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Conformal low-spin anomalous currents and shadow fieldsainsfpace-time of dimension greater than or
equal to four are studied. Gauge invariant formulation tartscurrents and shadow fields is developed. Gauge
symmetries are realized by involving the Stueckelbergdie@@auge invariant differential constraints for anoma-
lous currents and shadow fields and realization of globalaroral symmetries are obtained. Gauge invariant
two-point vertices for anomalous shadow fields are alsoidtia In Stueckelberg gauge frame, these gauge
invariant vertices become the standard two-point vertafeSFT. Light-cone gauge two-point vertices of the
anomalous shadow fields are derived. AdS/CFT correspoedenanomalous currents and shadow fields and
the respective normalizable and non-normalizable saiatad massive low-spin AdS fields is studied. The bulk
fields are considered in modified de Donder gauge that leadkcmupled equations of motion. We demonstrate
that leftover on-shell gauge symmetries of bulk massivelsielorrespond to gauge symmetries of boundary
anomalous currents and shadow fields, while the modifiedefitaj de Donder gauge conditions for bulk mas-
sive fields correspond to differential constraints for taany anomalous currents and shadow fields.

PACS numbers: 11.25.Tq, 11.40.Dw, 11.15.Kc

I. INTRODUCTION of anomalous conformal currents (and anomalous shadow
fields), we introduce auxiliary fields, i.e., we extend spate
In space-time of dimensios > 4, fields of CFT can be fields entering the standa€dF'T". We note that these auxiliary
separated into two groups: conformal currents and shadofields are similar to the ones used in gauge invariant formula
fields. Field having Lorentz algebra spirand conformal di- ~ tion of massive fields which involves Stueckelberg fields.
mensionA = s + d — 2, is referred to as conformal current 1) On the extended space of currents (and shadow fields), we

with canonical dimension, while field having Lorentz algebr introduce differential constraints, gauge transfornatjand
spin s and conformal dimensioA > s + d — 2 is referred conformal algebra transformations. These differential-co
to as anomalous conformal current. Accordingly, field hgvin Straints are invariant under the gauge transformationstend
Lorentz algebra spinand conformal dimensio = 2—s,is ~ conformal algebra transformations.

referred to as shadow field with canonical dimendjavhile ~ 1ii) The gauge symmetries and the differential constraints
field having Lorentz algebra spinand conformal dimension Make it possible to match our approach and the standard one,
A < 2 — sis referred to as anomalous shadow field. i.e., by appropriate gauge fixing of the Stueckelberg fietds a

In Refs.[8] 9], we developed the gauge invariant (Stueckelby solving differential constraints we obtain standardrfar

berg) approach to conformal currents and shadow fields ha\}ation of anomalous conformal currents and shadow fields.

ing canonical conformal dimensions. The purpose of this pa- s apply our approach to the study dfiS/CFT cor-
per is to develop gauge invariant approach to anomalous coRagnondence between massive AdS fields and corresponding

formal currents and shadow fields. The examples of spin-3,,nqary anomalous conformal currents and shadow fields.
and spin-2 conformal fields demonstrate all charactefisi€¢  \ne gemonstrate that normalizable modes of massids

tures of our approach. In this paper, because these examplgs|ys are related to anomalous conformal currents, while

are important in their own right, we discuss spin-1 and $pin- o _normalizable modes of massivelS fields are related
anomalous conformal currents and shadow fields. Arbitra% anomalous shadow fields. In the earlier literature. the

spin anomalous conformal currents and shadow fields will b%orrespondence between non-normalizable bulk modes and

considered in forthcoming publication. Our approach can bgpaqou fields was studied in Ref.[10] (for spin-1 fields) and

summarized as follows. ~in Ref.[11] (for spin-2 fields). To our knowledge, AdS/CFT

i) Starting with field content of the standard formulation correspondence between normalizable massive modes and
anomalous conformal currents has not been considered in the
earlier literature. As compared to the studies in Refs/110,

*Electronic addres$: metsaev@Ipi.ru our approach involves large amount of gauge symmetries.

1 Itis the shadow fields having canonical dimension that aeel tis discuss ~ Therefore results of these references are obtained from one

conformal invariant equations of motion and Lagrangiamfalations (see in this paper by using some particular gauge condition, Whic

e.g. Refsl[146]. In earlier literature, discussion of sivadield dualities Y
may be found in Ref.[7]. we refer to as Stueckeleberg gauge fixing. Perhaps, one of the
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main advantage of our approach is that this approach givdsus shadow field we obtain the gauge invariant two point ver-
easy access to the study dilS/CFT correspondence in tex. Also we discuss how our gauge invariant approach is re-
light-cone gauge frame. This is very important for future ap lated to the standard approach to CFT. Using our gauge invari
plication of our approach to studying string/gauge theary d ant approach we obtain light-cone gauge description of $pin
alities because one expects that string theory in AdS/Rdmon anomalous conformal current and shadow field.

