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Abstract

The Lorentz-violating isotropic modified Maxwell theory minimally coupled to standard

Dirac theory is characterized by a single real dimensionless parameter which is taken to

vanish for the case of the standard (Lorentz-invariant) theory. A finite domain of positive and

negative values of this Lorentz-violating parameter is determined, in which microcausality

and unitarity hold. The main focus of this article is on isotropic modified Maxwell theory,

but similar results for an anisotropic nonbirefringent case are presented in the appendix.
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1. Introduction

There are two Lorentz-violating extensions of the standard theory of photons [1, 2, 3],

which are both gauge invariant and power-counting renormalizable [4, 5]. The standard

Lorentz-invariant Maxwell theory has a quadratic field strength term (F 2) in the Lagrange

density and the first Lorentz-violating extension adds a CPT-odd Chern–Simons-type term

(mCS k̂ A F , with a fixed normalized “four-vector” k̂µ and mass scale mCS). The second

Lorentz-violating extension adds another F 2 term, which has different contractions than

those of the standard Maxwell term.

The consistency of the CPT-violating Maxwell–Chern–Simons (MCS) theory [6] has been

studied in Ref. [7] and the result is that certain choices of the parameters (specifically, time-
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like k̂µ) lead to violation of microcausality and/or unitarity. The concern now is the consis-

tency of the CPT-invariant modified Maxwell theory, in particular, the theory restricted to

the isotropic sector.

The isotropic modified Maxwell theory is described by a single real dimensionless pa-

rameter κ̃tr. The standard Lorentz-invariant Maxwell theory has κ̃tr = 0. Positive values

of κ̃tr have been derived from an underlying small-scale structure of spacetime in the long-

wavelength limit of the photons [8, 9], so that isotropic modified Maxwell theory with small

enough positive κ̃tr can be expected to be consistent. But the consistency of isotropic mod-

ified Maxwell theory for negative values of κ̃tr is an entirely open question. Furthermore,

there are only partial results for κ̃tr ≥ 0 in the literature [10, 11], which makes it worthwhile

to give a more or less comprehensive analysis of the isotropic case.

The outline of this article is as follows. A brief discussion of isotropic modified Maxwell

theory is given in Sec. 2. The pure-photon theory is then extended by the introduction of a

minimal coupling of this photon to a charged Dirac particle. In short, the theory considered

is a particular modification of standard quantum electrodynamics, with a modified kinetic

term of the photon in the action. The corresponding gauge-field propagator in a general

axial gauge is then presented in Sec. 3. Microcausality (i.e., commutation of electric and

magnetic field operators with certain spacelike separations) is established in Sec. 4, together

with the global causality of the theory (e.g., absence of closed timelike loops). The reflection

positivity of the Euclidean gauge-field propagator is demonstrated in Sec. 5 and the unitarity

of the interacting theory is checked by the direct evaluation of the optical theorem for two

processes. Concluding remarks are presented in Sec. 6. The results for an anisotropic

nonbirefringent case are given in App. A.

2. Isotropic modified Maxwell theory

2.1. Action and nonbirefringent Ansatz

In this article, we consider modified Maxwell theory [4, 5, 12] which has an action given

by

SmodMax =

∫

R4

d4xLmodMax(x) , (2.1a)

LmodMax(x) = −
1

4
ηµρ ηνσ Fµν(x)Fρσ(x)−

1

4
κµν̺σ Fµν(x)F̺σ(x) , (2.1b)
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where Fµν(x) ≡ ∂µAν(x)−∂νAµ(x) is the field strength tensor of the U(1) gauge field Aµ(x).

The photons propagate over a flat Minkowski spacetime with global Cartesian coordinates

(xµ) = (x0,x) = (c t, x1, x2, x3) and metric gµν(x) = ηµν ≡ diag (1, −1, −1, −1) . The fixed

spacetime-independent background field κµν̺σ in the second term of (2.1b) manifestly breaks

Lorentz invariance.

If κµν̺σ is taken to have a vanishing double trace, κµνµν = 0, and to obey the same

symmetries as the Riemann curvature tensor, the number of independent Lorentz-violating

parameters is 19. Birefringence is controlled by 10 of these 19 parameters. We restrict our

considerations to the nonbirefringent sector with 9 parameters, which is parameterized by

the following Ansatz [13]:

κµν̺σ =
1

2

(
ηµ̺ κ̃νσ − ηµσ κ̃ν̺ − ην̺ κ̃µσ + ηνσ κ̃µ̺

)
. (2.2)

The constant 4×4 matrix κ̃µν is symmetric and traceless. Here and in the following, natural

units are used with ~ = c = 1, where c corresponds to the maximal attainable velocity of

the standard Dirac particles (see Sec. 2.3).

2.2. Restriction to the isotropic case

Next, restrict the nonbirefringent modified Maxwell theory to the isotropic sector which

is characterized by a purely timelike four-vector ξµ in a preferred reference frame and a

single real dimensionless parameter κ̃tr :

κ̃µν = 2 κ̃tr

(
ξµξν −

1

4
ξλξλ η

µν

)
, (2.3a)

(ξµ) = (1, 0, 0, 0) , (2.3b)

(κ̃µν) =
3

2
κ̃tr diag

(
1,

1

3
,
1

3
,
1

3

)
. (2.3c)

From (2.1)–(2.3), the Lagrange density becomes in terms of the standard electric field Ei ≡

F i0 and magnetic field Bi ≡ (1/2) ǫijk F
jk:

Lisotropic
modMax

[
c, κ̃tr

]
(x) =

1

2

(
(1 + κ̃tr) |E(x)|

2 − (1− κ̃tr) |B(x)|2
)
, (2.4)

where the dependence on the fundamental constants c and κ̃tr has been made explicit on

the left-hand side, which will be useful for the discussion of unitarity later.
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The field equation of modified Maxwell theory,

MµνAν = 0 , Mµν ≡ kλkλ η
µν − kµkν − 2 κµρσν kρkσ , (2.5)

then give the following dispersion relation for the isotropic case:

ω(k) = B k , B ≡

√
1− κ̃tr
1 + κ̃tr

, (2.6)

in terms of the norm of the momentum three-vector k, defined by k ≡ |k| ≡ (k1)
2 + (k2)

2 +

(k3)
2. The additional constant A ≡ B−1 has been used in Ref. [14], but, in the present

article, we prefer to employ only the constant B.

