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STU attractors from vanishing concurrence
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Concurrence is an entanglement measure characterizing the mixed state bipartite correlations
inside of a pure state of an n-qubit system. We show that after organizing the charges and the moduli
in the STU model of N = 2, d = 4 supergravity to a three-qubit state, for static extremal spherically
symmetric BPS black hole solutions the vanishing condition for all of the bipartite concurrences on
the horizon is equivalent to the attractor equations. As a result of this the macroscopic black hole
entropy given by the three-tangle can be reinterpreted as a linear entropy characterizing the pure

state entanglement for an arbitrary bipartite split. Both for the BPS and non-BPS cases explicit
expressions for the concurrences are obtained, with their vanishing on the horizon is demonstrated.

PACS numbers: 03.67.-a, 03.65.Ud, 03.65.Ta, 02.40.-k

I. INTRODUCTION

For STU black holes [1–3] of N = 2, d = 4 supergravity
the macroscopic black hole entropy is given by the triality
and SL(2,Z)⊗3 invariant formula [2]

SBH =
π

GN

√

|I4|, (1)

where

I4(Γ) =4
∑

1≤a<b≤3

(P aQa)(P
bQb)− (

3
∑

I=0

P IQI)
2

+ 4Q0P
1P 2P 3 − 4P 0Q1Q2Q3.

(2)

Here P I and QI with I = 0, 1, 2, 3 are the magnetic and
electric charges characterizing the extremal static spher-
ically symmetric black hole solution which can be both
BPS and non-BPS. It is also known [6–9] that for BPS
solutions we have I4 > 0 and for non-BPS ones we have
I4 < 0. As an alternative expression clearly displaying
the aforementioned symmetries we have [4]

I4 = −4D(|Γ〉) (3)

with D(|Γ〉) is Cayley’s hyperdeterminant [5] of the un-

normalized three-qubit charge state |Γ〉 defined as

|Γ〉 =
∑

l,k,j=0,1

Γlkj |lkj〉, |lkj〉 ≡ |l〉3⊗|k〉2⊗|j〉1 (4)

where

1√
2

(

P 0, P 1, P 2, P 3

−Q0, Q1, Q2, Q3

)

=

(

Γ000, Γ001, Γ010, Γ100

Γ111, Γ110, Γ101, Γ011

)

.

(5)

On the other hand from quantum information theory
it is also known that for an arbitrary normalized three-
qubit state

|ψ〉 =
∑

l,k,j=0,1

ψlkj |lkj〉 (6)

the quantity called the three-tangle

τ123 ≡ 4|D(|ψ〉)| ≤ 1 (7)

is a genuine tripartite entanglement measure invari-
ant under SL(2,C)⊗3, a group related to the group of
stochastic local operations and classical communication
(SLOCC) [10, 11], and the permutations of the qubits.
Under the full SLOCC group which is GL(2,C)⊗3 Cay-
ley’s hyperdeterminant D(|ψ〉) transforms as [12]

D(|ψ〉) 7→ (detG3)
2(detG2)

2(detG1)
2D(|ψ〉), (8)

where G3 ⊗ G2 ⊗ G1 ∈ GL(2,C)⊗3. Hence for our con-
ventions of Eq. (4) the STU black hole entropy is

SBH =
π

GN

√

τ123(|Γ〉). (9)

(Note, that the usual formula appearing in the literature
[4, 6, 8, 13, 14] is SBF = π

2GN

√
τ123, however in these

studies no 1√
2
is used in the definition of the charge state

of Eq. (4).)
This interesting correspondence between tripartite en-

tangled systems and stringy black hole solutions has
given rise to further results within [15, 16] and outside
[17] the STU context. This ”Black Hole Analogy” (BHA)
have repeatedly turned out to be useful for establishing
striking results within one of the fields by using methods
and results of the other [18, 19]. Note however, that the
underlying physics (if any) responsible for this black hole-
qubit correspondence is still unknown. At this stage the
basic reason for the correspondence seems to be merely
that in these two seemingly unrelated fields similar sym-
metry structures are present. For example in the very
special case of the STU model the U-duality group is
SL(2,Z)⊗3 and in the three-qubit entanglement case the
physically interesting subgroup of SLOCC transforma-
tions is SL(2,C)⊗3. This observation is the basic reason
why entanglement based reformulations of the different
aspects of the STU model proved to be useful for pro-
viding a quantum information theoretic insight into the
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entangled web of dualities of the model. In this respect
it is generally believed that the SL(2,Z)⊗3 and triality
invariant expression of Eq. (9) should be some sort of
macroscopic manifestation of the leading order term of
the entanglement entropy for the STU model.
Adopting this view however, we immediately face a

problem since the three-tangle making its presence in
Eq. (9) is not behaving like entanglement entropy. Its
physical content in the literature on quantum information
is rather expressed in connection with another property
called entanglement monogamy. The expression entan-
glement monogamy is indicating a fact that we cannot
share entanglement as a resource for free between the
different subsystems. An equation expressing clearly the
physical status of the three-tangle τ123 as a residual tan-
gle is the Coffmann-Kundu-Wootters relation [10]

τ1(23)(|ψ〉) = τ123(|ψ〉) + τ12(|ψ〉) + τ13(|ψ〉) (10)

and similar ones obtained by a permutation of the qubits.
Here

τ1(23) = 4det̺1, ̺1 ≡ Tr23 |ψ〉〈ψ| (11)

and τ13 and τ12 are the mixed state two-qubit Wootters
concurrences squared [10, 20] associated to the reduced
density matrices ̺13 ≡ Tr2 |ψ〉〈ψ| and ̺12 ≡ Tr3 |ψ〉〈ψ|.
The quantities τ12, τ23 and τ13 are describing the bipar-

tite entanglement existing within the tripartite pure state
|ψ〉. On the other hand the quantity τ1(23) and its cycli-
cally permuted cousins are known to be directly related
to entanglement entropy of the original system charac-
terized by |ψ〉. This quantity is a bipartite entanglement
measure corresponding to the split 1(23). For the first
qubit we have

τ1(23) = 4det ̺1 = 2[(Tr ̺1)
2 − Tr ̺21], (12)

which is two times the linear entropy [21, 22] when the
state is normalized i.e. Tr ̺1 = 1. The linear entropy as
defined above is just the so called Tsallis entropy [21, 22]
STsallis
2 which is defined for an arbitrary density matrix
̺ and α ∈ R+ as

STsallis
α =

1

1− α
(Tr̺α − 1). (13)

The quantity Tr̺2 is also occurring in the Rényi entropy
S2 for an arbitrary α ∈ R+ defined as

SRenyi
α =

1

1− α
log2 Tr ̺

α. (14)

For normalized states the linear entropy is known to be
an approximation to the von-Neumann entropy which is
arising as the α → 1 limit of both the Tsallis and Rényi
entropies [21, 22]

S = −Tr(̺ log2 ̺). (15)

These observations indicate that it is the quantity
τ1(23) which should be releated to entanglement entropy

characterizing directly the bipartite entanglement corre-
sponding to the split 1(23) of some three-qubit state
|ψ〉. Similar role should be played by the quantities
τ2(13) and τ3(12) for the bipartite splits 2(13) and 3(12).
Though in the black hole context our states are unnor-

malized nevertheless based on these considerations as a
simplest candidate for a quantity related to entanglement
entropy in the STU context we can still propose an aver-
age of the quantities τ1(23), τ2(31) and τ3(12). Moreover,
due to permutation symmetry of the parties we might
even expect a set of equations τ123(|ψ〉) = τ1(23)(|ψ〉) =
τ2(13)(|ψ〉) = τ3(12)(|ψ〉) to hold for some unnormalized
”tripartite state” |ψ〉 characterizing the macroscopic con-
figuration.
The simplest choice |ψ〉 ≡ |Γ〉 for the underlying state

already gives the entropy formula of Eq. (9). However,
this clearly fails to be some sort of macroscopic version of
an entanglement entropy since τ12(|Γ〉) and τ13(|Γ〉) gen-
erally nonzero hence according to Eq. (10) our attempted
interpretation τ123 = τ1(23) = τ2(13) = τ3(12) fails.
The purpose of the present paper is to show that by

employing a three-qubit state |Ψ(r)〉 which is depending
on the charges and the moduli fields, the latter ones also
exhibiting an explicit radial dependence, our interpere-
tation turns out to be a natural one. More precisely we
will show that for BPS solutions the vanishing condition
for the Wootters concurrences τ12(r), τ23(r) and τ13(r) at
the black hole horizon r = 0 is equivalent to the attrac-
tor equations used for expressing the moduli in terms of
the charges. The result of this finding is that our desired
equation

