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Acceleration of particles by black holes - general explanation
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We give simple and general explanation to the effect of unbound acceleration of

particles by black holes. It is related to the fact that the scalar product of a timelike

vector of the four-velocity of an ingoing particle and the lightlike horizon generator

tends to zero in some special cases, so the condition of ”motion forward in time” is

marginally satisfied. In this sense, an ingoing particle with special relation between

parameters imitates the property of infinite redshift typical of any outgoing particle

near the future horizon of a black hole. We check this assertion using the Reissner-

Nordström and rotating axially-symmetric metrics as examples.

PACS numbers: 04.70.Bw, 97.60.Lf, 04.40.Nr

I. INTRODUCTION

Recently, an interesting observation was made in [1] about acceleration of particles near

the horizon of a rotating black hole to unlimited energies Ec.m. in the centre of mass frame.

In this sense, a black hole can act a cosmic supercollider that is very promising from the

viewpoint of new physics expected at the Planck scale. The series of papers followed where

details of this process were studied [2] - [11] and its generalization [12] and extension to

charged nonrotating black holes [13] were suggested. The goal of the present work is to give

a general and comprehensive explanation to this interesting effect. Rather surprisingly, it

turns out that such an explanation is very simple and relies not on the details of theory but

on the mutual properties of particles and a light cone near the future horizon of a black

hole. Thus, we generalize previous observations and elucidate the underlying reason for the
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manifestation of the effect under consideration diversity of the particular metrics or even

their classes (Kerr, Kerr-Newman, Reissner-Nordström, stringy, Kaluza-Klein black holes,

axially-symmetric rotating dirty black holes, etc.) considered in aforementioned papers.

II. BASIC FORMULAS

It would seem that the effect connected with acceleration of particles requires necessarily

detailed analysis of equations of their motion. It is just the approach developed in previous

works [1] - [13]. Instead, in the present work we focus attention on what happens to the

four-velocity of a particle with respect to its local light cone in the immediate vicinity of the

horizon. Let us consider the collision of two particles near the future horizon of a black hole.

In doing so, one should clearly distinct two different cases: 1) particles move in the opposite

directions (towards the horizon and away from it), 2) both particles move towards the

horizon. Actually, the first case was discussed in [14] (although the corresponding condition

was not explicitly pronounced there) a long time ago. The second case is discussed in the

series of aforementioned papers [1] - [13].

We will use the following geometric construction. Let us introduce in the point P under

consideration and its vicinity the tetrad with lightlike vectors lµ, Nµ and spacelike vectors

aµ, bµ orthogonal to them. Here, the vectors lµ, Nµ are normalized, say, as lµNµ = −1.

Then,

gαβ = −lαNβ − lβNα + σαβ (1)

where σαβ = aαbβ + aβbα, l
ασαβ = Nασαβ = 0, aα and bα are spacelike (see, for example,

textbook [15]). We assume that it is the vector lµ that becomes the generator of the future

horizon. Let us also introduce the quantity a(u) ≡ −uµlµ ≡ −(ul) where (uu) = −1, uµ

is the timelike vector having the meaning of the four-velocity. As both vectors uµ, lµ are

assumed to be future-directed, α > 0 (motion ”forward in time”). In general, we can write

down the vector uµ of any particle as

u
µ
i =

lµ

2αi

+ αiN
µ + s

µ
i , s

µ
i = Aia

µ +Bib
µ (2)

where i = 1, 2 labels the particles. Then,

− (u1u2) =
1

2
(
α1

α2

+
α2

α1

)− (s1s2). (3)
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The energy in the centre of mass frame [1] - [13] is equal to E2

c.m. = m2

1
+m2

2
− 2m1m2(uv)

(mi are rest masses of particles), so

E2

c.m. = m2

1
+m2

2
+m1m2[

α1

α2

+
α2

α1

− 2(s1s2)]. (4)

.

III. INGOING VERSUS OUTGOING PARTICLES IN THE VICINITY OF THE

HORIZON

A. Case 1.

Let particle 1 be going from the immediate vicinity of the horizon in the outward direction.

As we are dealing with the future horizon of a black hole, particle 1 moves almost in the

direction of the horizon generator and it follows that the condition

α1 → 0 (5)

is satisfied for it. Meanwhile, α2 is arbitrary positive quantity. Then, it is seen from (4)

that E2

c.m. → ∞. One can say that this is just direct consequence of infinite redshift near

the horizon.

