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Cosmic acceleration and the challenge of modifying gravity
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Abstract

I briefly discuss the challenges presented by attempting to modify general relativity to obtain an

explanation for the observed accelerated expansion of the universe. Foremost among these are the

questions of theoretical consistency - the avoidance of ghosts in particular - and the constraints

imposed by precision local tests of gravity within the solar system. For those models that clear these

highly constraining hurdles, modern observational cosmology offers its own suite of tests, improving

with upcoming datasets, that offer the possibility of ruling out modified gravity approaches or

providing an intriguing hint of new infrared physics. In the second half of the talk, I discuss a

recent approach to extracting cosmology from higher-dimensional induced gravity models.
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I. INTRODUCTION

The discovery of late-time cosmic acceleration has led cosmologists to carefully examine the

possible contributions to the mass-energy of the universe that might source this behavior

within general relativity (GR). Perhaps more provocatively, a second possibility has also

been considered, namely that GR itself may not provide the correct set of rules with which

to understand how the known matter and radiation content affects the universe on the largest

scales. It may be that curvatures and length scales in the observable universe are only now

reaching values at which an infrared modification of gravity can make itself apparent by

driving self-acceleration (for reviews see [1–4]).

General relativity is very well tested in the solar system, in measurements of the period of

the binary pulsar, and in the early universe, via primordial nucleosynthesis. None of these

tests, however, probes the ultra-large length scales and low curvatures characteristic of the

Hubble radius today. It is therefore a priori conceivable that gravity is modified in the very

far infrared, in such a way that the universe begins to accelerate at late times.

In practice, however, as I will describe below, it is difficult to construct a simple model that

embodies this hope. A straightforward possibility is to modify the usual Einstein-Hilbert

action by adding new covariant terms constructed from the scalar invariants of the theory.

Such theories can lead to late-time acceleration, but unfortunately typically lead to one

of two problems. Either they are in conflict with tests of GR in the solar system, due to

the existence of additional dynamical degrees of freedom, or they contain ghost-like degrees

of freedom that seem difficult to reconcile with fundamental theories. Nevertheless, a re-

stricted class of such theories remain viable, and should be further constrained by upcoming

cosmological missions.

A more dramatic strategy is to imagine that we live on a brane embedded in a large extra

dimension. Although such theories can lead to perfectly conventional gravity on large scales,

it is also possible to choose the dynamics in such a way that new effects show up exclusively

in the far infrared. Such theories can naturally lead to late-time acceleration, but may have

strong-coupling or ghost issues. Nevertheless, these models hold out the possibility of having

interesting and testable predictions that distinguish them from models of dynamical dark
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energy.

In this talk, delivered at the 28th International Colloquium on Group Theoretical Methods

in Physics (ICGTMP), I attempted to provide an overview of theoretical approaches to this

problem, and to describe some of the challenges, both theoretical and observational, faced

by attempts to address cosmic acceleration in this way. The presentation was intended to

explain the key ideas and to highlight some very recent work of my own. For this reason,

and because this writeup is necessarily brief, I have chosen to reference only selected review

articles, those papers to which I directly referred in the talk itself, and several that came

out directly afterwards..

II. MODIFYING GRAVITY

Although, within the context of General Relativity (GR), one doesn’t think about it too

often, the metric tensor contains, in principle, more degrees of freedom than the usual spin-

2 graviton. The reason why one doesn’t hear of these degrees of freedom in GR is that

the Einstein-Hilbert action is a very special choice, resulting in second-order equations of

motion, which constrain away the scalars and the vectors, so that they are non-propagating.

However, this is not the case if one departs from the Einstein-Hilbert form for the action.

When using any modified action (and the usual variational principle) one inevitably frees

up some of the additional degrees of freedom. In fact, this can be a good thing, in that

the dynamics of these new degrees of freedom may be precisely what one needs to drive the

accelerated expansion of the universe. However, there is often a price to pay.