The dispersion relation (2.6) yields the following phase velocity of electromagnetic waves:

vph ≡
ω(k)

k
= B . (2.7)

This phase velocity equals the group velocity,

vgr ≡

∣∣∣∣
∂ω(k)

∂k

∣∣∣∣ = B , (2.8)

which implies that the shape of a wave package does not change with time. From the

modified dispersion law (2.6), it is clear that the vacuum behaves like an effective medium

with a refraction index

n ≡
k

ω(k)
= B−1 , (2.9)

which is frequency independent because B−1 is a constant. Hence, the vacuum of this

particular Lorentz-violating photon theory does not show dispersion.

Unless stated otherwise, we henceforth restrict κ̃tr to the following half-open interval:

κ̃tr ∈ I , I ≡ (−1, 1] , (2.10)

since for κ̃tr /∈ I the dispersion relation (2.6) is a complex number, which renders the

undamped propagation of electromagnetic waves impossible. The front velocity, which cor-

responds to the velocity of the high-frequency forerunners of electromagnetic waves [15], is

given by

vfr ≡ lim
k 7→∞

vph = B , (2.11)

and is seen to be equal to both the phase and group velocity. For κ̃tr < 0, the front velocity of

light exceeds the maximum attainable velocity of the standard matter particles, vfr > c ≡ 1.

This alerts us to the issue of causality, which will be discussed in Sec. 4.
4



2.3. Coupling to matter: Modified QED

For the coupling of photons to matter, we take the minimal coupling to standard (Lorentz-

invariant) spin-1
2
Dirac particles with electric charge e and mass M . That is, the theory

considered is a particular deformation of quantum electrodynamics (QED) [1, 2, 3] given by

the following action:

S isotropic
modQED

[
c, κ̃tr, e,M

]
= S isotropic

modMax

[
c, κ̃tr

]
+ SDirac

[
c, e,M

]
, (2.12)

with the modified-Maxwell term (2.1)–(2.4) for the gauge field Aµ(x) and the standard Dirac

term for the spinor field ψ(x),

SDirac

[
c, e,M

]
=

∫

R4

d4x ψ(x)
(
γµ
(
i ∂µ − eAµ(x)

)
−M

)
ψ(x) , (2.13)

with standard Dirac matrices γµ corresponding to the Minkowski metric ηµν . As mentioned

before, the fundamental constant c may be operationally defined as the maximum attainable

velocity of the Dirac particle. For further discussion on Lorentz violation and the role of

different particle species, see, e.g., Refs. [16, 17, 18] and references therein.

3. Polarization sum and propagator

The polarization sum can be computed by solving the field equation (2.5) while respecting

the normalization condition

〈k, λ| : P 0 : |k, λ〉 = 〈k, λ|

∫
d3x : T 00 : |k, λ〉 ≡ ω(k) , (3.1)

where, as usual, the pair of colons stands for the normal ordering of operators and |k, λ〉

denotes a photon state with momentum three-vector k and polarization label λ. The T 00

component of the energy-momentum tensor can be cast in the following form [5]:

T 00 =
1

2

(
|E|2 + |B|2

)
− κ0j0kEjEk +

1

4
κjklmεjkpεlmq BpBq

=
1

2

(
(1 + κ̃tr) |E|

2 + (1− κ̃tr) |B|2
)
, (3.2)

with the three-dimensional totally antisymmetric Levi-Civita symbol εijk and the electric

and magnetic field components Ei and Bj . The final expression in (3.2) makes clear that, for

|κ̃tr| > 1, the theory suffers from unavoidable instabilities if the coupling to matter (2.12)
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is taken into account (see, e.g., Ref. [19] for a general discussion of the energy-positivity

condition).

Returning to the parameter domain (2.10), the solution of the field equation and the

resulting energy-momentum tensor component (3.2) give the following expression for the

polarization sum:

Πµν ≡
∑

λ=1,2

(ε(λ))
µ
(ε(λ))ν

=
1

1 + κ̃tr

(
−ηµν −

1

|k|2
kµkν +

B

|k|

(
kµξν + ξµkν

)
+

2 κ̃tr
1 + κ̃tr

ξµξν

)
, (3.3)

where the sum runs over the two physical polarizations λ ∈ {1, 2} with the polarization

vectors ε(1) and ε(2) being orthogonal to the momentum three-vector k. Expression (3.3) for

κ̃tr = 0 reproduces the standard result [3].

For the study of causality and unitarity in the corresponding quantum theory we need

the propagator Gµν , which is the inverse of the Green’s function (G−1)µν in momentum

space. This can be computed by solving the matrix equation (G−1)µνGνλ = i δµλ. In the

following, we choose the general axial gauge

nµA
µ(x) = 0 , (3.4)

with an arbitrary constant vector nµ. The corresponding gauge-fixing (gf) condition can be

added to the Lagrange density LmodMax from (2.1) by use of the Lagrange multiplier ς:

Lgf = −
1

2 ς

(
nµA

µ(x)
)2
. (3.5)

By inverting the Green’s function we obtain the gauge-field propagator in axial gauge:

Gνλ

∣∣axial = −i
{
a ηνλ + b kνkλ + c (kνnλ + nνkλ)

+ d ξνξλ + e
(
kνξλ + ξνkλ) + f nµnλ + g (nνξλ + ξνnλ

)}
K , (3.6)

with the following expressions for the scalar propagator and coefficient functions:

K =
1

(1− κ̃tr ξ2) k2 + 2 κ̃tr(k · ξ)2
, (3.7)

a = 1 , (3.8a)
6



b =
1

1 + κ̃tr ξ2
1

(k · n)2

{(
1 + κ̃tr ξ

2
)
n2 − 2 κ̃tr(ξ · n)

2

+ ς
(
1 + κ̃tr ξ

2
) [ (

1− κ̃tr ξ
2
)
k2 + 2 κ̃tr(k · ξ)

2
]}

, (3.8b)

c = −
1

k · n
, (3.8c)

d = −
2 κ̃tr

1 + κ̃tr ξ2
, (3.8d)

e =
2 κ̃tr

1 + κ̃tr ξ2
ξ · n

k · n
, (3.8e)

f = 0 , g = 0 . (3.8f)

4. Microcausality

4.1. Commutators of gauge potentials and physical fields

The notion of microcausality can be condensed to the statement that the commutator

of two field operators Φ(x′) and Φ(x′′) must vanish for spacelike distances, specifically,

[Φ(x′),Φ(x′′)] = 0 for (x′ − x′′)2 < 0. This assures that information can only propagate

along or inside null-cones. Translation invariance of the modified Maxwell theory implies

the following structure of the gauge-field commutator:

Kµν(x
′, x′′) ≡ [Aµ(x

′), Aν(x
′′)] = [Aµ(x

′ − x′′), Aν(0)] = [Aµ(x), Aν(0)] , (4.1)

for xµ ≡ x′µ − x′′µ. The corresponding result in momentum space must be of the form

Kµν(k) = Ξµν(k
0,k)

(
iD(k)

)
, (4.2)

where Ξµν(k) respects the tensor structure of the commutator and D(k) is a scalar commu-

tator function.

The commutator Kµν(k) can be computed either directly by Fourier decomposition of the

gauge potential in positive and negative frequency parts or by extraction from the Feynman

propagator. Both methods yield the same result:

Ξµν = (1 + κ̃tr) Πµν , (4.3a)

D(k)−1 = (1 + κ̃tr) k
2
0 − (1− κ̃tr) |k|

2 , (4.3b)
7



where Πµν is the polarization sum (3.3). In fact, (3.3) gives Ξ00 = Ξ0m = Ξm0 = 0 for

m ∈ {1, 2, 3}, so that only some of the purely spatial components of Kµν may be nonzero.

By using (4.3) we can compute the commutators of the electric and magnetic fields in

momentum space, which can then be transformed to configuration space. The results are

given by

[Ei(x), Ej(0)] = (∂20 δij − B2 ∂i∂j)
(
iD(x)

)
, (4.4a)

[Ei(x), Bj(0)] = εijk ∂0∂k
(
iD(x)

)
, (4.4b)

[Bi(x), Bj(0)] = (∇2 δij − ∂i∂j)
(
iD(x)

)
. (4.4c)

The scalar commutator function in configuration space can be written as follows

D(x) =

∮

C

dk0
2π

∫
d3k

(2π)3
1

(1 + κ̃tr) k20 − (1− κ̃tr) |k|2
exp

(
ik0x0 + ik · x

)
, (4.5)

where the poles are circled in the counterclockwise direction along a contour C. The evalu-

ation of the four-dimensional integral (4.5) leads to the following expression:

D(x) = −
1

2π
√
1− κ̃2tr

sgn(x̃0) δ
(
(x̃0)

2 − |x|2
)
, x̃0 ≡ B x0 , (4.6)

with the sign function

sgn(x) =





1 for x > 0

0 for x = 0

−1 for x < 0

. (4.7)

The overall minus sign in (4.6) has its origin in the definition of the commutator function

(4.5). In this definition, the first term in the exponential enters with a plus sign. This

convention has been chosen to conform with Ref. [7] and is different from the one used in,

for example, App. A1 of Ref. [2]. The commutators of the physical electric and magnetic

fields in (4.4) are, of course, independent of this convention. For κ̃tr 7→ 0, these commutators

are equal to the results of standard QED, first obtained by Jordan and Pauli [20, 1].
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According to (4.6), the commutators (4.4) vanish if the distance in Minkowski spacetime

corresponds to the modified null-cone,

(x̃0)
2 − |x|2 = 0 . (4.8)

Two observers are causally connected and can communicate by light signals if and only if

their distance in Minkowski spacetime is given by (4.8). The same result holds in standard

QED with the standard null-cone, x20 − |x|2 = 0. Modified Maxwell theory only has the

position of the null-cone shifted for a nonzero value of the Lorentz-violating parameter κ̃tr.

Different from the commutators of Maxwell-Chern-Simons (MCS) theory [7], the commu-

tators (4.4)–(4.6) vanish everywhere except on the null-cone, since the pure-photon sector of

modified Maxwell theory is scale-invariant. MCS theory, on the other hand, is characterized

by a mass scale, called mCS in Sec. 1, which leads to nonvanishing commutators both on

and inside the null-cone.

Returning to the isotropic modified Maxwell theory, consider now the interactions of

photons and charged matter particles as given by the modified QED action (2.12) and take,

for simplicity, a vanishing mass for the Dirac particle, M = 0. Then, the photon has a

null-cone (4.8) and the Dirac particle a different one given by x20 − |x|2 = 0. Intuitively,

there are no causality problems to be expected from having these two different null-cones.

There may, of course, be nonstandard interaction processes, for example, vacuum Cherenkov

radiation for κ̃tr > 0 and photon decay for κ̃tr < 0 (see Ref. [14] for detailed calculations).

4.2. Wick rotation

For the analytic properties of the gauge-field propagator (3.6), the behavior of the prop-

agator pole structure under Wick rotation is an important issue. The scalar part (3.7) of

the propagator shows that by performing a Wick rotation the poles of the full propagator

do not lie within the integration contour and that the Wick-rotated axes do not cross any

poles.