Ramond background can be quantized only in light-cone Secs[V anf VI are devoted to spin-2 anomalous conformal

gauge. current and spin-2 anomalous shadow field respectively. In
Our approach to the study ofdS/CFT correspondence these Sections we generalize results of Seds. lI[and IVeo th

can be summarized as follows. case of spin-2 anomalous conformal current and shadow field.

i) We use CFT adapted gauge invariant approachds field In Sec.[ V1], we discuss two-point current-shadow field in-

dynamics developed in Ref.[12]. For spin-1 and spin-2 masteraction vertex.

sive AdS fields we use the respective modified Lorentz gauge Sec.[IX is devoted to the study efdS/CFT correspon-
and modified de Donder gauges. Remarkable property adence for massive spin-1 bulkiS field and boundary spin-1
these gauges is that they lead to the singBeouplecbulk  anomalous conformal current and shadow field while in[Sec.X
equations of motion which can be solved in terms of Besselve extend results of SECIIX to the case of spin-2 fields.
function and this simplifies considerably study4dS/CFT We collect various technical details in two appendices. In
correspondence. Also using these gauges, we demonstraigpendices A anf B we present details of the derivation of
that the two-point gauge invariant vertex of the anomalous” F'T" adapted gauge invariant Lagrangian for the respective
shadow field does indeed emerge from massgigé field ac-  spin-1 and spin-2 massivédsS fields.

tion when it is evaluated on solution of the Dirichlet prahble

AdS field action evaluated on solution of the Dirichlet prob-

lem will be referred to as effective action in this paper. Il. PRELIMINARIES
i) The number of boundary gauge fields involved in our
gauge invariant approach to anomalous conformal current (o A. Notation

anomalous shadow field) coincides with the number of bulk

massive gaugdds fields involved in gauge invariant Stueck-  Our conventions are as follows:® denotes coordinates in
elberg approach to massive field. Note however that, insteagldimensional flat space-time, whit#, denotes derivatives
of standard gauge invariant approach to massive field, we usgith respect ta:, 9, = 9/82“. Vector indices of the Lorentz
CFT adapted formulation of massive spitiS field theory algebraso(d—1, 1) take the values, b, c,e = 0,1,...,d—1.
developed in Ret.[1Z] We use mostly positive flat metric tensgt?. To simplify

iii ) Our modified Lorentz gauge (for spin-1 massive AdS field)our expressions we drop,; in scalar products, i.e., we use

and modified de Donder gauge (for spin-2 massive AdS field)x«y e =, X2Y Throughout this paper we use operators
turn outto be related to the differential constraints weot#d  constructed out of the derivatives and coordinates,

in the framework of gauge invariant approach to anomalous

conformal currents and shadow fields. O =90, z0 = 2%0%, r? = %2, (2.1)

iv) Leftover on-sheljauge symmetries of massive bulkS

fields are related to the gauge symmetries of boundary anoma- Sometimes we use light-cone frame. In the light-cone

lous conformal currents (or anomalous shadow fields). frame, space-time coordinates are decomposed“as=
The rest of the paper is organized as follows. zT, ™, 2", where light-cone coordinates if directions are

defined ast™ = (29! 4+ 20)/v/2 andz™ is taken to be a

In SecsTD ith th i | light-cone time.so(d — 2) algebra vector indices take values
n Secs.[Ill and1V, we start with the respective examples. i=1,....d— 2. We adopt the conventions:

of spin-1 anomalous conformal current and shadow field. Wé’
illustrate our gauge invariant approach to describing saxom & =0, =0/9z ot — Or = 0/0x7 . 2.2)
lous conformal current and shadow field. For spin-1 anoma-

In Sec[T], we summarize the notation used in this paper.

B. Global conformal symmetries

2We note also that the number of gauge transformation paessnét-
volved in our gauge invariant approach to anomalous cuf@nanoma- In d-dimensional flat space-time, the conformal algebra

lous shadow field) coincides with the number of gauge transition pa- . . . .
rameters of bulk massive gaugel$ field involved in the standard gauge so(d, 2) consists of translation generatdrs, dilatation gen-

invariant approach to massive field. eratorD, conformal boost generatofs®, and generators of



3

theso(d—1,1) Lorentz algebral*®. We assume the following space-time coordinates’. In standard formulation of con-
normalization for commutators of the conformal algebra: ~ formal currents and shadow fields, the operdtbis equal to
D, P%] = —P*" 1= ch] _ n“bPC _ nach, 2.3) zero, while in gauge ir_lvariant gpproach t_hat We develgpiin th
. " 0 be wbore ae b paper, the operatdk® is non-trivial. This implies that, in the
[D,K*] = K*, (K, J*] = 0K = n*K”, (2.4) framework of gauge invariant approach, complete desonpti
[P, K' = 5D — Job, (2.5) of the conformal currents and shadow fields requires, among
other things, finding the operat®”.

[Job, Je¢] = nPeJe 4+ 3 terms. (2.6)
Let ¢ denotes conformal current (or shadow field) in flat
space-time of dimensiod > 4. Under conformal algebra . SPIN-1 ANOMALOUS CONFORMAL CURRENT
transformations the transforms as
Seh = Go. 2.7) In this section we develop gauge invariant approach to spin-

. 1 conformal current. Besides gauge invariant formulatien w
where realization of the conformal algebra genera®r®  discuss two gauge conditions which can be used for studying
terms of differential operators takes the form the anomalous conformal currents - Stueckelberg gauge and

Pe =9, (2.8) light-cone gauge. We would like to discuss these gauges be-
cause of the following reasons.
i) It turns out that the Stueckelberg gauge reduces our ap-
D=zd+A, (2.10)  proach to the standard formulation 6f7'T". Therefore the
use of the Stueckelberg gauge allows us to demonstrate how
the standard approach to anomalous conformal currents is ob
and we use the notation tained from our gauge invariant approach.
ii) Motivation for considering the light-cone gauge frame
cames from conjectured duality of the SYM theory and the
In (2.9)-(2.11) A is operator of conformal dimensioh/“?is  theory of the superstring iAd.S background[14]. By analogy
spin operator of the Lorentz algebra. Actiondf*® on fields ~ with flat space, we expect that a quantization of the Green-
of the Lorentz algebra is well known and for rank-2 tensor,SchwarzAdS superstring [15] will be straightforward only in
vector, and scalar fields considered in this paper is given by the light-cone gauge [16.17]. Therefore it seems that fitwen t
ab ice  ae e ac ibe stringy perspective afldS/CF'T" correspondence, light-cone
MePgE = g™ + 979" — (a2 b),  (2.13) approachta’F'T is the fl’l/Jitfu| direction to go.
Mg = s’ — (a < b), (2.14)