The problems may be of several different kinds. First, there is the possibility that along

with the desired deviations from GR on cosmological scales, one may also find similar de-

viations on solar system scales, at which GR is rather well-tested. Second is the possibility

that the newly-activated degrees of freedom may be badly behaved in one way or another;

either having the wrong sign kinetic terms (ghosts), and hence being unstable, or leading to

superluminal propagation, which may lead to other problems.

These constraints are surprisingly restrictive when one tries to create viable modified gravity

models yielding cosmic acceleration. In the next few sections I will describe several ways in
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which one might modify the action, and in each case demonstrate how cosmic acceleration

emerges. However, I will also point out how the constraints I have mentioned rule out these

simple examples, and mention how one must complicate the models to recover viable models.

A. A Simple Model: f(R) Gravity

The simplest way one could think to modify GR to obtain cosmic acceleration is to replace

the Einstein-Hilbert Lagrangian density by a general function f(R) of the Ricci scalar R [5,

6].

S =
M2

Pl

2

∫

d4x
√
−g [R + f(R)] +

∫

d4x
√
−gLm[χi, gµν ] , (1)

where MPl ≡ (8πG)−1/2 is the (reduced) Planck mass and Lm is the Lagrangian density for

the matter fields χi.

Here, I have written the matter Lagrangian as Lm[χi, gµν ] to make explicit that in this frame

- the Jordan frame - matter falls along geodesics of the metric gµν .

The equation of motion obtained by varying the action (1) is

(1 + fR)Rµν −
1

2
gµν (R + f) +

(

gµν∇2 −∇µ∇ν

)

fR =
Tµν

M2
Pl

, (2)

where I have defined fR ≡ ∂f/∂R.

Further, if the matter content is described as a perfect fluid, with energy-momentum tensor,

Tm
µν = (ρm + pm)UµUν + pmgµν , (3)

where Uµ is the fluid rest-frame four-velocity, ρm is the energy density and pm is the pressure,

then the fluid equation of motion is the usual continuity equation.

When considering the background cosmological evolution of such models, the metric can be

taken as the flat Robertson-Walker form, ds2 = −dt2 + a2(t)dx2. In this case, the usual

Friedmann equation of GR is modified to become

3H2 − 3fR(Ḣ +H2) +
1

2
f + 18fRRH(Ḧ + 4HḢ) =

ρm
M2

Pl

(4)

and the continuity equation is

ρ̇m + 3H(ρm + pm) = 0 . (5)
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When supplied with an equation of state parameter w, the above equations are sufficient to

solve for the background cosmological behavior of the space-time and it’s matter contents.

For appropriate choices of the function f(R) it is possible to obtain late-time cosmic acceler-

ation without the need for dark energy, although evading bounds from precision solar-system

tests of gravity turns out to be a much trickier matter, as we shall see.

While one can go ahead and analyze this theory in the Jordan frame, it is more convenient

to perform a carefully-chosen conformal transformation on the metric, in order to render the

gravitational action in the usual Einstein Hilbert form of GR. Consider writing

g̃µν = Ω(xα)gµν , (6)

and construct the function r(Ω) that satisfies

1 + fR[r(Ω)] = Ω . (7)

Defining a rescaled scalar field by Ω ≡ eβφ, with βMPl ≡
√

2/3, the resulting action becomes

S̃ =
MPl

2

∫

d4x
√

−g̃ R̃ +

∫

d4x
√

−g̃

[

−1

2
g̃µν(∂µφ)∂νφ− V (φ)

]

+

∫

d4x
√

−g̃ e−2βφLm[χi, e
−βφg̃µν ] , (8)

where the potential V (φ) is determined entirely by the original form (1) of the action and

is given by

V (φ) =
e−2βφ

2

{

eβφr[Ω(φ)]− f(r[Ω(φ)])
}

. (9)

The equations of motion in the Einstein frame are much more familiar than those in the

Jordan frame, although there are some crucial subtleties. In particular, note that in general,

test particles of the matter content χi do not freely fall along geodesics of the metric g̃µν .