But these properties hold only for κ̃tr ∈ (−1, 1]. A Wick rotation k4 = −ik0 from

Minkowski spacetime to Euclidian space, for example, maps poles with positive real part in

Minkowski spacetime to poles with negative imaginary part in Euclidian space or poles with

positive imaginary part to poles with negative real part. Hence, an analytic continuation of

the propagator from Minkowski spacetime to Euclidian space, or vice versa, is possible with
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the Wick rotation. The gauge-field propagator (3.6) is thus well-behaved for the above men-

tioned parameter domain. For κ̃tr /∈ (−1, 1], however, the k0 poles in Minkowski spacetime

lie on the imaginary axis, which implies that the corresponding energy becomes imaginary

for this parameter domain.

4.3. Effective metric

Following up on earlier work about the coupling of Lorentz-violating theories to grav-

ity [21], it has been shown in Refs. [22, 23] that the action of isotropic modified Maxwell

theory from (2.1) can be cast in the following form:

S isotropic
modMax = − (1− κ̃tr)

∫

R4

d4x
1

4
η̃µ̺ η̃νσ FµνF̺σ , (4.9)

with an effective metric

η̃µν = ηµν +
2 κ̃tr

1− κ̃tr
ξµξν , (4.10)

for ξµ from (2.3b). The existence of such an effective metric has interesting implications.

First, recall that a spacetime M is said to be “stably causal” if and only if there exists

a Lorentzian metric gµν(x) and a scalar function θ(x), defined everywhere on M, so that

∇µθ 6= 0 and (∇µθ)(∇νθ) g
µν > 0. If a spacetime is stably causal, it does not contain closed

timelike or lightlike curves (cf. Sec. 6.4 of Ref. [24]).

For the isotropic case of modified Maxwell theory defined over Minkowski spacetime with

standard global coordinates as given below (2.1), we can simply choose the globally defined

scalar function θ(x) to be given by the time coordinate t. Then, (∇µt) = (1, 0, 0, 0) 6= 0 and

the effective metric (4.10) gives:

η̃µν ∇µt ∇νt =
1 + κ̃tr
1− κ̃tr

, (4.11)

which is positive for parameter κ̃tr ∈ (−1, 1], where the value κ̃tr = 1 arises as the limit from

below. As a result, there are no closed timelike or lightlike curves of the effective metric,

along which the modified photons could propagate. This reflects the global causality of the

theory considered, in particular, for the κ̃tr < 0 case mentioned in the last paragraph of

Sec. 2.2. See, e.g., Refs. [25, 26] for further discussion on Lorentz violation and causality.
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5. Unitarity

5.1. Reflection positivity: Simple test

Reflection positivity [27, 28] is an important property of the theory. It assures the ex-

istence of an analytic continuation of the Euclidian propagators to Minkowski propagators,

such that the theory in Minkowski spacetime has a positive semi-definite Hermitian Hamil-

tonian H and, therefore, a unitary time evolution operator exp(−iHt).

Following the previous analysis of MCS theory [7], we restrict the general discussion

of reflection positivity to the special case of reflection positivity of a Euclidian two-point

function. Concretely, reflection positivity of the Euclidian two-point function corresponds

to the following inequality:

〈0|Θ
(
φ(x4,x)

)
φ(x4,x) |0〉 ≥ 0 , (5.1)

for a complex scalar field φ(x4,x) in four-dimensional Euclidian space and the reflection

operation Θ: φ(x4,x) 7→ φ†(−x4,x).

With the Fourier decomposition of the scalar field operator, we can derive reflection

positivity for the scalar Euclidian propagator SE(k4,k):

SE(x4) ≡

∫

R3

d3k

+∞∫

−∞

dk4 exp(−ik4x4)SE(k4,k) =

∫
d3k SE(x4,k) ≥ 0 . (5.2)

We can also derive the strong condition

SE(x4,k) ≥ 0 , (5.3)

but, for the present discussion, we focus on the weak condition (5.2).

5.2. Reflection positivity and unitarity

If the gauge-field propagator is coupled to physical sources, i.e., a conserved current jµ(k),

then it follows from current conservation (at the classical level) or the Ward identities (at the

quantum level) that all terms of the propagator which contain a propagator four-momentum

kµ vanish by contraction with jµ(k). Hence, what remains from the gauge-field propagator

(3.6) after projecting on the physical subspace is the first term involving the metric tensor

and the fourth term proportional to a bilinear combination of the fundamental “four-vector”
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ξµ. Only these two terms describe the physical degrees of freedom. The pole structure of

the propagator with respect to its momentum is of crucial importance for unitarity. The

relevant pole structure is in the scalar part (3.7) of the propagator. [The term proportional

to ξ ξ has an additional pole at κ̃tr = −1, which plays no role for our analysis and which we

have excluded anyway by condition (2.10).] Hence, it is sufficient to restrict the unitarity

analysis to the scalar part K of the propagator, given by (3.7).

Since we have shown in Sec. 4.2 that Wick rotation is possible, the scalar propagator

part (3.7) is Wick-rotated to Euclidian space. The resulting Euclidian expression will be

denoted by SE. Recall, that a Wick rotation induces

x4 = −ix0 , k4 = −ik0 . (5.4)

With our conventions, SE(k4,k) is then given by the negative of the Wick-rotated scalar

propagator function:

SE(k4,k) = SE(k4, |k|) =
1

(1 + κ̃tr) (k24 + |k|2)− 2 κ̃tr k24
=

1

(1− κ̃tr) k24 + (1 + κ̃tr) |k|2
.