τ123(|Ψ(0)〉) = τ1(23)(|Ψ(0)〉)
= τ2(13)(|Ψ(0)〉)
= τ3(12)(|Ψ(0)〉),

(16)

indeed holds. Hence a natural interpretation of Eq. (9) as
an entanglement entropy in a three qubit picture arises.
For readers aware of our previous paper [8] this re-

sult should not come as a surprise since for double ex-

tremal BPS solutions |Ψ(0)〉 is a GHZ state for which the
Wootters consurrences known to be exactly zero [10, 11].
However, for such solutions the moduli are constant even
away from the horizon hence Eq. (16) holds for r ar-
bitrary. The novelty here is the demonstration of this
result for more general type of solutions for which the
off horizon values for quantities like τ1(23)(r) does not
satisfy Eq. (16). Displaying an explicit r dependence we
will see how the attractor mechanism unfolds via forcing
the concurrences to be zero at the horizon. This analysis
should be compared with the alternative one based on a
discussion of ”attractor states” as discussed in our recent
paper [23].
The organization of this paper is as follows. In Sec-

tion II. we present the background material on the STU
model. Section III. introduces the so called Wootters
concurrence an entanglement measure characterizing the
mixed state two-qubit correlations inside of an arbitrary



3

n-qubit pure state. We show that for BPS solutions the
vanishing condition of the concurrence at the horizon is
equivalent to the well-known attractor equations which
are usually used to express the attractor values of the
scalar fields in terms of the conserved charges. Since the
attractor flow is essentially the gradient flow for the BPS
mass we also clarify the relationship between the attrac-
tor equations arising from the extremization of the BPS
mass and the same set of equations arising from the van-
ishing of the concurrence. In Section IV. by calculating
the explicit forms for the concurrences we demonstrate
that the vanishing of these quantities also holds for the
non-BPS flows. Here we first reconsider the 1

2 -BPS case,
then the most general non-BPS solution with vanishing
central charge [3] is discussed. This section is closed with
a discussion on the most general non-BPS solution with
non-vanishing central charge with a particular empha-
sis on the D0 − D6 system. Section V. is devoted to
some geometrical observations connected to the non-BPS
case with non-vanishing central charge. Here we demon-
strate that the vanishing condition for the concurrences
is related to the charge vector being orthogonal to the
vector incorporating the moduli, in a 2 + 1 dimensional
Minkowski space. This observation enables an explicit
geometric representation for the flat directions [3, 9] oc-
curring in this case. Our conclusions and some comments
are left for Section VI. For the convenience of the reader
we also included an Appendix on the structure of the
BPS mass, now revisited within an entanglement based
three-qubit framework.

II. THE STU MODEL

In the following we consider ungauged N = 2 super-
gravity in d = 4 coupled to n vector multiplets. The
n = 3 case corresponds to the STU model. The bosonic
part of the action (without hypermultiplets) is [1, 2]

S =
1

16π

∫

d4x
√

|g|
{

−R
2
+Gab∂µz

a∂νz
bgµν

+
(

ImNIJFIFJ +ReNIJFI∗FJ
)

} (17)

Here FI , and ∗FI , I = 0, 1, 2 . . . n are two-forms associ-
ated to the field strengths FI

µν of n+1 U(1) gauge-fields
and their duals.
The za a = 1, 2 . . . n are complex scalar (moduli) fields

that can be regarded as local coordinates on a projec-
tive special Kähler manifold M. This manifold for the
STU model is [SL(2,R)/U(1)]×3. In the following we will
denote the three complex scalar fields as

za ≡ xa − iya, a = 1, 2, 3, ya > 0. (18)

With these definitions the metric on the scalar manifold
is

Gab =
δab

(2ya)2
. (19)

The metric above can be derived from the Kähler poten-
tial

K = − log(8y1y2y3) (20)

as Gab = ∂a∂bK. For the STU model the explicit form
the scalar dependent vector couplings ν ≡ ReNIJ and
µ ≡ ImNIJ can be found e.g. in Ref. [14].
For the physical motivation of Eq. (17) we note that

when type IIA string theory is compactified on a T 6 of
the form T 2×T 2×T 2 one recoversN = 8 supergravity in
d = 4 with 28 vectors and 70 scalars taking values in the
symmetric space E7(7)/SU(8). This N = 8 model with an
on shell U-duality symmetry E7(7) has a consistent N =
2 truncation with 4 vectors and three complex scalars
which is just the STU model. The D0 −D2−D4 −D6
branes wrapping the various T 2 give rise to four electric
and four magnetic charges defined as

P I =
1

4π

∫

S2

FI , QI =
1

4π

∫

S2

GI , I = 0, 1, 2, 3

(21)
where

GI = N IJF+I , F±I
µν = FI

µν ± i

2
εµνρσFIρσ. (22)

These charges can be organized into symplectic pairs

Γ ≡ (P I , QJ) (23)

and have units of length. They are related to the di-
mensionless quantized charges by some dressing factors.
Normalizing the asymptotic moduli as ya(∞) = 1 and
xa(∞) = Ba the dressing factors are essentially the
masses of the underlying branes [9].
In this paper we are only discussing extremal static

spherically symmetric black hole solutions of the Euler-
Lagrange equations of our Lagrangian of Eq. (17). For
such solutions the ansatz for the line element is

ds2 = −e2U(r)dt2 + e−2U(r)
(

dr2 + r2(dθ2 + sin2θdϕ)
)

,
(24)

with the warp factor U(r) depending merely on r which
is the distance from the black hole horizon. After in-
troducing the new variable τ ≡ 1

r now the dynamics is
described by the Lagrangian of a fiducial particle in a
”black-hole potential” VBH

L =

(

dU

dτ

)2

+Gaa
dza

dτ

dza

dτ
+ e2UVBH(z, z, P,Q), (25)

with the constraint
(

dU

dτ

)2

+Gaa
dza

dτ

dza

dτ
− e2UVBH(z, z, P,Q) = 0. (26)

Here the black hole potential VBH is depending on the
moduli as well on the charges. Its explicit form is given
by

VBH =
1

2

(

P I QI

)

(

(µ+ νµ−1ν)IJ −(νµ−1)JI
−(µ−1ν)IJ (µ−1)IJ

)(

P J

QJ

)

.

(27)
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Extremization of the effective Lagrangian Eq. (25)
with respect to the warp factor and the scalar fields yields
the Euler-Lagrange equations

Ü = e2UVBH , z̈a + Γa
bcż

bżc = e2U∂aVBH . (28)

In these equations the dots denote derivatives with re-
spect to τ . These radial evolution equations taken to-
gether with the constraint Eq. (26) determine the struc-
ture of static spherically symmetric extremal black hole
solutions in the STU model.
As discussed in the introduction it is useful to reorga-

nize the charges of the STU model into the 8 amplitudes
of a three-qubit state |Γ〉 of Eq. (4). Notice that in Eq. (4)
we have introduced the convention of labelling the qubits
from the right to the left. Moreover, for convenience we
have also included a factor 1√

2
into our definition. The

state |Γ〉 is a three-qubit state of a very special kind. First
of all this state defined by the charges need not have to
be normalized. Moreover, the amplitudes of this state
are not complex numbers but real ones. As a next step
we can define a new entangled three-qubit state |Ψ〉 de-
pending on the charges Γ and also on the moduli [8, 14].
This new state will be a three-qubit state with 8 com-
plex amplitudes. However, as we will see it is really a
real three-qubit state, since it is U(2)⊗3 equivalent to a
one with 8 real amplitudes [8, 14].
Now we define the state |Ψ(r)〉 as

|Ψ(za, za,Γ)〉 =

eK/2

(

z3 −1
−z3 1

)

⊗
(

z2 −1
−z2 1

)

⊗
(

z1 −1
−z1 1

)

|Γ〉.
(29)

Here the r dependence is due to the moduli fields
i.e. za(r) = xa(r) − iya(r). Introducing the matrices

Sa ≡ 1√
2ya

(

za −1
−za 1

)

= USa ≡ 1√
2

(

i −1
i 1

)

1√
ya

(

ya 0
−xa 1

)

,

(30)

a = 1, 2, 3, we have

|Ψ(r)〉 =(S3(r) ⊗ S2(r) ⊗ S1(r))|Γ〉
=(U ⊗ U ⊗ U)(S3(r) ⊗ S2(r) ⊗ S1(r))|Γ〉.