My =0. (2.15)

J = 229" — 2297 + M, (2.9)
K* =K% y +R*, (2.11)

1
KXy = —51728“ + 2D + Mzt (2.12)

. . . . . A. Gauge invariant formulation
These relations implies the following transformations o t

fields, . . . : .
To discuss gauge invariant formulation of spin-1 anomalous

KX ¢ = Kxo" + M® ¢/ + MT¢* | (2.16)  conformal currentin flat space of dimensidr» 4 we use one

KZ,M¢b — K9 4 M oS (2.17) vector fieldpg,,,  and two scalar fieldgcur,1, ¢eur,—1:
KA md=KR¢, (2.18) cur,0 » Peur,—1 5 Peur,1 - (3.1)
where we use the notation The fieldsgg,, o anddeu,+1 transform in the respective vec-
Ky =-g0n+aad + ), @19 L e e comformal mensions
Mbe = pabge — pacgh (2.20)

d d
A‘i’gur,o =5t K, A¢cur,i1 =5tk +1 ’ (32)

In 2.113), R* is operator depending, in general, on derivatives 2 2

with respect to space-time coordingtesd not depending on here parametet is restricted to be positive > 0. In the

framework of AdS/CFT correspondenceis related to the
mass parameter of spin-1AdS massive field as
3 For conformal currents and shadow fields studied in this paipe opera-

tor R* does not depend on derivatives. Dependence on derivativB$ o
appears e.g., in ordinary-derivative approach to confofislds [13]. 4

(3.3)
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We now introduce the following differential constraint: straint [3.4) we obtain standard formulation of spin-1 anem
lous conformal currefit
aa(bgur,o + TSOD¢CUY771 + Tgo(bcur,l - 07 (34)

_9\1/2
r90 = (2%—27”) , (3.5) C. Light-cone gauge frame
K
rgo = (M)I/Q_ (3.6) For spin-1 anomalous conformal current, the light-cone
4K

gauge frame is achieved through the use of differential con-
estraint (3:4) and light-cone gauge condition. Using theggau
symmetry of the spin-1 anomalous conformal curréni] (3.7),
we impose light-cone gauge on the fielfi,, ,,

One can make sure that this constraint is invariant und
gauge transformations

6¢gur. = 811 cur, 37
0 = @ beuro (3.7) 0 =0. (3.15)
6¢cur,71 - _T(z)ogcur,()a (38)
Using this gauge in differential constraiht(B.4), we find
6¢cur,1 = _Tgo‘jgcur,()a (39)
_ o j 7’20 T(CJO
whereé.,.; o IS @ gauge transformation parameter. Peur,0 = T 9+ Teur,0 a_+D¢C“rv*1 B a_+¢cur71 - (3.16)

To complete our gauge invariant formulation we provide

realization of the operatd®® on space of gauge fields (3.1), We see that we are left with vector field,,, , and two scalar

fields ¢.ur,+1. These fields constitute the field content of the

ROl = =260 G 1 (3.10) light-cone gauge frame.

R¢eur,—1 =0, (3.11)

R o1 —2I<é7“20¢gur70 . (3.12) IV.  SPIN-1 ANOMALOUS SHADOW FIELD
Using [3.10){(3.1R), we make sure that constrdini] (3.4)s i A Gauge invariant formulation

variant under transformations of the conformal algebrd)(2.
To discuss gauge invariant formulation of spin-1 anomalous

shadow field in space of dimensidn> 4 we use one vector

B. Stueckelberg gauge frame field ¢f, o and two scalar fieldgs,, —1, gsn 1

a
. . . h,0 (bsh,—l (bsh,l . (41)
We now discuss spin-1 anomalous conformal current in the i ’

Stueckelberg gauge frame. From {3.8), we see that the _Sca“?he fieldsg?, and¢g,,+1 transform in the respective vector

field ¢cur,—1 transforms as Stueckelberg field, i.e., this field 304 scalar representations of the Lorentz algebfd— 1, 1).

can be gauged away via Stueckelberg gauge fixing, We note that these fields have the conformal dimensions
eur.—1 = 0. (3.13) A,

== —kK, DNpp oy =75—KET, (4.2)

d
sho 9 9
Using this gauge in constraint(8.4), we see that the remguini

] ! ~ wherex > 0. In the framework of AAS/CFT correspondence,
scalar fieldp.,r,1 can be expressed in terms of the vector field

. the x is related to the mass parameterof spin-1AdS mas-

cur, 0 sive field by relation[(3]3).

1 We now introduce the following differential constraint:

¢Cur,1 - _maa(bgur,O’ (314)
¢ aa(b:}],o + Tgo‘jd)sh,fl + T20¢sh,1 =0, (43)

i.e., making use of the gauge symmetry and differential con-
straint [3.4) we reduce field content of our approachl (3.1) to
the one in the standard approach. In other words, the gauge as in standard approach 6FT, our currents can be considered either
symmetry and differential constraint make it possible taaha as fundamental field degrees of freedom or as compositetoperat the

. .. group theoretical level, we study in this paper, this digton is immate-
our approach and the standard one, i.e., by gauge fixing of

) ) ; ) rial. Discussion of interesting methods for building camfial currents as
the Stueckelberg field (3.1L3) and by solving differentiahco  composite operators may be found in REf3.[18, 19].
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wherer2?, 7 are given in[(3B).(3]6). We make sure that conformal currentin Stueckelberg gauge frame and lighieco
constraint[(4.B) is invariant under gauge transformations gauge frame. This is to say that correlation function of aaom
lous conformal currentin Stueckelberg gauge frame and-ligh

0PGh,0 = 0“Esn0 (4.4) cone gauge frame can be obtained from two-point vertex
Sdsh.—1 = —7“8055}1 0. (4.5) taken in the respective Stueckelberg gauge frame and light-
00 cone gauge frame. To this end we now discuss the anoma-
0Psh,1 = =1 Dsh,0 5 (4.6)  |ous shadow field in Stueckelberg gauge and light-cone gauge
whereg,;, o is a gauge transformation parameter. frames.