(5.5)

In order to show reflection positivity for the scalar part of the Euclidian propagator, the

expression

SE(x4, |k|) =

+∞∫

−∞

dk4 exp(−ik4 x4)SE(k4, |k|) , (5.6)

needs to be examined. Performing the integrals yields the following results:

SE(x4, |k|) =
π√

1− κ̃2tr

1

|k|
exp

(
− |x4| B

−1 |k|
)
, (5.7a)

SE(x4) =
4π2

√
1− κ̃2tr

B2

x24
. (5.7b)

Both of these expressions for SE(x4, |k|) and SE(x4) are manifestly larger than zero for

κ̃tr ∈ (−1, 1], where the value κ̃tr = 1 arises as the limit from below. Hence, reflection

positivity (5.2)–(5.3) is guaranteed for this parameter domain. In turn, this implies unitarity

of the pure-photon sector, provided κ̃tr ∈ (−1, 1].
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For κ̃tr /∈ [−1, 1], the corresponding results are

SE(x4, |k|) = −
π√

κ̃2tr − 1

1

|k|
sin
(
|x4| C |k|

)
, (5.8a)

SE(x4) =
4π3

√
κ̃2tr − 1

δ′
(
|x4| C

)
, (5.8b)

with

C ≡

√
κ̃tr + 1

κ̃tr − 1
. (5.8c)

Both of these last expressions for SE(x4, |k|) and SE(x4) are not manifestly positive because

of the presence of the sine function and the delta function derivative.1 As a result, unitarity is

violated for this parameter choice, which is also obvious from the fact that the corresponding

dispersion relation is imaginary.

More generally, it is clear that the pure-photon isotropic modified Maxwell theory (2.4)

is unitary by the following simple argument (prefigured in the discussion of Sec. 4.3). As the

electric field involves one derivative with respect to the spacetime coordinate x0 ≡ c t, the

Lagrange density (2.4) can be made to be proportional to the standard form (having κ̃tr = 0)

by the introduction of a rescaled velocity c′ ≡ cB, with constant B ≡
√

(1− κ̃tr)/(1 + κ̃tr)

as defined in (2.6). Moreover, as the action always appears divided by the Planck constant

~, it is even possible to remove the remaining overall factor by the introduction of a rescaled

constant ~′ ≡ ~/(1− κ̃tr).
2 Now, standard Maxwell–Jordan–Pauli photons (even with phase

velocity c′ and rescaled Planck constant ~′) have been proven to be unitary [3, 27, 28]. So,

the outstanding issue is whether or not the unitary of the pure-photon isotropic modified

Maxwell theory is affected by the standard minimal coupling (2.13) to matter (recall that

this minimal coupling is governed by the gauge principle).

In that respect, it is highly relevant that two physical decay processes have already been

calculated in Ref. [14]. The exact tree-level results for the corresponding decay rates were

found to be well-behaved for parameter values in the domain (2.10). Clearly, this agrees

with the conjecture that isotropic modified QED (2.12) is unitary for the proper values of

the parameter κ̃tr. Further evidence will be given in the next subsection.

1Equation (5.8b) is to be understood as acting on a test function. The sign of the resulting expression

depends on the test function and need not be positive.
2Similar redefinitions bring the commutators (4.4) back to the standard Jordan–Pauli form [20].
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5.3. Optical theorem

In order to explicitly check the above statement about unitarity of isotropic modified

QED (2.12) for the parameter domain κ̃tr ∈ (−1, 1], we will consider two physical processes.

The idea, now, is that the total cross section or decay width of a physical process is related to

the imaginary part of the respective forward scattering amplitude via the optical theorem [29,

30]. The optical theorem follows directly from the unitarity of the S–matrix. Hence, if

unitarity does not hold, this can be expected to show up as a violation of the optical

theorem.

5.3.1. First process

Consider a process involving definite polarization states of the charged particles: pair cre-

ation of a left-handed electron and a right-handed positron, where the chirality conventions

of Ref. [30] will be used. The optical theorem will be verified by comparing the imaginary

part of the forward scattering amplitude to the total cross section for the production of a

modified photon (γ̃) from a left-handed electron (e−L) and a right-handed positron (e+R):

2 Im







?
=

∫
dΠ1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2

, (5.9)

where dΠ1 denotes the one-particle phase-space element of the modified photon γ̃ in the

final state.

Let us take massless fermions, so that the helicity of a particle is a physically well-defined

property, that is, independent of the reference frame. (Recall that, for the case of massive

fermions, chirality is not equal to helicity. In that case, left- and right-handed particles

carry both parallel and antiparallel spins with respect to the momenta of the particles.)

The assumption of massless particles leads to a conserved axial vector current: ∂µj
µ
5 (x) = 0

with jµ5 (x) = ψ(x)γµγ5ψ(x). As a result, we have kµj
µ
5 (k) = 0 for a photon with momentum

kµ coupling to the current j
µ
5 (k). Incidentally, we can neglect the anomalous nonconservation

of the axial vector current [29, 30], because the possible additional terms in our calculation

would be of higher order in the gauge coupling constant e.
14



The forward scattering amplitude M1 ≡ M(e−
L
e+
R
→ e−

L
e+
R
) is then given by

M1 = e2 u(k1)γ
ν 1− γ5

2
v(k2)v(k2)γ

µ1− γ5
2

u(k1)

×
1

K−1 + iǫ

(
ηµν + b kµkν + c (kµnν + nµkν) + d ξµξν + e (kµξν + ξµkν)

)
,

(5.10)

for the photon propagator of the isotropic modified Maxwell theory, that is, K, b, c, d, and

e taking values from (3.7) and (3.8).

By introducing a four-dimensional integration over the momentum kµ of the virtual

photon we obtain:
∫

d4k

(2π)4
δ(4)(k1 + k2 − k)M1 =

=

+∞∫

−∞

dk0

2π

∫
d3k

(2π)3
δ(4)(k1 + k2 − k) e2 u(k1)γ

ν 1− γ5
2

v(k2)v(k2)γ
µ1− γ5

2
u(k1)

×
1

N

ηµν + b kµkν + c (kµnν + nµkν) + d ξµξν + e (kµξν + ξµkν)

(k0 − B|k|+ iǫ)(k0 + B|k| − iǫ)
, (5.11)

with

1

N
≡

1

1 + κ̃tr
, (5.12)

and B from (2.6).