(31)

This means that the states |Ψ〉 up to a phase for all values
of the moduli are in the SL(2,C)⊗3 orbit of the charge
state |Γ〉. Obviously the state |Ψ〉 is an unnormalized
three-qubit one with 8 complex amplitudes. However,
it is not a genuine complex three-qubit state but rather
a one which is U(2)⊗3 equivalent to a real one. This
should not come as a surprise since the symmetry group
associated with the STU model is not SL(2,C)⊗3 but
rather SL(2,R)⊗3. Using these definitions we can write
the black hole potential [3, 7, 9] in the following nice form
[14]

VBH = ||Ψ||2. (32)

Here the norm is defined using the usual scalar product
in C8 ≃ C2 ⊗ C2 ⊗ C2 with complex conjugation in the
first factor. Since the norm is invariant under U(2)⊗3

our choice of the first unitary matrix of Eq. (30) is not
relevant in the structure of VBH . We could have defined
a new moduli dependent real state instead of the complex
one |Ψ〉 by using merely the SL(2,R) matrices of Eq. (30)
for their definition. However, we prefer the complex form
of Eq. (31) since it will be useful later.
For computational convenience we use the discrete

Fourier (Hadamard) transformed version of our state
which is implemented by acting on |Ψ〉 by H ⊗ H ⊗ H
where

H =
1√
2

(

1 1
1 −1

)

. (33)

Hence the Fourier transformed basis states are defined as

|0̃〉 ≡ 1√
2
(|0〉+ |1〉) = H |0〉, (34a)

|1̃〉 ≡ 1√
2
(|0〉 − |1〉) = H |1〉. (34b)

As a result we get

|Ψ̃(r)〉 =(H ⊗H ⊗H)|Ψ(r)〉
=(P ⊗ P ⊗ P)(S3(r)⊗ S2(r) ⊗ S1(r))|Γ〉,

(35)

where

P =

(

i 0
0 −1

)

(36)

is just i times the usual phase gate from quantum infor-
mation theory.

III. THE WOOTTERS CONCURRENCE AND

BPS ATTRACTORS

For an unnormalized two-qubit density operator ̺ re-
garded as a nonnegative 4×4 Hermitian matrix acting on
the composite Hilbert space HAB = HA⊗HB = C2⊗C2

the Wootters concurrence squared C2
AB is defined as [20]

C2
AB ≡ τAB = [max{0, λ1 − λ2 − λ3 − λ4}]2. (37)

Here λ1 ≥ λ2 ≥ λ3 ≥ λ4 are the square-roots of the
nonnegative eigenvalues of the matrix

̺ ˜̺≡ ̺(ε⊗ ε)̺T (ε⊗ ε), (38)

where ε is the usual 2 × 2 SL(2) invariant antisymmet-
ric tensor with ε01 = 1. We note that for normal-

ized (i.e. Tr ̺ = 1) states we have the extra constraint
0 ≤ τAB ≤ 1 used in quantum information theory.
In the following we will be concerned with calculat-

ing the Wootters concurrences τ12(|Ψ(r)〉), τ23(|Ψ(r)〉)
and τ13(|Ψ(r)〉) for the unnormalized three-qubit state of
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Eq. (31). Here the subscripts refer to the three different
subsystems labelled by the three different kinds of com-
plex moduli za(r). Our aim is to show that the vanishing
of these quantities on the horizon is equivalent to the at-
tractor equations [24] for BPS solutions. A consequence
of this is that according to Eq. (10) equations (16) will
hold giving rise to the possibility of interpreting the STU
black hole entropy as an entanglement entropy.
In order to show this we note that as a byproduct of the

Schmidt decomposition ̺23 = Tr1 |Ψ〉〈Ψ| has merely two
nonvanishing eigenvalues hence ̺ ˜̺ has two nonvanishing
eigenvalues too. Hence τ23 = (λ1 − λ2)

2 = Tr(̺23 ˜̺23) −
2λ1λ2. An explicit calculation of these eigenvalues shows
that [10]

τ23 = Tr(̺23 ˜̺23)−
1

2
τ123. (39)

Now we introduce the notation

Ψ0 ≡
(

Ψ000 Ψ010

Ψ100 Ψ110

)

, Ψ1 ≡
(

Ψ001 Ψ011

Ψ101 Ψ111

)

, (40)

(Ψj ·Ψk) ≡ Tr(ΨjΨ̃k), Ψ̃k ≡ −εΨT
j ε. (41)

Here j, k = 0, 1. (Recall our convention of labelling the
qubits from the right to the left hence in the case of Ψ0

for example the rightmost i.e. the first qubit is 0.) In this
notation the Wootters concurrence takes the following
form

τ23 = |(Ψ0 ·Ψ0)|2 + 2|(Ψ0 ·Ψ1)|2 + |(Ψ1 ·Ψ1)|2

−2|[Ψ0 ∧Ψ1]
2|,

(42)

where

[Ψ0 ∧Ψ1]
2 ≡ (Ψ0 ·Ψ0)(Ψ1 ·Ψ1)− (Ψ0 ·Ψ1)

2. (43)

Notice that [Ψ0 ∧ Ψ1]
2 is just minus Cayley’s hyperde-

terminant −D(|Ψ〉). Due to the GL(2)⊗3 transformation
property of this quantity familiar from Eq. (8) and the
special structure of Eq. (31) (i.e. up to phase factors it is
on the SL(2)⊗3 orbit of the charge state |Γ〉)

[Ψ0 ∧Ψ1]
2 = −[Γ0 ∧ Γ1]

2, (44)

i.e. this quantity is not depending on the moduli. Hence
the moduli dependence of τ23 is coming from the first
three terms of Eq. (42). However, it is easy to see
that these terms are depending merely on the first mod-
uli i.e. z1. Indeed the dot product (A · B) = Tr(AB̃)
of Eq. (41) is an SL(2) × SL(2) invariant one. For
S3 ⊗ S2 ∈ SL(2) × SL(2) the 2 × 2 matrices A and B
transform as A 7→ S3AS

T
2 and B 7→ S3BS

T
2 and the in-

variance property SεST = ε gives the invariance property
of the dot product. Since up to phase factors |Ψ〉 is the
S3⊗S2⊗S1 ∈ SL(2)⊗3 transformed of the charge state |Γ〉
according to these observations the only nontrivial trans-
formation is coming from the factor of the form I⊗I⊗S1

containing merely the moduli z1. In the following for

computational simplicity we will use the Fourier trans-
formed version of our three qubit state i.e. Eq. (35). For
the first three terms of Eq. (42) i.e. Tr(̺23 ˜̺23) we have

Tr(̺23 ˜̺23) =|(aΓ0 + bΓ1)
2|2 + |(cΓ0 + dΓ1)

2|2

+ 2|(aΓ0 + bΓ1) · (cΓ0 + dΓ1)|2,
(45)

where

PS1 =

(

a b
c d

)

=

(

i
√
y 0

x√
y − 1√

y

)

. (46)

Here for simplicity we have used the notation z ≡ z1 and
Γ2
j = (Γj · Γj) etc. With these definitions we have

Tr(̺23 ˜̺23) =

y2|Γ2
0|2 +

1

y2
|(xΓ0 − Γ1)

2|2 + 2|((xΓ0 − Γ1) · Γ0)|2.
(47)

After some algebraic manipulations we get

Tr(̺23 ˜̺23) = −2[Γ0 ∧ Γ1]
2

+
1

y2
[

(x2 + y2)Γ2
0 − 2x(Γ0 · Γ1) + Γ2

1

]2
.

(48)

Using Eqs. (42)-(43) we obtain

τ23(|Ψ〉) = 1

y2
[(zΓ0 − Γ1) · (zΓ0 − Γ1)]

2

−2[Γ0 ∧ Γ1]
2 − 2|[Γ0 ∧ Γ1]

2|.
(49)

For BPS black hole solutions [Γ0 ∧ Γ1]
2 = −D(|Γ〉) > 0

hence we can write

τ23 =

[

1

y
(zΓ0 − Γ1) · (zΓ0 − Γ1)− 2|Γ0 ∧ Γ1|

]

×
[

1

y
(zΓ0 − Γ1) · (zΓ0 − Γ1) + 2|Γ0 ∧ Γ1|

]

.