The equations of motion in this frame are those obtained by varying the action with respect

to the metric g̃µν

G̃µν =
1

M2
Pl

(

T̃µν + T (φ)
µν

)

, (10)

with respect to the scalar field φ

∇̃2φ = −dV

dφ
(φ) , (11)
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and with respect to the matter fields χi, described as a perfect fluid.

Once again, I will specialize to consider background cosmological evolution in this frame.

The Einstein-frame line element can be written in familiar FRW form as

ds2 = −dt̃2 + ã2(t̃)dx2 , (12)

where dt̃ ≡
√
Ω dt and ã(t) ≡

√
Ω a(t). The Einstein-frame matter energy-momentum tensor

is then given by

T̃m
µν = (ρ̃m + p̃m)ŨµŨν + p̃mg̃µν , (13)

where Ũµ ≡
√
ΩUµ, ρ̃m ≡ ρm/Ω

2 and p̃m ≡ pm/Ω
2.

Now, as I mentioned in the introduction, any modification of the Einstein-Hilbert action

must, of course, be consistent with the classic solar system tests of gravity theory, as well

as numerous other astrophysical dynamical tests. We have chosen the coupling constant µ

to be very small, but we have also introduced a new light degree of freedom. As shown by

Chiba [7], the simple model above is equivalent to a Brans-Dicke theory with ω = 0 in the

approximation where the potential was neglected, and would therefore be inconsistent with

solar system measurements [8].

To construct a realistic f(R) model requires a more complicated function, with more than

one adjustable parameter in order to fit the cosmological data [9] and satisfy solar system

bounds.

B. Extensions: Higher-Order Curvature Invariants

It is natural to consider generalizing the action of [5] to include other curvature invari-

ants [10]. There are, of course, any number of terms that one could consider, but for sim-

plicity, focus on those invariants of lowest mass dimension that are also parity-conserving

P ≡ Rµν R
µν and Q ≡ Rαβγδ R

αβγδ.

The action then takes the form

S =

∫

d4x
√
−g [R + f(R,P,Q)] +

∫

d4x
√
−g LM , (14)
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where f(R,P,Q) is a general function describing deviations from general relativity.

Actions of the form (14) generically admit a maximally-symmetric solution that is often

unstable to another accelerating power-law attractor. It has been shown that solar system

constraints, of the type I have described for f(R) models, can be evaded by these more

general models when, for example, the Q terms are relevant on those scales. However,

these theories generically contain ghosts and/or superluminally propagating modes [11–14].

I therefore will not discuss them further here.

C. Induced Gravity Models

In the Dvali-Gabadadze-Porrati (DGP) model [15], our observed 4D universe is embedded

in an infinite empty fifth dimension. Despite the fact that the extra dimension is infinite in

extent, the inverse-square law is nevertheless recovered at short distances on the brane due

to an intrinsic, four-dimensional Einstein-Hilbert term in the action

SDGP =

∫

bulk

d5x
√
−g5

M3
5

2
R5 +

∫

brane

d4x
√
−g4

(

M2
4

2
R4 + Lmatter

)

. (15)

The Newtonian potential on the brane scales as 1/r at short distances, as in 4D gravity,

and asymptotes to 1/r2 at large distances, characteristic of 5D gravity. The cross-over scale

m−1
5 between these two behaviors is set by the bulk and brane Planck masses (M5 and M4

respectively) via m5 =
M3

5

M2

4

.