To complete our gauge invariant formulation of spin-1
anomalous shadow field we provide realization of the oper-

) B. Stueckelberg gauge frame
ator R* on space of gauge fields (4.1), g.9aud

Ra¢gh70 = 257&2077“%5117,1 , 4.7) For spin-1 anomalous shadow field, the Stueckelberg gauge
frame is achieved through the use of differential constrain
(4.3) and the Stueckelberg gauge condition.

R 1 = 2672065, o . (4.9) From [4.5), we see that the scalar field, _; transforms

as Stueckelberg field, i.e., this field can be gauged away via
We proceed with the discussion of the two-point vertex forStueckererg gauge fixing

the anomalous spin-1 shadow field. The gauge invariant two-

R*¢en,—1 =0, (4.8)

point vertex we find takes the form Gsh,—1=0. (4.15)
r = /ddxldda:QFu , (4.10)  Using this gauge ifi{413) we see that the remaining scalar fiel
¢sn,1 Can be expressed in terms of the vector fiﬁggo,
Dhy — ‘b(slh,o(xl)‘bgh,o(@) .
12 — k--d a .a
2|z12]2r den1 = 550" Fho - (4.16)
w) Z
+ — S , (411 :
,\;1 2|z19|2rHd—2A Panr(@1)@sna(@2), ) Thus, we see that the use of the gauge symmetry and differen-
1 tial constraint[(413) makes it possible to match field conoén
w1 = m 5 (4.12)  our approach and the one in the standard approach to spin-1
anomalous conformal current.
wo1=2(k+1)(2k+d), (4.13)

We proceed with the discussion of Stueckelberg gauge fixed

two-point vertex of the spin-1 anomalous shadow field, i.e. w
[210f® = afonty,  afy =af —af. (4.14)  relate our verteX{Z.10) with the one in the standard apfproac

One can check that this vertex is invariant under the gaugt® ¢#'T To this end we note that vertex of the standard ap-
transformations of the spin-1 anomalous shadow field given  Proach toC'F'I" is obtained from our gauge invariant vertex
(@2)-[@5). Also, we check that the vertex is invariantend (#.10) by using Stueckelberg gauge condition (#.15) and so-
the conformal algebra transformations. lution to differential constrainf{4.16) i (4.10). Doing and

The kernel of the vertex is related to a two-point corre- ignoring the total derivative, we find that two-point degsit
lation function of the spin-1 anomalous conformal currémt, 1 12 .11) takes the following form:
our approach, the spin-1 anomalous conformal current is de-
scribed by gauge fields given in_(B.1). Therefore, in order to
discuss the correlation function of the anomalous confbrma

F?;uck.g.fram _ klritQand ’ (417)

Fstand _ (blslh (‘Tl )O%S ¢2h (‘TQ)
12

current in a proper way, we should impose a gauge condition IR 5 (4.18)
on the gauge fields i (3.2)We have considered anomalous
22,18
b — ab 12712
0 = b 12, (4.19)
|7 12]
5 We note that, in the gauge invariant approach, correlatiowctions of by = 2k +d (4 20)
the conformal current can be studied without gauge fixingdd@shat one L= 22k +d—2)’ )

needs to construct gauge invariant field strengths for tigggotentials
@ ¢cur,+1. Study of field strengths for the conformal currents is

cur,0’

stand i
beyond the scope of this paper. Recent interesting dismussimethod Where Fi?dn @) stands f-OI‘ the two-point vertex of the
for building field strengths may be found in Refs|[20, 21]. spin-1 anomalous shadow field in the standard approach to



CFT. From [4.17), we see that our gauge invariant vertex (1), Gewrr (2)) = 52re)
taken to be in the Stueckelberg gauge frame coincides, up t% cur AT Peur ALT2 Ssh,—2(21)0Psn, —x(z2)

normalization factok; , with the two-point vertex in the stan- A = +1, and using[{Z.24), we obtain the two-point light-cone

dard approach to'r'T". gauge correlation functions of the spin-1 anomalous cenfor
As we have demonstrated in Sec.DI B, in the Stueckelberg, current,

gauge frame, we are left with vector fielg,, ,. Two-point

(4.26)

correlation function of this vector field is given by the kefn (DL e 0(21), ¢ o)) = L ’ (4.27)
of vertexI'stand ([@.18), o o 1]+
ab et S 4.28
(o), B 2)) = —2_ (4.20) (Gewra(22), deuen(72)) = 1o ptapay - (428)
s s |I12|2n+d

\ = +1, wherew, are given in[(4.12).(4.13).

C. Light-cone gauge frame
V. SPIN-2 ANOMALOUS CONFORMAL CURRENT

For spin-1 anomalous shadow field, the light-cone gauge

frame is achieved through the use of the light-cone gauge and A.  Gauge invariant formulation
differential constraint[{4]13). Taking into account the gau
transformation of the ﬁeI(zngL0 (4.4), we impose the light- To discuss gauge invariant formulation of spin-2 anomalous
cone gauge, conformal current in flat space of dimensiop> 4 we use one
rank-2 tensor field, two vector fields, and three scalar fjelds
¢hh 0= (4.22)
ab
cur ?
Using this gauge in differential constraiff (4.3) we obtsin
lution for (b;h, gur,—l ’ gur,l s (51)
o7 r?o ( ) ¢cur,72 s ¢Cur.,0 s ¢Cur,2 .
(b_ = — ¢ h 1 — D(bh7_1 . 4.23
sh,0 o+ o~ ° ot The fields¢2l,, ¢2, +1 @Ndeur,0, Geur,+2 transform in the

cur’?