(50)

Here we have introduced the notation

|Γ0 ∧ Γ1| ≡
√

Γ2
0Γ

2
1 − (Γ0 · Γ1)2, (51)

where for BPS solutions the quantity under the square
root is positive. Let us now recall that for 2× 2 matrices
A and B we have

det(A+B) = detA+ detB +Tr(ÃB), (52)

Tr(AÃ) = 2 detA. (53)

Let us now define the 2× 2 matrices

Λ±(r) ≡
√

|Γ0 ∧ Γ1|
(

1

y(r)

(

1 x(r)
x(r) |z(r)|2

)

± 1

|Γ0 ∧ Γ1|

(

(Γ0 · Γ0) (Γ0 · Γ1)
(Γ0 · Γ1) (Γ1 · Γ1)

)

)

.

(54)
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Then using Eq. (52) the Wootters concurrence can be
written in the nice form

τ23(r) = − detΛ+(r) det Λ−(r). (55)

By permutation symmetry of the STU model with the
similar looking definitions

Λa
±(r) ≡

√

|Γ0 ∧ Γ1|
(

1

ya(r)

(

1 xa(r)
xa(r) |za(r)|2

)

± 1

|Γ0 ∧ Γ1|

(

(Γ0 · Γ0)a (Γ0 · Γ1)a
(Γ0 · Γ1)a (Γ1 · Γ1)a

)

)

,

(56)

we have

τbc(r) = − detΛa
+(r) det Λ

a
−(r), (57)

where a, b, c = 1, 2, 3 with a, b, c different. Here the dot
products like (Γ0 · Γ1)a, a = 1, 2, 3 refer to the special
role the ath qubit plays in building up the relevant 2 ×
2 matrices Γ0 and Γ1. Hence for example in the dot
product (Γ0 · Γ1)2 = Tr(Γ0Γ̃1) we have to use the 2 × 2
matrices

Γ0 =

(

Γ000 Γ001

Γ100 Γ101

)

, Γ1 =

(

Γ010 Γ011

Γ110 Γ111

)

. (58)

Now we would like to make some observations. We can
write Eq. (54) in the form

Λa
± =

√

|Γ0 ∧ Γ1|(Ma ± Γa), (59)

where the 2× 2 matrices

Ma =
1

ya

(

1 xa

xa (xa)2 + (ya)2

)

, (60)

Γa =
1

|Γ0 ∧ Γ1|

(

(Γ0 · Γ0)a (Γ0 · Γ1)a
(Γ0 · Γ1)a (Γ1 · Γ1)a

)

(61)

are having the properties

MT = M, ΓT = Γ, M,Γ ∈ SL(2,R). (62)

(For simplicity in the following we supress the a = 1, 2, 3
label.)
Now an element ξ of the space of 2× 2 real symmetric

matrices can be parametrized as

ξ =

(

T −X Y
Y T +X

)

. (63)

Then this space equipped with the quadratic form

Q : ξ 7→ Q(ξ) =− det(ξ)

=− 2(ξ · ξ)
=X2 + Y 2 − T 2,

(64)

becomes isomorphic to 2 ⊕ 1 dimensional Minkowski
space. The symmetric bilinear form associated to Q is

g : (ξ1, ξ2) 7→ g(ξ1, ξ2) =− 1

2
Tr(ξ1ξ̃2)

=− 1

2
(ξ1 · ξ2)

=X1X2 + Y1Y2 − T1T2.

(65)

Now in this notation the constraints of Eq. (62) mean
thatM and Γ regarded as vectors in the 2⊕1 dimensional
Minkowski space are timelike vectors lying on the double-
sheeted hyperboloid.
In the light of this an alternative form for the expres-

sion of the Wootters concurrences squared τ is

τbc(|Ψ(r)〉) =
τ123(|Γ〉)[g(Ma(r),Γa) + 1][g(Ma(r),Γa)− 1]

(66)

for a, b, c different. Note that in this formula the r de-
pendence appears only in M containing the moduli.
Hence the general structure of any of our concur-

rences squared is given by the simple formula τ =
τ123(g(M,Γ) + 1)(g(M,Γ) − 1). Now it is well-known
[25] that two timelike vectors are either having the same
time orientation with g(M,Γ) < 0, or the opposite one
with g(M,Γ) > 0. Since Tr(M) > 0 due to y > 0 mean-
ing that the Minkowski vector associated to M is future
directed we have the alternatives

g(M,Γ) < 0, i.e. Tr(M) > 0, Tr(Γ) > 0, (67)

or

g(M,Γ) > 0, i.e. Tr(M) > 0, Tr(Γ) < 0. (68)

In either case one of the terms of Eq. (66) can be made
to vanish. So when studying the vanishing conditions
for τ , without the loss of generality we may assume that
Eqs. (62) and (67) hold, i.e. M and Γ correspond to
future directed timelike vectors lying on the upper sheet
of the double-sheeted hyperboloid. Since we are studying
BPS solutions Γ2

0Γ
2
1 − (Γ0 · Γ1)

2 > 0 this means that we
may chose charge configurations for which Γ2

0 > 0 and
Γ2
1 > 0.
Now the upper sheet of the double sheeted hyperboloid

is a model for the hyperbolic plane. The bilinear form g
restricts to a Riemannian metric on tangent spaces to the
hyperboloid. The distance d(M,Γ) with respect to this
metric between two points M and Γ on the hyperboloid
is given by the expression.

cosh2 d(M,Γ) = [g(M,Γ)]2. (69)

According to Eq. (66) τ is vanishing precisely when the
distance between M and Γ is zero, i.e. M = Γ. However,
generally M is depending on the radial coordinate but
the matrix Γ is constant. On the horizon we have the
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simultaneous vanishing condition of all Wootters concur-
rences M(a)(0) = Γ(a) i.e.

1

ya(0)

(

1 xa(0)
xa(0) (xa(0))2 + (ya(0))2

)

=
1

|Γ0 ∧ Γ1|

(

(Γ0 · Γ0)a (Γ0 · Γ1)a
(Γ0 · Γ1)a (Γ1 · Γ1)a

)

.

(70)

(See in Fig. 1.) These are precisely the BPS attractor
equations that can be written in the more familiar form
[2]

za(0) = xa(0)− iya(0) =
(Γ0 · Γ1)a + i|Γ0 ∧ Γ1|

(Γ0 · Γ0)a
. (71)

Here the negativity of the imaginary part ensures the
positivity of the Kähler potential. In conclusion: the
Wootters concurrences squared τab(r) a, b = 1, 2, 3 , a 6=
b of our three-qubit state |Ψ(r)〉 are vanishing on the
horizon (τab(0) = 0) precisely when the BPS attractor
equations hold. Solutions for which Eq. (70) holds for all
values of r are the double extremal solutions. However,
for more general type of solutions Eq. (70) does not hold
for r 6= 0, hence the Wootters concurrences generally not
zero away from the horizon. We will see examples for
this phenomenon in the next section.

Ma(r)

Γa

X

Y

T

FIG. 1: Illustration of the BPS-attractor flow. The moduli
(represented by Ma(r) of Eq. (60)) converge to their horizon-
values (represented by the Γas of Eq. (61)). The correspond-
ing Minkowski vectors are defined by using Eq. (63).

The important corollary of our result is that according
to the CKW-relations of Eq. (10) the entanglement en-
tropies τa(bc)(r) having generally a different value off the
horizon, will flow to the same value, namely τ123(|Γ〉).
Hence equations

τa(bc)(0) = τ123(0) = τ123(|Γ〉) (72)

for a, b, c distinct will indeed hold.
Now recall that the BPS attractor flow is essentially

the gradient flow of the BPS mass hence as a next step

it is a natural question to ask what is the relationship
between this flow and the flow obtained from our con-
siderations related to the Wootters concurrences. The
value of the BPS mass squared is obtained by putting
the asymptotic values for the moduli into the r depen-
dent formula [1, 8]

M2
BPS =

1

4
〈Γ|
(

N3⊗N2 ⊗N1

−N3 ⊗ ε⊗ ε− ε⊗N2 ⊗ ε− ε⊗ ε⊗N1

)

|Γ〉.
(73)

Here

Na ≡ M−1
a = M̃a =

1

ya

(

(xa)2 + (ya)2 −xa
−xa 1

)

(74)

(for a = 1, 2, 3) is an SL(2,R) matrix, where the r-
dependence of the moduli is left implicit and the extra
factor of 1

4 is partly arising from our unusual normaliza-
tion used in Eq. (4). In the Appendix it is shown that
by attaching a special role to one of the qubits (e.g. to
the first one) this formula can be written in the following
form

M2
BPS = det(Z+) (75)

where

Z± ≡ 1√
8

√

|γ0 ∧ γ1|
(

1

y

(

1 x
x |z|2

)

± 1

|γ0 ∧ γ1|

(

(γ0 · γ0) (γ0 · γ1)
(γ0 · γ1) (γ1 · γ1)

)

)

.

