora gingle cut for each internal loop
line.
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