In this picture, the higher-dimensional nature of gravity affects the 4D brane through devia-

tions from general relativity on horizon scales, that may give rise to the observed accelerated

expansion. This model faces its own challenges however. The branch of solutions that in-

clude self-acceleration suffers from ghost-like instabilities, and on the observational front,

DGP cosmology is statistically disfavored in comparison to ΛCDM and is significantly dis-

cordant with constraints on the curvature of the universe.
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III. CASCADING COSMOLOGY

These facts, among others, have led to the idea of cascading gravity [16–18] — a higher-

dimensional generalization of the DGP idea, which is free of divergent propagators and

ghost instabilities. In this model one embeds a succession of higher-codimension branes into

each other, with energy-momentum confined to the 4D brane and gravity living in higher-

dimensional space. An important first test, which I’ve been working on recently [19], is

whether such models can reproduce a successful cosmological evolution.

A. A Proxy Theory for Cascading Gravity

The main idea is to embed a 3-brane in a succession of higher-dimensional DGP branes,

each with their own Einstein-Hilbert term. Denote coordinates in the full six dimensional

spacetime by x0, x1, x2, x3, x5, x6. Indices M,N, ... run over 0,1,2,3,5 (i.e. the 4+1D coordi-

nates), indices µ, ν, ... run over 0,1,2,3 (i.e. the 3 + 1D coordinates), and indices i, j, ... run

over 1, 2, 3 (i.e. the 3D spatial coordinates). Further denote the fifth and sixth dimensional

coordinates by y = x5 and z = x6, where convenient. The action is then

Scascade =

∫

bulk

d6x
√
−g6

M4
6

2
R6 +

∫

4−brane

d5x
√
−g5

M3
5

2
R5

+

∫

3−brane

d4x
√
−g4

(

M2
4

2
R4 + Lmatter

)

. (16)

As a result, the force law on the 3-brane “cascades” from 1/r2 to 1/r3 to 1/r4 as one moves

increasingly far from a source, with the 4D → 5D and 5D → 6D cross-over scales given

respectively by m−1
5 and m−1

6 , with m6 =
M4

6

M3

5

The next question is, of course, whether the resulting cosmology is consistent with current

observations, and whether it offers distinguishing signatures from ΛCDM cosmology. Unfor-

tunately, finding analytical solutions is a significant challenge, even in the simplest 6D case,

as the bulk metric is generally expected to depend on all extra-dimensional coordinates plus

time [20].

To proceed, consider, in analogy with a useful decoupling limit for the DGP model, the

limit M5,M6 → ∞, with the strong-coupling scale Λ6 = (m4
6M

3
5 )

1/7 kept fixed. In this limit,
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the action (16) may be expanded around flat space, and reduces to a local theory on the

4-brane, describing 5D weak-field metric perturbations hMN and an interacting scalar field

π. The resulting action is [16]

Sdecouple =
M3

5

2

∫

bulk

d5x

[

−1

2
hMN(Eh)MN + πηMN(Eh)MN − 27

16m2
6

(∂π)2�5π

]

+

∫

brane

d4x

[

−M2
4

4
hµν(Eh)µν +

1

2
hµνTµν

]

, (17)

where (Eh)MN is the linearized Einstein tensor in 5D, and (Eh)µν that in 4D. Nearly all

of the interesting features of DGP gravity are due to the helicity-0 mode π and can be

understood at the level of the decoupling theory.

Of course (17) is restricted to weak-field gravity and therefore cannot be used to find cos-

mological solutions. As a “proxy” brane-world scenario, we proposed to complete (17) into

a covariant, non-linear theory of gravity in 5D coupled to a 3-brane, using

S =
M3

5

2

∫

bulk

d5x
√
−g5

[

e−3π/2R5 −
27

16m2
6

(∂π)2�5π

]

+

∫

brane

d4x
√
−g4

[

M2
4

2
R4 + Lmatter

]

. (18)

By construction this theory reduces to (17) in the weak-field limit, and therefore agrees with

cascading gravity to leading order in 1/M5. The proposed 5D completion is by no means

unique, but the hope is that the salient features of cascading cosmology are captured by the

5D effective theory, and that the resulting predictions are at least qualitatively robust to

generalizations of (18).