B. Case 2

This case (both particles move towards the horizon) is much more interesting since the

frame of the centre of mass falls down with both particles [1], so the possible effect of

unbound acceleration is not direct manifestation of the redshift. In general, as it is seen

from (4), E2

c.m. remains finite even in the vicinity of the horizon for any nonzero α1, α2.

However, let us now assume that (5) holds now (in case 1 this was satisfied automatically).

In other words, an ingoing particle imitates the property of infinite redshift (5) typical of

an outgoing particle near the horizon. Then, again it follows from (4), (5) that E2

c.m. → ∞.

This is just the effect discovered in [1] and studied in [2] - [13]. Thus, in case 2 the special

condition (5) is needed. It relates the parameters of a particle like the energy and angular

momentum or the energy and electric charge, etc. (see examples below).
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The above observations can be also reformulated as follows. Consider the vector ξµ which

is timelike in the region where particles approach the horizon, N2 = −(ξξ) > 0:

ξµ =
1

2
lµ +N2Nµ. (6)

We can easily deduce two additional properties.

1) Let (5) be satisfied and (ξu) be finite. Then, the vector ξµ becomes lightlike in this

limit.

Proof. It follows from (2) (6) that in this limit (ξu) ≈ N2(Nu) = −N2

2α
. As this quantity

is finite, it follows from (5) that also N → 0.

2) Let us, instead of (5), assume that (ξu) → 0. Then, (5) is satisfied and the vector ξµ

becomes lightlike in this limit.

Proof. Multiplying (6) by uµ, we observe that both terms are negative. Therefore, each

of them vanishes separately in this limit, so α → 0, N2 → 0. As a consequence, E2

c.m. → ∞.

The situation where the vector ξµ is timelike in some region but becomes the lightlike on

some hypersurface is typical of Killing horizons. However, we would like to emphasize that

nowhere we used Killing equations.

The results under discussion can be reexpressed in another way with the help of Krusckal-

like coordinates. Let, for simplicity, the metric can be written in the form

ds2 = −CdXdY + γabdx
adxb (7)

where a = 1, 2 and the metric coefficient are regular functions of the coordinates X and Y

(this is certainly possible for the nonrotating black holes). On the horizon X = 0 or Y = 0.

Then, repeating the above arguments, we see that it follows from (5) that, say, near the

horizon X = 0 the component of the four-velocity uX ∼ α → 0. Taking into account the

regularity of the metric, we can write that α ∼ X , whence we have

dX

dτ
∼ X , (8)

so

τ ∼ − lnX → ∞ (9)

in accordance with previous results for the Kerr [2], [10] or Reissner-Nordström [13] black

holes. Such a feature is typical of collision with infinite energy near the extremal horizons

[2], [12], [13]. For the nonextremal case, the analysis in the aforementioned articles showed
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that the energy is finite but, if parameters of the particle slightly differ from the critical

relation, this energy can be made as large as one likes.

Let us now illustrate these general properties by two examples.

IV. EXAMPLES

A. Reissner-Nordström black hole

ds2 = −dt2N2 +
dr2

N2
+ r2dω2. (10)

Here dω2 = sin2 θdφ2 + dθ2, N2 = 1 − 2M
r

+ Q2

r2
where M is the black hole mass, Q is its

charge. The event horizon lies at r = rH = M +
√

M2 −Q2. Consider a radial motion of

the particle having the charge q and rest mass m. From the equations of motion one finds

the components of the four-velocity for a pure radial motion in the direction towards the

horizon:

u0 =
X

N2m
, u1 = −

Z

mN
(11)

where X = E − qQ

r
, Z =

√
X2 −m2N2, the coordinates are x0 = t, x1 = n (the proper

distancen =
∫

dr
N
), x2 = θ, x3 = φ.

Here, E is the conserved energy, dot denotes differentiation with respect to the proper

time τ , uµ is the four-velocity. The quantity XH = E− qQ

rH
≥ 0, so it is positive for all r > rH

(motion ”forward in time”). Then, the vector (6) has the components ξµ = (1, 0, 0, 0) and

coincides with the Killing vector. Let us also introduce two lightlike vectors lµ = (1, N, 0, 0)

and Nµ = 1

2
( 1

N2 ,− 1

N
, 0, 0), (Nl) = −1. The vectors aµ and bµ have nonzero components

aθ = r, bφ = r sin θ. One can check that the equality (1) is satisfied.