For the imaginary part of the amplitude, only the propagator poles contribute, since

Feynman’s iǫ prescription only becomes important at the poles. These poles are given by

k0 = +B|k| − iǫ and k0 = −B|k|+ iǫ, with a positive infinitesimal ǫ. The following holds for

the propagator pole with a positive real part:

1

k0 − B|k|+ iǫ
= P

1

k0 − B|k|
− iπ δ(k0 − B|k|) = P

1

k0 − ω
− iπ δ(k0 − ω) , (5.13)

where P denotes the principal value. The first term on the far right-hand-side of (5.13) is

real, whereas the second one is imaginary and puts the virtual photon on-shell. For this

reason, only the positive frequency pole can be physically relevant and, in order to obtain

the imaginary part, all k0 have to be replaced by the dispersion relation (2.6).

With the further notation M̂1 ≡ M(e−
L
e+
R
→ γ̃), we finally get:

2 Im(M1) = −

+∞∫

−∞

dk0 δ(k0 − ω)

∫
d3k

(2π)3
δ(4)(k1 + k2 − k)
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× e2 u(k1)γ
ν 1− γ5

2
v(k2)v(k2)γ

µ1− γ5
2

u(k1)

×
1

N

ηµν + b kµkν + c (kµnν + nµkν) + d ξµξν + e (kµξν + ξµkν)

k0 + ω

= −

∫
d3k

(2π)3 2ω
δ(4)(k1 + k2 − k) e2 u(k1)γ

ν 1− γ5
2

v(k2)v(k2)γ
µ1− γ5

2
u(k1)

×
1

N

(
ηµν + b kµkν + c (kµnν + nµkν) + d ξµξν + e (kµξν + ξµkν)

)

=

∫
d3k

(2π)3 2ω
δ(4)(k1 + k2 − k) (M̂ †

1 )
ν(M̂1)

µ 1

N

(
− ηµν − d ξµξν

)

=

∫
d3k

(2π)3 2ω
δ(4)(k1 + k2 − k) (M̂ †

1 )
ν(M̂1)

µ

(∑

λ=1,2

(ε(λ))ν(ε
(λ))µ

)

=

∫
d3k

(2π)3 2ω
δ(4)(k1 + k2 − k)

∑

λ=1,2

|M̂1|
2 , (5.14)

with the definition M̂1(k) ≡ εµ(k)M̂
µ
1(k) on the last line. In the third step, the Ward-

identity has been used, so that all terms vanish for which the momentum kµ is contracted

with (M̂1)
µ or its Hermitian conjugate. Recall that the Ward-identity [3, 29, 30] reads

kµM
µ = 0 , (5.15)

for a general matrix element Mµ(k) to which an external photon [with polarization vector

εµ(k) and momentum kµ] couples. What remains in the fourth step of (5.14) is the polar-

ization sum (3.3), since N corresponds to the normalization factor 1/(1 + κ̃tr) and −d to

2κ̃tr/(1 + κ̃tr) according to (3.8d).

The conclusion is that the imaginary part of the forward scattering amplitude of the

process e−
L
e+
R
→ e−

L
e+
R
is related to the total cross section for the annihilation process e−

L
e+
R
→

γ̃. This results verifies the validity of the optical theorem, at least, for the process considered.

5.3.2. Second process

Next, consider the modified self-energy correction to the propagator of an electron. This

time, we will not take a definite polarization state. The one-loop correction is then related

to the total decay width for electron vacuum Cherenkov radiation [14], provided the optical

16



theorem holds true. Specifically, we have to verify the relation

2 Im







?
=

∫
dΠ2

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣

2

, (5.16)

where dΠ2 is the two-particle phase-space element of the electron e− and the modified photon

γ̃ in the final state.

In the following, we use the notations M2 ≡ M(e− → e−) and M̂2 ≡ M(e− → e−γ̃).

Again introducing an additional momentum integration, the amplitude (averaged over the

spin of the incoming electron) is given by

M2 =
i

2

∑

s1

∫
d4k

(2π)4

∫
d4p

(2π)4
δ(4)(p+ k − q) e2 u(q)γν �p+m

p2 −m2 + iǫ
γµu(q)

×
1

K−1 + iǫ

(
ηµν + b kµkν + c (kµnν + nµkν) + d ξµξν + e (kµξν + ξµkν)

)
.

(5.17)

The above integral is power-counting divergent and must be replaced by, for example, the

dimensionally-regulated version [3, 29, 30]. As our analysis only relies on complex function

theory and Dirac algebra, we can simply keep this dimensional regularization implicit.

For the imaginary part of (5.17), the position of the propagator poles is, once more, of

crucial importance. Equation (5.13) holds for the positive pole of the photon propagator.

The denominator of the electron propagator can be written as

1

p2 −m2 + iǫ
=

1(
p0 −

√
|p|2 +m2 + iǫ

)(
p0 +

√
|p|2 +m2 − iǫ

) . (5.18)

Furthermore, we obtain for the positive pole p0 =
√

|p|2 +m2 ≡ E :

1

p0 − E + iǫ
= P

1

p0 − E
− iπ δ(p0 − E) . (5.19)

With p0 replaced by E and k0 by ω as defined by (2.6), we then get the following result:

2 Im(M2) = −
1

4

+∞∫

−∞

dk0 δ(k0 − ω)

+∞∫

−∞

dp0 δ(p0 − E)
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×

∫
d3k

(2π)3

∫
d3p

(2π)3
δ(4)(p+ k − q)

∑

s1

e2 u(q)γν �p+m

p0 + E
γµu(q)

×
1

N

ηµν + b kµkν + c (kµnν + nµkν) + d ξµξν + e (kµξν + ξµkν)

k0 + ω

= −
1

4

∫
d3k

(2π)3 2ω

∫
d3p

(2π)3 2E
δ(4)(p+ k − q)

∑

s1

e2 u(q)γν(�p+m)γµu(q)

×
1

N

(
ηµν + b kµkν + c (kµnν + nµkν) + d ξµξν + e (kµξν + ξµkν)