We see that we are left with vector fiefd, , and the scalar ~respective rank-2 tensor, vector and scalar represensatib
fields ¢, 1. These fields constitute the field content of thethe Lorentz algebrao(d — 1,1). Note that the tensor field
light-cone gauge frame. Note that, in contrast to the StueckPeu:o IS Not traceless. We note that fields{5.1) have the con-
elberg gauge frame, the scalar fieltls ., become indepen- formal dimensions

dent field D.o.F in the light-cone gauge frame. A d n
Using [4.22) in[[4.1]1) leads to light-cone gauge fixed vertex o g T
pe) _ Panol@1)di o(z2) Age = g +rE+A, A=, (5.2)
12 2|I12|2n+d ’
d
w A = - A A=0,£2
+ Y s taa ) ona) (4.24) peuen = FATA, -2

A= where the parameteris considered to be positive > 0. In

wherew, are given in[(4.12).(4.13). As in the case of gaugethe framework of AdS/CFT correspondencis related to the
invariant vertex[(4.111), light-cone vertex (4124) is dingb mass parameten of spin-2Ad.S massive field &
with respect to the field$;'h70 andeg, +1. Note however that,

2
in contrast to the gauge invariant vertex, the light-congexe Kk =1/m?+ dZ (5.3)
is constructed out of the fields which are not subject to any
constraints. We now introduce the following differential constraints:

The kernel of the light-cone vertex gives two-point corre- o 6“ 000 00 La 0
lation function of spin-1 anomalous conformal current take D 07 9 D, 07 Bfcu, 1+ 7 Peurn =0,

to be in the light-cone gauge. Defining two-point correlatio (5.4)
functions of the field$.,, 5, ¢cur,+1 in @ usual way,

) ; s2ra
(e 0(T1), ¢gur olx2)) = _ _ , (4.25) 6 Parametek for spin-2 field [5.B) should not be confused with the one for

0@k 0(21)08, o(22) spin-1 field [33).
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8a¢gur —1 +3 Cgr.,() + \/§T21D¢Cur,*2 + Tgld)cur,() = O )

o (5.5)

O Pgura T ;TE)ODQ%M 0+ 72006 cur,0 + \/§T%O¢Cur,2 =0,
(5.6)

e ()" o

e (BN g

o= (T 59

rQ0 = (2”4; d)m, (5.10)
N

Ra¢cur,2 = _2\/§(I€ + 1)T%O¢gur,1 :

Using [5.19){(5.24), we check that constrainisl(5.4)}(are

invariant under conformal algebra transformatidns|(2.7).

(5.24)

B. Stueckelberg gauge frame

For spin-2 anomalous conformal current, the Stueckelberg
gauge frame is achieved through the use of differential con-
straints [5.4){(516) and Stueckelberg gauge conditiomnFr
(5.12),[5.16)[(5.17), we see that the vector figlg, , and
the scalar fieldspour,—2, ¢cur,0 transform as Stueckelberg
fields, i.e., these fields can be gauged away via Stueckelberg
gauge fixing,

a1 =0, (5.25)
Using gauge conditiong (5.R5) in constralnt{5.5) we find tha
the field 925, , becomes traceless, while using gauge condi-
tions [5.25) in constraint§ (3.4).(5.6) we find that the rema

¢cur,—2 = 0, (bcur,O =0.

One can make sure that these differential constraints are inng vector field¢,, ;, and the scalar fielé.., > can be ex-

variant under the gauge transformations

800 = 0%€luro + 8"Elur0
00

T SV CEE)
0tur,—1 = 0%Ecur,—1 =10, (5.14)
0gur1 = 0%cur,1 — Tgomfgur,m (5.15)
Sbeur,—2 = —V2r%€eur 1, (5.16)
O0beur,0 = —7“81‘3§cur,—1 — 7%t (5.17)
Obeur,2 = _\/iréoljgcur,l , (5.18)

whereg?

cur,0?
ization of the operatoR® on space of gauge fields (b.1),

b b
Rad’cur ,0 — _2HT (T]a gur —1 + 77ac cur,fl)

P e, L (619
Rl 1 = =2V2(k = D)r?'n* Peur, 2, (5.20)
Ra¢cur 1= —Tc (2H¢Cur o+n" cur,0)

—2(k 4+ D)rl®n ™ beuro (5.21)
R%¢eur,—2 =0, (5.22)
Reur,0 = —2(k — 1)7‘< Pur—1 5 (5.23)

&eur,+1 are gauge transformation parameters.
To complete our gauge invariant formulation we find real-

pressed in terms of the rank-2 tensor figlt}, .,

ggr,o =0, (5.26)
gur 1= 00 ab¢cur ,00 (527)
T¢
G = 515 0Py (5.28)
cur,2 — 00,.10 cur,0 * )
V2rlorg

Relations [(5.25)E(5.28) provide complete description od t
Stueckelberg gauge frame for the spin-2 anomalous conforma
current. We note that the traceless rank-2 tengfr , can be
identified with the one in the standard approach'#eT.

Thus, we see that the Stueckelberg gauge symmetries and
the differential constraints make it possible to match qur a
proach and the standard one, i.e., by gauge fixing of the
Stueckelberg fieldd (5.25) and by solving differential con-
straints[(5.4)£(516) we obtain the standard formulatioggin-

1 anomalous conformal current.

C. Light-cone gauge frame

For spin-2 anomalous conformal current, the light-cone
gauge frame is achieved through the use differential con-
straints[[5.4){(516) and light-cone gauge condition.