(76)

Here

γiµ = ΣµνΓiν , (77)

Σ ≡ N3 ⊗ ε+ ε⊗N2, (78)

γi = N3Γiε
T + εΓiN T

2 . (79)

In these expressions we can regard γiµ, i = 0, 1, µ =
1, 2, 3, 4 as a pair of four-vectors or a pair of 2×2 matrices
depending on the charges and the moduli z2 and z3. Al-
ternatively one can regard γkji(z

2, z3, P I , QI) as a three-
qubit state displaying no dependence on z1 ≡ z = x− iy.
Now the attractor equations [2] fixing the values of the

moduli at r = 0 are coming from the extremization of
MBPS . Employing the shorthand notation za(0) ≡ za =
xa − iya these equations can be rewritten as

1

y

(

1 x
x x2 + y2

)

=
1

|Γ0 ∧ Γ1|

(

(Γ0 · Γ0)1 (Γ0 · Γ1)1
(Γ0 · Γ1)1 (Γ1 · Γ1)1

)

=
1

|γ0 ∧ γ1|

(

(γ0 · γ0)1 (γ0 · γ1)1
(γ0 · γ1)1 (γ1 · γ1)1

)

.

(80)

Clearly due to the triality symmetry of the STU model
these are equivalent to Eq. (70).
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Notice that the 4× 4 matrices Z± are similar in struc-
ture to the ones showing up in recent investigations on
domain walls and issues of marginal stability of N = 4
dyons [26, 27]. This is of course not a coincidence since
using duality transformations the N = 2 STU model can
be related to such N = 4 models in a number of different
ways [1]. One possible way to see the correspondence be-
tween such N = 2 and N = 4 structures is to consider a
toroidal T 6 compactification of the heterotic string. In-
deed let us label by xµ, µ = 0, 1, 2, 3 the noncompact
coordinates, and restrict attention to merely a subsec-
tor of the theory in which we include only those gauge
fields that are associated with the 4µ and 5µ components
of the ten dimensional metric and antisymmetric tensor
field. Moreover, let us consider merely the scalar fields
coming from the mn, 4 ≤ m,n ≤ 5 components of such
fields i.e. the ones associated with one of the tori T 2. In
this subsector the T -duality transformations as elements
of O(2, 2,Z) are acting on the charges and the moduli
[1, 26]. The moduli fields can now be included into a
4× 4 matrix

M =

(

G−1 G−1B
−BG−1 G−BG−1B

)

, L =

(

0 I
I 0

)

, (81)

where

G =
y3

y2

(

|z2|2 x2

x2 1

)

, B =

(

0 x3

−x3 0

)

. (82)

These matrices satisfy the constraints

MT =M, MLMT = L. (83)

Now after employing the SO(4) matrix

W =







0 0 1 0
0 0 0 −1
0 1 0 0
1 0 0 0






(84)

we obtain the result

W (M − L)WT = N3 ⊗N2 − ε⊗ ε. (85)

Clearly the transformation based on W exploits the
group isomorphism O(2, 2) ≃ SL(2,R) × SL(2,R). Now
using Eq. (85) and the results of the appendix (see
Eq. (A9) in this respect) it is easy to demonstrate the
structural similarity of the usual expressions for the BPS
mass [1, 26, 27] and our expressions used in the context
of the STU model. In this picture our 1 + 2 split of the
qubits with the first one playing a distinguished role cor-
responds to the split of the U -duality group to S and T -
duality transformations in the form SL(2,Z)×O(2, 2,Z).
Notice also that detZ+ ≡ |Z+|2 and detZ− ≡ |Z−|2

are just the magnitudes squared of the eigenvalues of the
matrix ZZ† formed from the canonical form of the 4× 4
antisymmetric central charge matrix Z of the N = 4
supersymmetry algebra. As it is well-known the largest

eigenvalue in theories with N = 4 supersymmetry plays
the role of the BPS mass (just like the single central
charge plays the same role in N = 2 theories).

It is interesting to compare this role played by the ma-
trices Z± of Eq. (76) with the role played by the cor-
responding ones Λ± of Eq. (54) governing the structure
of the Wootters concurrence. In both cases the deter-
minants of these matrices define important quantities.
According to Eq. (55) the determinants of Λ± are giving
rise to an expression for the concurrence squared. On
the other hand the determinant of one of Z± gives the
expression for the BPS mass squared. Due to the attrac-
tor mechanism the moduli are stabilized at the horizon.
During this process the value of the BPS mass flows to a
value related to the macroscopic black hole entropy as

SBH =
π

GN
M2

BPS(0) =
π

GN
|Z+(0)|2 =

π

GN

√

τ123(|Γ〉).
(86)

On the other hand the concurrence flows to a vanishing
value, giving rise to an interpretation of this black hole
entropy as a linear entanglement entropy in this three-
qubit picture as displayed by Eq. (72).

IV. EXPLICIT EXPRESSIONS FOR THE

WOOTTERS CONCURRENCES

In this section we will give explicit expressions for the
Wootters concurrences calculated for all three classes of
non-degenerate attractor flows of the STU-model. These
classes are as follows: 1

2 -BPS, non-BPS Z = 0, non-BPS
Z 6= 0. We consider the most general configurations [3],
when all the charges are switched on. We will show,
that in all three cases the Wootters concurrences squared
vanish at the event-horizon.

In the following we use the pI , qI quantized charges
instead of the P I , QI dressed ones. This is because
we would like to use the most general non-BPS Z 6= 0
solution [3] which has been produced by using an U-
duality transformation acting on such quantized charges.
The dressed charges are rescaled quantities related to
the quantized (undressed) ones via factors coming from
the asymptotic volume moduli. During this rescal-
ing, our important quantities transform with the pow-
ers of the d = 4 Newton constant GN . It turns out
[23] that Ψ scales with

√
GN , i.e. |Ψ(P I , QI , z

a)〉 =√
GN |Ψ(pI , qI , z̃

a)〉 where z̃a are the moduli calculated
with the pI , qI quantized charges. Because of this, the
Wootters concurrences squared transform with G2

N

τbc(P
I , QI , z

a) = G2
N τbc(p

I , qI , z̃
a), (87)

which can be seen most easily from Eq. (42).

In this section we denote the undressed three-qubit
charge state as Γ, defined similarly as in Eq. (5).
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A. The most general 1

2
-BPS solution

Let us start with the supersymmetric case. The general
solution of the attractor flow equations is

e−4U(r) = I4(H(r)), (88a)

z̃a(r) =
ha(r) + i∂ha

√

I4(H(r))

h0(r) + i∂h0

√

I4(H(r))
, (88b)

where where U(r) is the warp factor and H(r) can be
constructed from the harmonic functions

hI(r) = pI + pI
1

r
, (89a)

hI(r) = qI + qI
1

r
, (89b)

similarly to Γ in Eq. (5). With these quantities we can
writeH(r) = Γ+Γ 1

r . Two constraints have to be satisfied

by Γ:

I4(Γ) = 1, 〈Γ,Γ〉 = pIqI − qJp
J = 0. (90)

The black hole charge configurations supporting the 1
2 -

BPS attractors at the event horizon are the ones satisfy-
ing the following set of constraints [3]

I4(Γ) > 0, papb − p0qc > 0. (91)

The same holds for the whole flow, i.e.

I4(H) > 0, hahb − h0hc > 0. (92)

In this case the moduli can be rewritten as

z̃a =
hIhI − 2haha − i

√

I4(H)

2(hbhc − h0ha)
, (93)

where r-dependence is implicit, and summation on I is
understood. The indices a, b, c are distinct elements of
the set {1, 2, 3}, and no summation on a is implied. As
in Eq. (40) we can define the 2× 2 matrices H0 and H1.
We have already seen that in τbc only the ath moduly
appears. In the following we indicate by the notation
(H0 · H0)a which qubit for the construction of H0 and
H1 plays a special role. Now the solutions for the moduli
take the following form

z̃a =
(H0 · H1)a + i|H0 ∧H1|

(H0 · H0)a
. (94)

By virtue of (49), with [Γ0 ∧ Γ1]
2 > 0 we obtain

τbc(Ψ) = −4[Γ0 ∧ Γ1]
2

+
1

(ỹa)2
[

|z̃a|2(Γ0 · Γ0)a − 2x̃a(Γ0 · Γ1)a + (Γ1 · Γ1)a
]2
,

(95)

which can be cast to the form

τbc(Ψ) =
1

[H0 ∧H1]2
[

(H1 · H1)a(Γ0 · Γ0)a

− 2(H0 · H1)a(Γ0 · Γ1)a + (H0 · H0)a(Γ1 · Γ1)a
]2

− 4[Γ0 ∧ Γ1]
2.