)

=
1

4

∫
d3k

(2π)3 2ω

∫
d3p

(2π)3 2E
δ(4)(p+ k − q)

× e2 Tr
[
(�q +m)γν(�p+m)γµ

] 1
N

(
− ηµν − d ξµξν

)

=
1

4

∫
d3k

(2π)3 2ω

∫
d3p

(2π)3 2E
δ(4)(p+ k − q)

×

(∑

s1,s2

(M̂ †
2 )

ν(M̂2)
µ

)(∑

λ=1,2

(ε(λ))ν(ε
(λ))µ

)

=

∫
d3k

(2π)3 2ω

∫
d3p

(2π)3 2E
δ(4)(p+ k − q)

1

4

∑

s1,s2

∑

λ=1,2

|M̂2|
2 , (5.20)

which verifies the optical theorem also for this process.

To summarize, only the position of the propagator poles and the existence of the Ward-

identity are of importance for the validity of the optical theorem (see also the clear discussion

of standard QED unitarity in Chap. 9 of Ref. [3]). The form of the matrix element itself

(whether it is, for example, polarized or unpolarized) plays no role. Since both reflection

positivity and the optical theorem have been verified in this section, we conclude that, most

likely, unitarity of the modified QED theory (2.12) holds for κ̃tr ∈ (−1, 1]. The only caveat we

have is the assumed applicability of regularized Feynman–Dyson perturbation theory. But

perturbation theory appears hold for modified QED [31], just as it holds for the standard

Lorentz-invariant theory[3, 29, 30].

6. Discussion and outlook

In this article, the microcausality and unitarity of the isotropic modified Maxwell theory

(2.4) have been established for numerical values of the “deformation parameter” κ̃tr lying in
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the domain (2.10).3 In addition, strong evidence has been presented that these properties of

the pure photon sector carry over to the modified QED theory (2.12) of photons minimally

coupled to standard Lorentz-invariant Dirac particles. These results rely on Feynman–Dyson

perturbation theory.

The next question is precisely which numerical value of the κ̃tr domain holds experimen-

tally, where κ̃tr = 0 corresponds to exact Lorentz invariance. Moreover, having a nonzero

κ̃tr singles out a preferred frame of reference, in which the Ansatz “four-vector” ξµ from

(2.3b) is purely timelike. We have no idea what the proper reference frame would be. Here,

the reference frame is simply taken to correspond to the sun-centered celestial equatorial

frame (SCCEF). Another possible choice would be the frame in which the cosmic microwave

background is isotropic. The strategy is, first, to establish whether or not κ̃tr differs from

zero and, then, to determine the relevant reference frame if the parameter is indeed nonzero.

Direct laboratory bounds on |κ̃tr| in the SCCEF range from the 10−2 level of the first

experiment [32] to the 10−7 and 10−8 levels of the two most recent experiments [33, 34].

Indirect laboratory bounds are much stronger, ranging from the 10−11 level [35] to the

5× 10−15 level [36]. Still better indirect earth-based bounds follow from the observation of

ultra-high-energy-cosmic-ray (UHECR) primaries and TeV gamma-rays at the top of the

Earth’s atmosphere: −0.9×10−15 < κ̃tr < 0.6×10−19 at the two–σ level [14]. Future results

on UHECRs and TeV gamma-rays may even improve this last two-sided bound by a factor

102 [37].

The tight experimental bounds on κ̃tr can perhaps be understood as implying the extreme

smoothness of space, if κ̃tr arises as the excluded-spacetime-volume fraction of “defects” ran-

domly embedded in flat Minkowski spacetime [9]. Specifically, calculations in simple models

give a positive value for κ̃tr proportional to (b/l)4, where b corresponds to the typical size of

the defect (this size being obtained from measurements in the ambient flat spacetime) and

l to the typical minimal length between the individual defects (again, from measurements

in the ambient flat spacetime). Remark that, a priori, the excluded-spacetime-volume frac-

tion (b/l)4 can be of order unity, implying the same order of magnitude for the deformation

parameter κ̃tr [9].
4

3A similar domain has been established for a particular parity-even anisotropic case of nonbirefringent

modified Maxwell theory in App. A.
4An alternative calculation of κ̃tr relies on anomalous effects and finds a positive value proportional to
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This brings us, finally, to the structure of spacetime (and possibly the cosmological

constant problem [38, 39]). In that respect, it is of direct relevance that the modified QED

theory (2.12) can also be coupled to external gravitational fields. But, remarkably, modified

QED cannot be coupled to dynamical gravitational fields [21, 22]. The main hurdle appears

to be that the energy-momentum tensor Tµν of isotropic modified QED has an antisymmetric

part; see Eq. (2.11b) of Ref. [22] with ξµ from (2.3b) in this paper. The conclusion may

be that either standard gravity rules out the particular theory (2.12) with explicit Lorentz

violation or that the theory of gravity itself needs to be modified fundamentally.

A. Parity-even anisotropic case

A.1. Definition and dispersion relation

One particular anisotropic case of nonbirefringent modified Maxwell theory is character-

ized by a purely spacelike four-vector ξµ and a single Lorentz-violating parameter κ̃33:

κ̃µν =
4

3
κ̃33

(
ξµξν −

1

4
ξλξλ η

µν

)
, (A.1a)

(ξµ) = (0, 0, 0, 1) , (A.1b)

(κ̃µν) = κ̃33 diag

(
1

3
,−

1

3
,−

1

3
, 1

)
. (A.1c)

By choosing the momentum four-vector as

(kµ) = (ω(k), k⊥, 0, k‖) , k‖ = k · ξ , k⊥ = |k− k‖ ξ| , ξ = (0, 0, 1) , (A.2)

we obtain the following dispersion relation from the field equation (2.5):

ω(k) =
√
k2⊥ +D2 k2‖ , D ≡

√
1− 2κ̃33/3

1 + 2κ̃33/3
. (A.3)