Using the gauge transformations of the fieldgﬁno,

b2 +1 (6.13)-[5.15) we impose the light-cone gauge,

dar0 =0, fea=0,  A=zxl.  (5.29)



Plugging this gauge in differential constrairits {5[4Bf5we
find

0%

cur,0 — Oa (530)
—i (i)j ij ’f‘go i TOO
cur,0 — _a_+¢clur70 - 8_+D cur,—1 — 8+ Cur 19
(5.31)
o 209 200
cur,0 — (bcur ,0 +t o ar éur -1 +t oA éur 1
0= 9ot oto+ : oot
00,.01
AL R P i s SO
a+a+ cur,— Fo+ cur,
00 01 + ,,,00 10
a+a+ ¢Cur,0 ) (532)
_ (93 j \/5 01 7’81
cur,—1 — _a_Jr cur,—1 — ¢Cur, 2 — 8_+¢Cur,07
(5.33)
_ o rio \/5 10
cur,1 — T 51 f:ur 1 ¢Cur 0 — ¢Cur 2.
: ot Peurl T 51
(5.34)

We see that we are left wittv(d — 2) algebra traceless rank-2
tensor field, two vector fields, and three scalar fields,

ij
¢cur,0 ’
¢éur,1 ’

¢cur,2 .

Fields in [5.35) constitute the field content of the lightteo
gauge frame.

(5.35)

7
cur,—1

¢cur,—2 ) ¢cur,0 )

VI.  SPIN-2 ANOMALOUS SHADOW FIELD

A. Gauge invariant formulation

To discuss gauge invariant formulation of spin-2 anomalou
shadow field in flat space of dimensi@n> 4 we use one
rank-2 tensor field, two vector fields, and three scalarsdjeld

ab
sh,0

ch,—1 Denn > (6.1)

Gsh,—2 Psh,0 5 Psh,2 -

The fields¢Z! ), ¢%, 11 and ¢en 0, ¢dsn +2 transform in the

respective rank-2 tensor, vector and scalar represemmib

the Lorentz algebrao(d — 1,1). Note that the field)?> ols

not traceless. Conformal dimensions of the fields are giyen b
d

A¢ab = 5

- K,

d
ban =g KTA A=EL (6.2)
d
A%h,)\ = 5 _K+/\7 )\207127 (63)

wherex > 0. In the framework of AAS/CFT correspondence,
thek is related to the mass parameternf spin-2 AdS mas-
sive field by relation[(5]3).

We now introduce the following differential constraints:

ey 0 3a¢sh ot Tgoméf’ 1+ T20¢Sh,1 =0
(6.4)
=+ \/ir%OD¢Sh772 + T;O(bsh’o =0,
(6.5)
0064 o + ¢ Ddsn,o + V2r%%ag2 =0,
6.6)

where the parameter§™ andr"" are given in[(S.7)E(5.12).

1
g1+ 5 OO sh.0

9'¢

0" g1 +

One can make sure that these constraints are invariant under

gauge transformations

5¢bh 0= 3afbh ot 3bf§h,o

+ ;T_Soﬂabgsh,l + d—_g(;n‘“’mgsh_,1 , (6.7)
5¢gh,—1 = 0%sn,—1 — 7”2053}1,07 (6.8)
dpgh 1 = 0“1 — Tgomfgh,m (6.9)
Sbsh,—2 = —V2r{%n 1, (6.10)
5,0 = =1 &g — 72 D -1, (6.11)
02 = —V2r2 O&an 1 (6.12)

wheredd, . &n,+1 are gauge transformation parameters.

We then find that a realization of the operafgt on fields

gﬂ) takes the following form:

Ra%h 0= 2’“20(77“1) sh,—1 + 1" ¢bh _1)

4(k + 1)7‘20

) B, 1 (6.13)

R@Y, 1 = 2V2(k + )"0 dan, 2, (6.14)
Ra¢sh 1= 7” (2’1 shO 77‘“’ sﬁ,o)

+2(k — 1)rd'n®oen0 (6.15)

R¢gn,—2 =0, (6.16)

Rsno =2(k+ 1)rie% _y, (6.17)

Rano = 2V2(k — 1)r2 o8, 1 - (6.18)



Using [6.13){(6.18), we check that constrailts](6[4)}ae bena = 1
invariant under transformations of the conformal algebra. T V2r00r0
We proceed with the discussion of two-point vertex for re|ations [6.24)F(6.27) provide the complete descriptibn

spin-2 anomalous shadow field. The gauge invariant twothe Stueckelberg gauge frame for the spin-2 anomalous
point vertex we find takes the form giveln (4.10), where theshadow field.

9°0" 9% o - (6.27)

two-point densityl'15 is given by
Pi =z (08 o) 6 ol2)
12— 4|x12|gﬁ+d sh,0\1)Psh 0\L2

1
— S oto(@)olf ola2) )

W a .
* Agl W¢sh,k($l)¢sh7A(x2)
w
"2 W%“(“Wsm(@) , (6.9
A=0,42 12
- @I (6.20)
T 2kt d—2)] _
w1 =2(k+1)(2k+d), (6.21)
o 1 . (6.22)

dk(k — 1) (26 +d —2)(2k+d — 4)

w_o=4(k+1)(k+2)2k+d)(2k +d+2). (6.23)

Plugging [6.24){(6.27) in[(6.19) and ignoring the total
derivative, we find that our two-point densify, (6.19) takes
the following form:

Ty s = Ty, (6.28)
tand oo™ 4,
Fb an (b‘:ﬁao2 (;Cl)—|xl2|2ﬁ+—d ¢sf1 02(502) (629)
2k +d+2
= 6.30
*T A2k +d-2)’ (6-30)

whereO% is defined in[(4.19), whilés%"d (6.29) stands for
the two-point vertex of the spin-2 anomalous shadow field in
the standard approach @FT'. From [6.28), we see that our
gauge invariant vertex taken to be in the Stueckelberg gauge
frame coincides, up to normalization factar, with the two-
point vertex in the standard approach(té'T".