B. Covariant Equations of Motion On and Off the Brane

The bulk Einstein equations are

e−3π/2GMN = − 27

16m2
6

[

∂(M (∂π)2∂N)π − 1

2
gMN∂

K(∂π)2∂Kπ − ∂Mπ∂Nπ�5π

]

− (gMN�5 −∇M∇N ) e
−3π/2 , (19)

where GMN is the 5D Einstein tensor, and the π equation of motion is

(�5π)
2 − (∇M∂Nπ)

2 −RMN∂Mπ∂Nπ =
4

9
m2

6e
−3π/2R5, (20)
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where RMN is the 5D Ricci tensor and R5 is the Ricci scalar. Remarkably, even though the

cubic π interaction has four derivatives, all higher-derivative terms cancel in the variation,

yielding a second-order equation of motion for π. This is typical of a larger class of “galileon”

theories [21]. I won’t have time to speak in detail about these here, but would like to highlight

that we are close to completing an extension of these theories to the multi-field case, which

will allow the exploration of the low-energy limit of braneworld models in co-dimension

greater than one1.

We also require the Israel junction condition

2M3
5 e

−3π/2

(

Kqµν −Kµν −
3

2
qµνLnπ

)

=
27

8

M3
5

m2
6

(

∂µπ∂νπLnπ +
1

3
qµν (Lnπ)

3

)

+ T (4)
µν −M2

4G
(4)
µν , (21)

where

T (4)
µν ≡ − 2√−q

δ(
√−qLmatter)

δqµν
(22)

is the matter stress-energy tensor on the brane, and G
(4)
µν is the Einstein tensor derived from

the induced metric qµν . Similarly, the boundary condition for π on the brane is

e−3π/2K +
9

8m2
6

(

Kµν∂
µπ∂νπ + 2Lnπ�4π +K(Lnπ)

2
)

= 0 . (23)

(Note that equations (21) and (23) are not independent, of course; the divergence of (21) can

be shown to be proportional to (23) after using the bulk momentum constraint equation.)

C. The Cosmological Evolution on the Brane

The study of brane-world cosmology requires using the equations of motion to obtain a

Friedmann equation on the brane, assuming homogeneity and isotropy along the 3+1 world-

volume dimensions. The junction conditions (21) and (23) do not form a closed system of

equations for qµν , hence deriving an induced Friedmann equation requires knowledge of the

bulk geometry [20].

Because of the bulk scalar field, there is no Birkhoff theorem to ensure that the bulk solutions

are necessarily static under the assumption of homogeneity and isotropy on the brane — the

1 This work [22] (see also [23–26]), and some initial explorations [27, 28], were recently completed.
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most general bulk geometry depends on both the extra-dimensional coordinate and time. For

concreteness, however, focus here on a static warped geometry with Poincaré-invariant slices,

representing a tractable first step for which, as we will see, the resulting phenomenology is

already surprisingly rich.

Writing

ds2bulk = a2(y)(−dτ 2 + d~x2) + dy2 , (24)

the brane motion is governed by two functions, y(t) and τ(t), describing the embedding,

where t is proper time on the brane. The induced metric is of the Friedmann-Robertson-

Walker (FRW) form, with spatially-flat (k = 0) constant-time hypersurfaces ds2brane = −dt2+

a2(y)d~x2, where, by virtue of t being the proper time,

(

dt

dτ

)2

= a2 −
(

dy

dτ

)2

. (25)

Given a solution a(y) to the bulk equations (19)–(20), the covariant junction conditions (21)

and (23) allow us to solve for the embedding (y(t), τ(t)), and hence the cosmology induced

by brane motion through the warped bulk.