(96)

As we have proven in Section III τbc must vanish at
the horizon. One can also see this directly from the
expression above. Indeed, since limr→0 rH0 = Γ0 and
limr→0 rH1 = Γ1 it follows, that the first term of Eq. (96)
converges to the second one and then limr→0 τbc = 0.
Consider now the special D0−D4 case. For this solu-

tion only the charges of D0 and D4-branes are turned on
which can be obtained by putting p0 = 0 and qa = 0 into
our general expression. This results in (Γ0 ·Γ0)a = −pbpc,
(Γ0 · Γ1)a = 0, (Γ1 · Γ1)a = −q0pa, and

τbc(Ψ) = −4q0p
apbpc

+
1

[H0 ∧H1]2
[

(H1 · H1)ap
bpc − (H0 · H0)aq0p

a
]2
.
(97)

We can further specialise this by noticing that this case
admits axion-free attractor-flows, i.e. moduli with van-
ishing real part. (The asymptotic limit of the real part
of the moduli gives the B-fields realized on the tori, so
these flows does not admit non-trivial B-fields.) To im-
plement this case h0 and ha must be zero as it can be
seen from Eq. (93), so we have to switch off also p0 and
qa. The Wootters concurrences squared for this axion-
free case are

τbc(Ψ) =
1

h0hahbhc
[

h0h
apbpc − q0p

ahbhc
]2
. (98)

B. The most general non-BPS Z = 0 solution

The non-BPS Z = 0 solutions [3] can be obtained
from the 1

2 -BPS ones by simply changing the sign of any
two imaginary parts of the moduli. This leaves the (20)
Kähler potential invariant and yields the following change
for the (91) 1

2 -BPS constraints

I4 > 0, papb − p0qc > 0,

pbpc − p0qa < 0,

pcpa − p0qb < 0.

(99)

During the calculation of |Ψ̃〉 the moduli only appear in
the Sa matrices. We can carry out the sign flip of some
ỹa by employing the Pauli matrix σ3

− σ3Sa =
1√
ỹa

(

−ỹa 0
−x̃a 1

)

. (100)

Due to this observation in order to calculate τbc we have
to use (σ3 ⊗ σ3 ⊗ I)|Ψ̃〉 etc or (σ1 ⊗σ1 ⊗ I)|Ψ〉 etc. Since
these states are local-unitary equivalent to the original
ones, the τbc’s are of the same form as in the 1

2 -BPS case.

C. The most general non-BPS Z 6= 0 solution

The calculation of the Wootters concurrences squared
is not straightforward in this case, due to the complicated
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expressions for the attractor flow [3], so we show the main
steps.
The non-BPS Z 6= 0 attractor flow is

e−4U(r) = h0(r)h1(r)h2(r)h3(r) − b2, (101a)

x̃a(r) =
ςaν

2
aC

a
1 + (ςa − ̺a)νaC

a
2 − ̺aC

a
3

ν2aC
a
1 + 2νaCa

2 + Ca
3

, (101b)

ỹa(r) =
(ςa + ̺a)2νaC4

ν2aC
a
1 + 2νaCa

2 + Ca
3

, (101c)

where

νa = ν eαa , (102a)

ν =

(

2p1p2p3 − p0pIqI +
√

−[Γ0 ∧ Γ1]2p
0

2p1p2p3 − p0pIqI −
√

−[Γ0 ∧ Γ1]2p0

)
1

3

,

(102b)

ςa =
(Γ0 · Γ1)a −

√

−[Γ0 ∧ Γ1]2

(Γ0 · Γ0)a
, (102c)

̺a =
−(Γ0 · Γ1)a −

√

−[Γ0 ∧ Γ1]2

(Γ0 · Γ0)a
, (102d)

are charge-dependent constants. The αa real constants
satisfying the constraint α1 + α2 + α3 = 0, account for
the flat directions [3, 9]. The harmonic functions are now
defined as

hI(r) = bI + (−I4(Γ))
1

4

1

r
, (103)

giving rise to the r-dependent quantities

Ca
1 = hbhc + h0ha + 2b, (104a)

Ca
2 = hbhc − h0ha, (104b)

Ca
3 = hbhc + h0ha − 2b, (104c)

C4 = e−2U =
√

h0h1h2h3 − b2, (104d)

also making their presence in Eqs. (101b). Using the
(102c) and (102d) form of ςa and ̺a we can separate the
terms containing hI(r) in the moduli, as

x̃a(r) =
(Γ0 · Γ1)a
(Γ0 · Γ0)a

−
√

−[Γ0 ∧ Γ1]2

(Γ0 · Γ0)a
Ca

x(r), (105a)

ỹa(r) = −
√

−[Γ0 ∧ Γ1]2

(Γ0 · Γ0)a
Ca

y (r). (105b)

Here the only r dependent terms are

Ca
x(r) =

ν2aC
a
1 − Ca

3

ν2aC
a
1 + 2νaCa

2 + Ca
3

, (106a)

Ca
y (r) =

4νaC4

ν2aC
a
1 + 2νaCa

2 + Ca
3

. (106b)

After this preparation recall (49) for this case, when
[Γ0 ∧ Γ1]

2 < 0

τbc(Ψ) =

1

(ỹa)2
[

|z̃a|2(Γ0 · Γ0)a − 2x̃a(Γ0 · Γ1)a + (Γ1 · Γ1)a
]2
.

(107)

Straightforward calulation then shows

τbc(Ψ) = −[Γ0∧Γ1]
2 1

(Ca
y )

2

[

(Ca
x)

2 + (Ca
y )

2 − 1
]2
. (108)

If we notice that Ca
1C

a
3−(Ca

2 )
2 = 4(C4)

2 (see Eqs. (104a)-
(104d)) then it turns out that

(Ca
x)

2 + (Ca
y )

2 =
ν2aC

a
1 − 2νaC

a
2 + Ca

3

ν2aC
a
1 + 2νaCa

2 + Ca
3

, (109)

and with this

τbc(Ψ) =− [Γ0 ∧ Γ1]
2

[

Ca
2

C4

]2

=
−I4(Γ)

4
e4U [h0ha − hbhc]

2
.

(110)

We note that this expression is independent of the flat
directions of the non-BPS Z 6= 0 flow.
Now we can show easily that τbc vanishes at the event

horizon, by calculate its r → 0 limit. Indeed since

τbc(Ψ) =
−I4(Γ)

4

[

b0ba − bbbc + (. . . )1r
]2

b0b1b2b3 − b2 + · · · − I4(Γ)
1
r4

, (111)

it follows that

lim
r→0

τbc = 0. (112)

By virtue of this calculation one can see that also in
this non BPS situation a GHZ-like state with vanishing
Wootters-concurrence have been distilled at the event-
horizon.
In the asymptotically Minkowski region the warp fac-

tor must be equal to 1 hence

lim
r→∞

τbc =
−I4(Γ)

4
[b0ba − bbbc]

2

=
−I4(Γ)

4

[

(b0ba)
2 + (bbbc)

2 − 2(1 + b2)
]

.

(113)

As a special subcase of this non-BPS Z 6= 0 one now we
consider the D0−D6 solution. This charge-configuration
independently of the signs of the charges can appear only
in the non-BPS regime because I4 = −(p0q0)

2 < 0. Orig-
inally, the general solution have been constructed using
an SL(2,R)⊗3 U-duality transformation of this D0−D6
solution [3, 9]. Due to the ςa, ̺a parametrisation of this
transformation, (see in Eqs. (102c) and (102d)) we can
not produce neither the identity transformation nor the
transformations that bring us back to the D0−D6 case
with different charges. Hence we can not simply write
the D0−D6 charges into the corresponding formulae for
the horizon-limit of τbc. However, for the calculation of
τbc on the horizon we can proceed by directly using the
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original D0−D6 solutions [3]:

e−4U(r) = h0(r)h1(r)h2(r)h3(r) − b2, (114a)

x̃a(r) =
ν′aC

a
2

Ca
3

, (114b)

ỹa(r) =
ν′a2C4

Ca
3

, (114c)

with the notation introduced in Eqs. (104a)-(104d). Here

ν′a = eαa

(

q0
p0

)
1

3

. (115)

Recall Eq. (49) for this case, when [Γ0 ∧ Γ1]
2 < 0. For

the D0 − D6 charge configuration −2(Γ0 · Γ1)a = p0q0,
(Γ0 · Γ0)a = (Γ1 · Γ1) = 0, and the expression

τbc(Ψ) =

[

x̃a

ỹa
p0q0

]2

=
−I4(Γ)

4
e4U [h0ha − hbhc]

2

(116)

is the same as in Eq. (110) of the general non-BPS Z 6= 0
case. The D0 −D6 solution also supports an axion-free
attractor flow. This case is obtained if x̃a = 0 for all a or
equivalently when h0ha = hbhc. This holds if and only
if h0 = ha = hb = hc and in this case τbc(Ψ) = 0 for all
values of r along the flow.