The kernel of vertexst2»d (6.29) defines two-point cor-
relation function of the spin-2 conformal conformal cutren

We check that this vertex is invariant under gauge transéerm taken to be in the Stueckelberg gauge frame.
tions of the spin-2 anomalous shadow fi¢ld(6[7)-(6.12)0Als
we check that the vertex is invariant under conformal algebr
transformations. Remarkable feature of the vertex is @ga

nal form with respect to the gauge fields entering field canten

@.1).

C. Light-cone gauge frame

For spin-2 anomalous shadow field, the light-cone gauge
frame is achieved through the use of differential constsain
(6.4)-(6.6) and light-cone gauge. Taking into account the
gauge transformations of the fieldgy ,, ¢% ., given in

(6.14)-(6.9), we impose the light-cone gauge condition,
For spin-2 anomalous shadow field, the Stueckelberg gauge
frame is achieved though the use of differential constsaint sh,0 — sh,A —

(6.4)-(6.6) and Stueckelberg gauge condition. Plugging this gauge condition in constrairfs {6[4)1(663,

From gauge transformation given [n_(6.8).(6.10).(6.1%, w ¢
see that the vector field%, _, and the scalar fieldgg, o,

B. Stueckelberg gauge frame

fa =0, =0, A=+1. (6.31)

bsn,0 transform as Stueckelberg fields, i.e., these fields can bel, o = 0, (6.32)
gauged away via Stueckelberg gauge fixing, . o 00 7“20
a _ _ _ Pan0 = __+¢s'£,o — o7 <h—1~ T “h1 s (6.33)
¢Sh771 - 07 ¢Sh,72 — Oa (bsh,O =0. (624) a a 8
iaj 00 5i i
Using gauge conditiong (6.R4) in constralnt{6.5) we find tha b = 9 LI 4 2rg°0 O I 200" ;
sh,0 o+to+ sh,0 o+to+ sh,—1 o+o+ sh,1
the field ¢Z ; becomes traceless, while using gauge condi-
tions [6.24) in constraint§ (8.4).(6.6) we find that the riema \/—Tgoréo - V/2r00,01
ing vector fieldcb‘;h,1 and the scalar fielgs, o can be ex- 9to+ O@sh,—2 + —(75— 8+8+ Gsh,2
pressed in terms of the rank-2 tensor figfg ,, P01 4 00,10
as, =0, (6.25) “ g Do, (6:34)
a L oy ab o7 \/2r10 10
¢sh,l = _@ (bsh,O? (626) ¢sih.,71 = _a_+¢-;h"71 - 8—+€D¢sh,—2 - 8i+¢sh701(6'35)



01

o7
a%m(bsh,o -

] Vot
¢sh,1 = _a_Jr

8—+¢sh,2 .

Joo_
sh,1

(6.36)

We see that we are left with the(d — 2) algebra traceless
rank-2 tensor field, two vector fields and three scalar fields,

ij
(bsh,O ’
¢;h,—1 ’ ¢;h,1 ’
®sh,—2 Psh,2 -

Fields in [6.3¥) constitute a field content of the spin-2 aaem
lous shadow field in light-cone gauge frame. Note that, ircon
trast to the Stueckelberg gauge frame, the vector fieldshend t
scalar fields become independent field D.o.F in the lightecon
gauge frame.

Using [6.31)[(6.32) in(6.19) leads to light-cone gaugedixe
vertex

(6.37)

¢sh,0 )

1

le. _ ij ij
l—‘12 - 4|I12|2,{+d¢sh,0(xl)¢sh,0(x2)

w) i i
+ X g S0k @)

A==+1

w
+ 0y W%h,x(m)%h,x(m)a(6-38)

A=0,+2

wherew, are defined in[(6.20J-(6.23). We see that, as in the

case of gauge invariant vertéx (6.19), light-cone veite38p

10

wox

<¢cur,>\(5€1)v ¢cur,A(I2)> = W s (644)

wherew, are defined in((6.20]-(6.23) and we use the notation

ekt — %(5%53‘1 4 §ilgik %51‘3‘5“) . (6.45)

VIl.  TWO POINT CURRENT-SHADOW FIELD

INTERACTION VERTEX

We now discuss two-point current-shadow field interaction
vertex. In the gauge invariant approach, interaction wege
determined by requiring the vertex to be invariant undehbot
gauge transformations of currents and shadow fields. Aiso, t
interaction vertex should be invariant under conformathtg
transformations.

Spin-1. We begin with spin-1 fields. Let us consider the
following vertex:

L= ¢gur70¢3h70 + ¢Cur,—l¢sh,1 + ¢Cur,1¢sh,—l . (71)

Denoting the left hand side df (4.3) lgy,, we find that under
gauge transformations of the curreni {3[7)4(3.9) the tiana
of vertex [7.1) takes the form (up to total derivative)