Then,

− (ξu) =
X

m
, (12)

− (ul) =
Z +X

m
> 0, − (uN)N2 =

1

2

X − Z

m
> 0. (13)

On the horizon Z = XH (hereafter we use subscript ”H” for the values calculated on the

horizon), −(ul) = 2XH

m
> 0, −(ξu) = XH

m
> 0, −(uN) = m

4XH
is finite for any particles, except

from those with XH = 0, qQ = ErH . For them, −(ul) → 0, −(ξu) → 0, −(uN) → ∞.
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Then, the above consideration applies which leads to the result E2

c.m. → ∞. that agrees

with the one obtained earlier [13].

From another hand, if we took the sign ”+” in (11) for u1, we would obtain α = X−Z
m

→ 0

for any particle irrespective of the relation between the parameters in accordance with what

was said above while discussing case 1.

B. Axially-symmetric rotating black hole

Now, let us consider the generic metric describing an axially-symmetric black hole

ds2 = −N2dt2 + gφφ(dφ− ωdt)2 + dl2 + gzzdz
2. (14)

that includes the Kerr and Kerr-Newman black holes. However, the configuration is more

general due to the possible presence of matter (dirty black holes). It follows from equations

of motion that

ṫ = u0 =
X

N2
, X = E − ωL (15)

(for simplicity, here we assume that the rest mass m = 1).

φ̇ =
L

gφφ
+

ωX

N2
, (16)

l̇ = −
Z

N
, Z2 = X2 −N2(1 +

L2

gφφ
) (17)

where u0 = −E is the energy, uφ = L is the angular momentum. For motion ”forward in

time”, we must have ṫ > 0, so E − ωL > 0. We imply that l̇ < 0.

Now, the relevant lightlike vectors are

lµ = (−N2, N, 0, 0) (18)

Nµ =
1

2N2
(−N2,−N, 0, 0) (19)

(Nl) = −1. (20)

The vector (6) reads

ξµ = ξ
µ
1
+ ωξ

µ
2

(21)

where ξµ
1
= (1, 0, 0, 0) is the Killing vector that generates translations in time, ξµ

2
= (0, 0, 1, 0)

generates rotations. On the horizon N = 0 the vector ξµ becomes lightlike.
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One can check that eq. (1) is indeed satisfied, where nonzero components of vectors aµ

and bµ equal bz =
√
gzz., aφ =

√
gφφ, a0 = −ωaφ, The scalar product (ua) = L

√
gφφ

is finite.

Then, −(ul) = Z + X , (uN) = X−Z
2

, −(uξ) = X . The critical value is singled out by the

condition X = 0 on the horizon (E = ωHL) that indeed coincides with (5). Then, we again

obtain that E2

c.m. → ∞ in accordance with the previous discussion and [12]. For a particle

moving away from the horizon (l̇ > 0), we would have α = X − Z → 0 near the horizon

independently of the relationship between the energy and the angular momentum. In the

intermediate case l̇ = 0 one should have Z = 0.Such a type of orbits can be realized in the

vicinity of the extremal horizon [17]. Then, N → 0, X → 0 and we again return to the

condition (5).

V. CONCLUSIONS

Thus, we elucidated the generic nature of the effect and showed that diversity of different

metrics and even classes of metric has the same underlying reason in this context. In doing

so, we did not use explicitly equations of motion of particles at all, did not rely on explicit

form of the metric, field equations from which it is obtained, etc. Actually, the nature of

the effect turned out to be surprisingly simple and stemming from the mutual properties of

lightlike and timelike vectors in the vicinity of the future horizon. It may happen that the

condition (1) is not realized in some particular cases (say, for some classes of trajectories [8]).

Nonetheless, if (i) the horizon exists and (ii) the condition (5) is indeed satisfied, the effect

of unbound Ec.m. can manifest itself in general. Moreover, it follows from our derivation

that these reasonings apply not only to the horizons of static or stationary black holes. As

a matter of fact, the effect is valid even if the aforementioned condition is obeyed for some

portion of the surface only. Moreover, these portions can shrink to the point. In particular,

the results of the present work seem to apply to dynamic or isolated horizons [16]. The fact

that the essence of the effect of infinite Ec.m. reveals itself in so general setting, lends support

to the idea that it can survive notwithstanding model-dependent factors (electromagnetic

radiation, gravitational radiation, etc.).
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