V. SOME GEOMETRICAL OBSERVATIONS

ON THE NON-BPS Z 6= 0 CASE

By means of a geometric approach in Section III we
have shown that the vanishing condition for the Wootters
concurrence on the event horizon is equivalent to the 1

2 -
BPS attractor equations. Then in Section IVA we have
illustrated this equivalence by calculating the explicit r-
dependent expressions for the concurrence and taking the
horizon limit. In the non-BPS Z 6= 0 case, however, we
could not relate the vanishing of the concurrence on the
event horizon to the non-BPS Z 6= 0 attractor equations.
In Section IVC we have merely demonstrated the van-
ishing of τbc by means of an explicit calculation using the
known solution. In this section we investigate the geo-
metrical aspects of the vanishing of the concurrence even
for this case.
In the non-BPS Z 6= 0 case we have I4(Γ) = 4[Γ0 ∧

Γ1]
2 < 0 and an expression similar to Eq. (66) for the

concurrence can be obtained

τbc = τ123(Γ)[g(Ma(r),Γa)]2. (117)

However, this time the determinant of the 2× 2 matrix

Γa =
1

√

−[Γ0 ∧ Γ1]2

(

(Γ0 · Γ0)a (Γ0 · Γ1)a
(Γ1 · Γ0)a (Γ1 · Γ1)a

)

(118)

is −1. As a result of this the vector corresponding to Γa

is spacelike and lies on the one-sheeted hyperboloid.
Now the vanishing condition for τbc on the horizon is

equivalent to the one of ortogonality of Ma(0) and Γa.
However, the condition

lim
r→0

g(Ma(r),Γa) = 0 (119)

does not fixMa(0) uniquely. The attractor value ofM in
this non-BPS Z 6= 0 case is an element of a one-parameter
submanifold of the upper sheet of the double sheeted hy-
perboloid. Indeed it is a geodesic obtained via intersect-
ing this hyperboloid with a plane containing the origin.
(See Fig. 2.)

Ma(r)

Γa

X

Y

T

FIG. 2: Illustration of the non-BPS Z 6= 0 flow. Now the
moduli (represented by Ma(r) of Eq. (60)) converge to their
horizon-values which are not fixed uniquely by the vanishing
of the Wootters-concurrence. The vanishing condition in this
case merely forcing Ma(0) to be Minkowski-orthogonal to Γa.

In the following we show that this freedom in the
value of Ma on the horizon is related to the flat di-
rections appearing for the non-BPS Z 6= 0 flow. Using
Eqs. (60), (61) and (63) we can write the components of
the Minkowski vectors corresponding to the 2 × 2 sym-
metric matrices Γa and Ma as

Γa 7−→ 1
√

−[Γ0 ∧ Γ1]2





1
2 ((Γ1 · Γ1)a − (Γ0 · Γ0)a)

(Γ0 · Γ1)a
1
2 ((Γ1 · Γ1)a + (Γ0 · Γ0)a)



 ,

(120)

Ma 7−→ 1

ỹa





1
2 (|z̃a|2 − 1)

x̃a
1
2 (|z̃a|2 + 1)



 . (121)

In the following we refer to these vectors also as Γa and
Ma.
First we consider the special case when the vector cor-

responding to Γa is (1, 0, 0). Now (Γ0 · Γ1)a = 0 and
(Γ0 · Γ0)a = −(Γ1 · Γ1)a. This charge configuration is
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arising for the non-BPS Z 6= 0 D0−D4 or D2−D6 sys-
tem. Then Ma(0) lies on the hyperbola parametrized as
(0, sinhµ, coshµ). Hence we see that the simplest can-
didate for the parametrization of such Ma(0) is given
by the rapidity µ. On the other hand from the explicit
form of the corresponding solution we know that the sec-
ond coordinate of Ma(0) should be x̃a

ỹa which now equals

to
Ca

x

Ca
y
. (See Eqs. (105a)-(105b).) The horizon limit of

this coordinate is sgn(ν) sinh(ϕ+αa), and the full vector
corresponding to Ma(0) is

Ma(0) =





0
sgn(ν) sinh(ϕ+ αa)

cosh(ϕ+ αa)



 , (122)

where ϕ = ln |ν|. Here the parameter αa for the flat
directions of the flow makes its presence, and we can
identify the other parameter µ as sgn(ν)(ϕ + αa).
As a next step we can allow more general charges by

lifting Γa vertically from the horizontal plane. A Lorenz
boost implementing this change leaves the second coordi-
nate of Ma(0) and Γa and also the role played by the flat
directions invariant. Finally a rotation around the third
coordinate axis does not cause any new effect, hence we
can conclude that the freedom in the value of Ma on the
horizon is caused by the appearance of flat directions in
the attractor flow.

VI. CONCLUSIONS

In this paper we have demonstrated how an entangle-
ment based picture related to the properties of a charge
and moduli-dependent three-qubit state |Ψ〉 already used
in our previous papers [8, 23] can produce further insight
on issues concerning the attractor mechanism. Our main
calculational tool was a new quantity which until now
has only been used in quantum information theory: the
Wootters concurrence. This quantity which is related to
the important concept of the entanglement of formation
[20] can be used to characterize the mixed two qubit cor-
relations inside of an arbitrary n-qubit pure state. In the
case of the STU model of N = 2, d = 4 supergravity we
made use of this quantity for the n = 3 case. For static
spherically symmetric extremal black hole solutions from
|Ψ〉 a one parameter family of three-qubit states |Ψ(r)〉
is emerging. It is obtained as the SL(2,R)×3 orbit of a
suitable three-qubit charge state |Γ〉. This means that
now via the moduli this state also exhibits an implicit r
dependence where r is the radial coordinate measuring
the distance from the horizon.
We have demonstrated that for 1

2 -BPS solutions the
vanishing conditions for the Wootters concurrences at
r = 0 are equivalent to the usual attractor equations.
For non-BPS black holes we merely proved the vanishing
of the concurrences via an explicit calculation employing
the explicit form of such solutions [3, 7, 9]. As it is well-
known the attractor equations make it possible to express

the values of the moduli fields at the horizon in terms
of the charges facilitating a calculation of the macro-
scopic black hole Bekenstein-Hawking (BH) entropy. As
it was shown [4] for the STU model this quantity can
be reinterpreted as a one related to the unique triality
and SLOCC invariant [11] tripartite entanglement mea-
sure, the three-tangle, for the charge state |Γ〉. However,
within the theory of quantum entanglement the physical
meaning of the three-tangle of |Γ〉 is not related to the
desirable notion of entanglement entropy but rather to a
related concept called entanglement monogamy. This lat-
ter term can be used as a meme referring to the fact that
entanglement cannot be shared for free. For three-qubit
systems this sharing of entanglement is characterized by
the Coffmann-Kundu-Wootters (CKW) relations [10] en-
capsulating the precise form of the trade-off between the
parties of the tripartite system.

Now in order to retain the meaning of the black hole
entropy as some sort of entanglement entropy even within
this three-qubit entanglement based scenario we have an
interesting possibility. To uncover this possibility let us
provide an alternative characterization of the particular
class of STU black hole solutions as follows. This new
characterization will be based not on the properties of
the charge states [6] |Γ〉 but on the properties of the ”at-
tractor states” [23] |Ψ(0)〉. Notice that unlike the charge
state |Γ〉 the attractor state |Ψ(0)〉 is a quantity of dy-
namics as it is reflecting the end point of the attractor
flow in moduli space. In this case according to the CKW
inequalities the vanishing conditions for all of the con-
currences squared of |Ψ(r)〉 for r = 0 makes it also pos-
sible to reinterpret the macroscopic black hole entropy
as a linear entropy for |Ψ(r)〉 at the horizon arising from
an arbitrary single partite-bipartite split of our tripartite
system.