The case considered can be expressed in terms of the standard-model-extension (SME)

parameters [12] with the help of the “translation dictionary” from [40]:

κ̃tr =
2

9
κ̃33 , (κ̃e−)

(11) =
4

9
κ̃33 , (κ̃e−)

(22) =
4

9
κ̃33 . (A.4)

Hence, the anisotropic case considered in this appendix is a mixture of the three parity-even

parameters (κ̃e−)
(11), (κ̃e−)

(22), and κ̃tr.

the product of the fine-structure constant α and the affected-spacetime-volume fraction from “punctures”

(b = 0) embedded in flat Minkowski spacetime [8]. Since, a priori, the affected–spacetime-volume fraction

can be of order unity, the deformation parameter κ̃tr can then be of order α ∼ 10−2.
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A.2. Microcausality

The commutators of electric and magnetic fields can be computed just as for the isotropic

case in Sec. 4.1. The results involve a particular tensor structure and a scalar commutator

function (here, distinguished by a bar)

D(x) =

∮

C

dk0
2π

∫
d3k

(2π)3
1

(1 + 2κ̃33/3) (k20 − k2⊥)− (1− 2κ̃33/3) k2‖
exp

(
i k0 x0+ik·x

)
. (A.5)

For the issue of microcausality, the properties of D(x) are important and the computation

of the four-dimensional integral in (A.5) yields:

D(x) = −
1

2π
√
1− 4κ̃233/9

sgn(x0) δ
(
x20 − x2⊥ − x2‖ /D

2
)
. (A.6)

Hence, analogously to the isotropic case in Sec. 4.1, the commutator function vanishes

everywhere except on the modified null-cone,

x20 − x2⊥ − x2‖ /D
2 = 0 . (A.7)

As a result, microcausality is a property also for this particular anisotropic case of nonbire-

fringent modified Maxwell theory, provided

2

3
κ̃33 ∈ I , I ≡ (−1, 1] , (A.8)

which matches the domain of the isotropic parameter (2.10). In fact, the formal structure

of these two cases is similar — recall the definitions of the matrices κ̃µν in Eqs. (2.3c)

and (A.1c). Note also that these two cases of nonbirefringent modified Maxwell theory, for

κ̃tr > 0 and κ̃33 > 0, can be induced from a single Lorentz-violating term in the fermionic

action [41].

A.3. Reflection positivity and unitarity

The simple test of reflection positivity from Sec. 5.1 works just as for the isotropic case,

since the scalar part of the Euclidian propagator (here, distinguished by a bar) is

SE(k4,k) =
1

(1 + 2κ̃33/3) (k24 + |k|2)− (4κ̃33/3)k23
=

1

1 + 2κ̃33/3

1

k24 + k2⊥ + D2 k2‖
. (A.9)
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Let us turn immediately to the strong reflection-positivity condition (5.3). The calcula-

tion of the corresponding integral gives:

SE(x4,k) =

+∞∫

−∞

dk4 exp(ik4x4)SE(k4,k) =
1

1 + 2κ̃33/3

+∞∫

−∞

dk4
exp(ik4x4)

k24 + ω2
=

=
2

1 + 2κ̃33/3

∞∫

0

dk4
cos(k4x4)

k24 + ω2
=

1

1 + 2κ̃33/3

π

ω
exp(−|x4|ω) , (A.10)

with ω given by (A.3). Result (A.10), for κ̃33 > −3/2, proves strong reflection positivity

and unitarity can be expected to hold.

A.4. Discussion

As shown in this appendix, the pure-photon sector of the parity-even anisotropic non-

birefringent modified Maxwell theory characterized by parameters (A.1) has microcausality

and unitarity for the κ̃33 parameter domain (A.8). The same can be expected to hold for

the modified QED theory (2.12) of photons minimally coupled to standard Lorentz-invariant

Dirac particles. The question, now, is which numerical value of κ̃33 holds experimentally,

where κ̃33 = 0 corresponds to having exact Lorentz invariance.

The isolated Lorentz-violating parameters (κ̃e−)
(11) and (κ̃e−)

(22) are tightly bounded

at the 10−17 level by direct laboratory experiments [34, 42, 43]. This implies that the

experimental limit on the κ̃33 parameter of the particular case considered in this appendix

is controlled by the less tight limits on κ̃tr, which have already been discussed in the second

paragraph of Sec. 6.
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[5] D. Colladay and V.A. Kostelecký, “Lorentz-violating extension of the standard model,” Phys. Rev. D

58 (1998) 116002, arXiv:hep-ph/9809521.

22

http://arxiv.org/abs/hep-ph/9809521


[6] S.M. Carroll, G.B. Field, and R. Jackiw, “Limits on a Lorentz- and parity-violating modification of

electrodynamics,” Phys. Rev. D 41 (1990) 1231.

[7] C. Adam and F.R. Klinkhamer, “Causality and CPT violation from an Abelian Chern–Simons-like

term,” Nucl. Phys. B 607 (2001) 247, arXiv:hep-ph/0101087.

[8] F.R. Klinkhamer and C. Rupp, “Spacetime foam, CPT anomaly, and photon propagation,” Phys. Rev.

D 70 (2004) 045020, arXiv:hep-th/0312032.

[9] S. Bernadotte and F.R. Klinkhamer, “Bounds on length scales of classical spacetime foam models,”

Phys. Rev. D 75 (2007) 024028, arXiv:hep-ph/0610216.

[10] R. Casana, M.M. Ferreira, A.R. Gomes, and P.R.D. Pinheiro, “Gauge propagator and physical con-

sistency of the CPT-even part of the standard model extension,” Phys. Rev. D 80 (2009) 125040,

arXiv:0909.0544.

[11] R. Casana, M.M. Ferreira, A.R. Gomes, and F.E.P. Santos, “Gauge propagator of the nonbirefringent

CPT-even sector of the standard model extension,” arXiv:1010.2776.
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