For the stress energy on the brane, we assume a collection of (non-interacting) perfect fluids

with energy densities ρ
(i)
m and pressures P

(i)
m , obeying the standard continuity equations. To

derive the Friedmann equation on the brane, we use the (0, 0) component of (21). Since

∂0π = π′dy/dt and dy/dt = aH/a′, we can write the resulting equation as the standard

Friedmann equation with an additional effective energy density ρπ resulting from the π

field,

3H2M2
4 =

∑

i

ρ(i)m + ρπ , (26)

where

ρπ ≡ M3
5

√
a′2 + a2H2

{

9

8m2
6

(

2

(

aH

a′

)2

− 1

)

π′3

a′
− 6e−3π/2

(

π′

2a′
− 1

a

)

}

, (27)

encoding all the complexity and new physics of the cascading cosmology model. Given a

solution a(y), π(y) to the bulk equations, this relation may be inverted to obtain y(a), and

used to express all y-dependent terms in ρπ as functions of a. Equation (26), together with

the continuity equations for the brane matter, then forms a closed system for the brane scale

factor a(t).
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FIG. 1: See text for explanation

D. Numerical Solutions

To get a feel for the type of cosmological solutions that this model may exhibit requires

numerically evolving the full bulk and brane equations in the presence of matter on the

brane. To be explicit, assume zero spatial curvature on the brane, include relativistic and

pressureless components consistent with the standard cosmological model: Ωm = 0.3, Ωr =

8.5× 10−4, and fix the scale factor today to be a0 = 1.

In the figure, example evolution histories in which no cosmological constant is present to

drive cosmic acceleration are plotted. The top panel shows the deviation of the expansion

history from that derived from standard matter (for which 3H2/ρm = 1). The curves each

show consistent solutions to the modified Friedmann equation (26): one solution (red, thick

line) recovers the standard expansion history at early times and then undergoes accelerated

expansion at late times; the other solution (blue, dotted line) has an expansion history

entirely inconsistent with that of standard ΛCDM, with the π field dominating the expansion

at all eras, and undergoing heavily decelerated expansion at late times.
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The center panel shows the evolution of the effective fractional energy density, Ωπ =

8πGρπ/3H
2, for these two solutions. For the accelerating solution, the phantom-like be-

havior in the matter era allows the π field to dominate and drive cosmic acceleration at late

times. The model is not physical, however, since as Ωπ → 2/3 one finds Ḣ → ∞ and a

singularity occurs. This singularity is of an unusual nature - the bulk geometry is smooth

and it is the brane embedding that is singular. It is possible therefore that this singularity

could be circumvented by the use of a more general metric ansatz, but this has yet to be

demonstrated.

Finally, the bottom panel shows a comparison of the effective equation of state for the

expansion, weff = −1− (2/3)d lnH/d ln a, for the accelerating π (red, full line) and fiducial

ΛCDM (black, dashed line) scenarios. The π driven expansion histories assume the numerical

values H0 = 2.33 × 10−4 Mpc−1, m6 = 3.5 × 10−18 Mpc−1 and m5 = 4.4 × 10−31Mpc−1 for

which the maximum singularity occurs just after a = 1.

IV. CONCLUSION

Among the possible explanations for the observed accelerated expansion of the universe, the

possibility that general relativity may become modified on the largest scales is a particularly

intriguing one. In this talk I have outlined a number of modern approaches to this problem,

focusing, as expected, on those that I have been involved with in one way or another. I have

described how the combined constraints of theoretical consistency, solar system measure-

ments, and cosmological observations tightly bound the possible viable models. I have also

discussed very recent work on cascading cosmology, and have shown that cosmic acceleration

can arise within this model without the need for a cosmological constant. However, for the

limited solutions explored thus far, one hits a singularity in the expansion history so that

the universe cannot smoothly transition towards Ωπ → 1

As I mentioned in the talk, out of the higher dimensional constructions, such as the DGP

model, an interesting set of four dimensional effective field theories - the galileons - arises,

encapsulating the effects of modifying gravity. The work which was underway, generalizing

that work to multi-galileon theories, is now completed, and we have been hard at work on
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constraining the resulting Lagrangians. Now as then, much remains to be done to understand

the full range of acceptable models.
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