In this three-qubit picture the physical meaning of the
STU black hole entropy as a linear entropy is as follows.
When attaching to one of our qubits (e.g. to the first
one) a distinguished role this split of roles in a partic-
ular duality frame corresponds to a split of a subgroup
of the U -duality group to S and T -dualities answering
the group structure SL(2,Z) × O(2, 2,Z). This group
structure now refers to the admissible set of local oper-
ations. In the stringy context a local operation of that
kind can be for example the change of the string coupling
corresponding to the change in the dilaton Φ1 = log y1.
As it is well-known the linear entropy is zero precisely
when the three-qubit state |Ψ(0)〉 can be transformed by
such local manipulations to a product state of the form
|ϕ〉32 ⊗ |χ〉1 or |γ〉3 ⊗ |β〉2 ⊗ |α〉1 where the subscripts
refer to the particular subsystems corresponding to the
qubits. This case corresponds to a class of small black
holes [6] i.e. ones that have vanishing macroscopic BH
entropy. (However, they can have nonzero terms arising
from higher curvature corrections.)

Now notice that due to triality symmetry as displayed
by Eq. (16) if one of the linear entropies is vanishing for
|Ψ(0)〉 the same holds for all of them. An important con-
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sequence of this is that the attractor states with vanishing
BH entropy are totally separable (at least in our approx-
imation neglecting quantum corrections). This means
that they are on the orbit of the local group SL(2,Z)⊗3

of a state of the form |γ〉3 ⊗ |β〉2 ⊗ |α〉1. Since according
to Eq. (16) at r = 0 all of the linear entropies are the
same in the following we will refer to the linear entropy
or the BH entropy of the ”state” |Ψ(0)〉.
Now a value of the BH entropy different from zero in-

dicates the impossibility of transforming our attractor
state to the fully separable product form by ”local” op-
erations. In order to do this we have to employ a set
of ”global” transformations belonging to a larger group
containing the local one as a subgroup, i.e. possibly the
full U duality group or the group of Peccei-Quinn trans-
formations [28] incorporating the sub-leading quantum
perturbative corrections to the cubic special geomety of
the STU model [29]. The latter group of transformations
is capable of transforming small black holes to large ones
[29] by including also in the family of admissible oper-
ations Witten theta-shifts [29–31]. The particular value
of the linear entropy is then related to the macroscopic
black hole entropy of a large [6] black hole, i.e. to a one
having nonzero BH entropy. These black holes contain
some amount of entanglement as measured by the linear
entropy of the state |Ψ(0)〉. In the quantum information
theoretic context in order to transform their states to the
product form manipulations belonging to the full nonlo-
cal group of transformations are needed. In the stingy
black hole context the precise form of the correspond-
ing statement referring to some property of the attractor
state |Ψ(0)〉 in connection with the action of the full U -
duality or Peccei-Quinn group should be clarified.
Clearly at this stage it is not at all clear whether the

entanglement entropy of the ”attractor state” |Ψ(0)〉 can
be regarded (and in what sense) as a macroscopic mani-
festation of the entanglement entropy of a genuine quan-
tum state whose degeneracy is responsible for the black
hole entropy. Until this important issue is clarified the
entanglement contained in |Ψ(r)〉 merely provides a nice
way of describing the web of dualities of the STU model
using the techniques of quantum information.
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Appendix A: BPS mass formula

The BPS mass squared is [1]

M2
BPS =

1

4
〈Γ|
(

N3⊗N2 ⊗N1

−N3 ⊗ ε⊗ ε− ε⊗N2 ⊗ ε− ε⊗ ε⊗N1

)

|Γ〉.
(A1)

Here

Na ≡ M−1
a = M̃a =

1

ya

(

(xa)2 + (ya)2 −xa
−xa 1

)

(A2)

is an SL(2,R) matrix, where as usual M̃ = −εMT ε.
Let us define the quantity

Π± ≡ I ⊗ I ±N3ε⊗N2ε. (A3)

Then it is easy to check that the 4× 4 matrices 1
2Π± are

rank two projectors i.e.

Π2
± = 2Π±, Π±Π∓ = 0, (A4a)

Π+ +Π− = 2I ⊗ I, ΠT
± = Π±. (A4b)

We will make special use of Π− hence we adopt the no-
tation

Π ≡ Π−. (A5)

We will also need the quantity

Σ ≡ N3 ⊗ ε+ ε⊗N2 (A6)

with the properties

ΣT = −Σ, Π−Σ = ΠΣ = 2Σ, (A7a)

Π+Σ = 0, ΣΣ̃ = −2Π (A7b)

where Σ̃ = ε ⊗ εΣT ε ⊗ ε. With these results we can
rewrite the BPS mass squared with special role attached
to the first qubit as

M2
BPS =

1

4
〈Γ|L ⊗ N1|Γ〉 −

1

4
〈Γ|Σ⊗ ε|Γ〉, (A8)

where

L ≡ −Πg = −gΠ̃ = N3 ⊗N2 − ε⊗ ε, g ≡ ε⊗ ε. (A9)

In this form of the BPS mass squared only the first term
contains the moduli z1 associated to our first qubit with
special status.
With the special role for the first qubit we can repre-

sent the 8 charges either as a pair of four-vectors,

Γ0µ =







Γ000

Γ010

Γ100

Γ110






, Γ1µ =







Γ001

Γ011

Γ101

Γ111






(A10)

where µ = 1, 2, 3, 4, or a pair of 2× 2 matrices

Γ0jk =

(

Γ000 Γ010

Γ100 Γ110

)

, Γ1jk =

(

Γ001 Γ011

Γ101 Γ111

)

(A11)

where j, k = 0, 1.
Now we adopt the definition

γiµ = ΣµνΓiν , γi = N3Γiε
T + εΓiN T

2 . (A12)
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In this definition we can regard γi, i = 0, 1 as a pair of
four-vectors or a pair of 2× 2 matrices depending on the
charges and the moduli z2 and z3. Alternatively we can
regard γkji(z

2, z3, P I , QI) as a three-qubit state display-
ing no dependence on z1.
Now as a first property of γi one can check that

γi(N2ε)
T = (N3ε)γi. (A13)

The second property of γi we need is the vanishing of the
commutator

[N3ε, γ1γ̃0] = 0. (A14)

Now as a trick to give a new look to Eq. (A8) we note
that

2L = ΣgΣ, 4Σ = −ΣΣ̃Σ. (A15)

Using this with z1 ≡ z we have

1

4
〈Γ|L ⊗ N1|Γ〉 =

1

8y

(

|z|2(γ0 · γ0)− 2x(γ0 · γ1) + (γ1 · γ1)
)

,
(A16)

where as usual

(A ·B) = AµgµνB
ν = Tr(AB̃), (A17)

with g known from Eq. (A9).
For the second term of Eq. (A8) we have

2〈Γ|Σ⊗ ε|Γ〉 = −γ0µΣ̃µνγ1ν

= −Tr(N3εγ1γ̃0 + γ̃0γ1(N2ε)
T )

= −2Tr(N3εγ1γ̃0),

(A18)

where in the last equality we have used Eq. (A13). In
order to transform this term further we use the identity

[Tr(A)]2 − Tr(A2) = 2 det(A), (A19)

valid for 2× 2 matrices. By virtue of this we have

[Tr(N3εγ1γ̃0)]
2 = Tr(N3εγ1γ̃0N3εγ1γ̃0) + 2 det(γ1γ̃0).

(A20)
Using in the first term the commutation property of
Eq. (A14) and the identity N3εN3 = N3εN T

3 = ε we
get

[Tr(N3εγ1γ̃0)]
2 = −Tr(γ1γ̃0)

2 + 2det(γ1γ̃0). (A21)

Now in the first term of this we use once again Eq. (A19)
and recall the definition of Eq. (43) to obtain

[Tr(N3εγ1γ̃0)]
2 = −[Tr(γ1γ̃0)]

2 + [2 det(γ0)][2 det(γ1)]

= [γ0 ∧ γ1]2.
(A22)

These considerations yield the formula for the BPS mass
squared with the first qubit playing a special role

M2
BPS =

1

8

[

1

y
(zγ0 − γ1) · (zγ0 − γ1) + 2|γ0 ∧ γ1|

]

,

(A23)
where

|γ0 ∧ γ1| =
√

(γ0 · γ0)(γ1 · γ1)− (γ0 · γ1)2, (A24)

and recall also Eqs. (A6), (A12) and (A17). Now after
using the definitions of Eq. (76) from this we get the final
result

M2
BPS = det(Z+). (A25)

These considerations are to be compared with the ones
connected to Eqs. (54) and (55) and the ones of Section
III.
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