6£cur,0£ = _gcur,OCsh . (7.2)

is diagonal with respect to the fields entering the field confrom this expression, we see that the vereg invariant un-
tent of light-cone gauge framg (6]37). Note however that, irfler gauge transformations of the current provided the shado

contrast to the gauge invariant vertex, the light-coneexeig

field satisfies differential constrairlf (#.3). Denoting thé

constructed out of the field5{6J37) which are not subject td1and side ofi(314) by’... we find that under gauge transfor-

any differential constraints.
The kernel of light-cone vertek (6.38) gives two-point cor-
relation function of the spin-2 anomalous conformal cutren

taken to be in the light-cone gauge. Defining two-point cor-

relation functions of the anomalous conformal curren3qp.
as the second functional derivative Bfwith respect to the

anomalous shadow field (6]37)
. 521’\(1.(:.)
*J KLj = — 6.39
<¢cur,0(x1)7 ¢cur,0] (:62)) 5(]5;‘{]70 (,Tl)&(bs}l]o(l'g) ’ ( )
. . 521’\(1.(:.)
i & = . , (6.40
<¢cur,)\('r1) ¢ ,)\(IQ» 6¢;h77)\((b1)5(]5’;h_’7>\(1'2) ( )
52F(1'C')
<¢Cur,)\('r1)7¢cur,)\(172)> = s (641)

dhsh,—2(21)0Psh, —x(w2)
we obtain

ij 1 ”
(Geuro(@1): Geuro(22)) = g TV, (6.42)

wox

" JapPrarR 0%, (6.43)

<¢iur,>\('r1)7 (qur,)\(IQ»

mations of the shadow fiel (4.4)-(4.6) the variation of eert
(Z.1) takes the form (up to total derivative)

I £ = —E&sn,0Ceur , (7.3)

i.e., the vertexC is invariant under gauge transformations of
the shadow field provided the current satisfies differentat
straint [3.4).

Making use of the realization of the conformal algebra sym-
metries obtained in the Sectidng[II]IV we check that veffex
(Z.1) is invariant under the conformal algebra transfoiomest

Spin-2. We proceed with spin-2 fields. One can make sure
that the following vertex

1

L=

— ab ab _1 aa bb
2 cur,0%sh,0 4 cur,0%sh,0

+ Z ¢gur,>\¢s}1,—>\+ Z ¢Cur,>\¢sh,—>\

A=+1 A=0,42

(7.4)

is invariant under gauge transformations of the spin-2 elvad
field (6.7)-[6.12) provided the spin-2 current satisfiefedén-
tial constraints[(5]4):(516). Vertek (7.4) is also invatiander
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gauge transformations of the spin-2 currénit (b.I[3)-(5018) metries of anomalous conformal currents and shadow fields

vided the spin-2 shadow field satisfies differential conistsa are also described by the(d, 2) algebra. To discuss global

(6.4)-(6.6). Using the representation for generators®ttin-  symmetries of anomalous conformal currents and shadow

formal algebra obtained in the Sectidnk M,VI we check thafields we have used conformal basis of #igd, 2) algebra

vertex£ (Z.4) is invariant under the conformal algebra trans-(see [2.B){(216)). Therefore for application to the study o

formations. AdS/CFT correspondence, it is convenient to realize the rel-
ativistic bulk so(d, 2) algebra symmetries by using basis of
the conformal algebra. Most convenient way to achieve con-

VIIl.  ADS/CFT CORRESPONDENCE. PRELIMINARIES formal basis realization of bulko(d, 2) symmetries is to use

Poincaré parametrization afdS spacé,

We now apply our results to the study 4&S/CF'T corre-
spondence for free massivkiS fields and boundary anoma-
lous conformal currents and shadow fields. To this end wen this parametrization, theo(d, 2) algebra transformations
use the gauge invariartt /7" adapted description afidS  of the massive arbitrary spiads field ¢ take the forms ;¢ =
massive fields and modified Lorentz and de Donder gaugeéqs, where realization of theo(d, 2) algebra generato@ in
found in Ref[12]. It is the use of our fields and the modi- terms of differential operators is given by
fied Lorentz and de Donder gauges that leads to decoupled

ds? = iz(dxad:ca +dzdz). (8.1)
z

form of gauge fixed equations of motion and surprisingly sim- Pt =07 (8.2)
ple Lagrangiad. Owing these properties of our fields and J =229 — 2%9 + M, (8.3)
the modified (Lorentz) de Donder gauge, we simplify signifi- d—1

cantly the computation of the effective actforThe modified D=z0+4A, A=20+—, (8.4)
(Lorentz) de Donder gauge is invariant under the on-shi¢ll le K®=K% ., +R", (8.5)
over gauge symmetries of bulkdsS fields. Note that, in our ’

approach, we have gauge symmetries not onit side but K& o= _lﬁa“ + 2D+ M®zb,  (8.6)
also at the bounday F'T". Thus, in the framework of our ap- ' 2

proach, study of AdS/CFT correspondence implies matching R = Ry, + R, (8.7)
of: u 1 5

i) Lorentz (de Donder) gauge condition for bulk massive and Ro) = _5228 ' (8.8)
differential constraints for boundary anomalous confdrmaOperatorRy, (8.7) does not depend on boundary coordinates
currents and shadow fields; %, boundary derivative®*, and derivative with respect to

i) leftover on-shell gauge symmetries for bulk massive fieldsadial coordinate).. OperatorR, acting on spin D.o.F. de-
and gauge symmetries of boundary anomalous conformal cupends only on radial coordinate Thus, we see all that is re-
rents and shadow fields; quired to complete description ofdS field dynamics global
iii) global symmetries of bulk massive fields and globalsymmetries is to find realization of the operaitff, on space
symmetries of boundary anomalous conformal currents andf gaugeAds fields.
shadow fields; AdS/CFT correspondence for spin-0 anomalous current
iv) effective action evaluated on solution of equations of mo-and normalizable modes of scalar massive AdS fieltl Be-
tion with the Dirichlet problem corresponding to the bouryda cause use of modified Lorentz (de Donder) gauge makes study
anomalous shadow field and boundary two-point gauge invarief AdS/CFT correspondence for spin-1 (spin-2) field simi-
ant vertex for anomalous shadow field. lar to the one for scalar field we begin with brief review of the
Global symmetries in CFT adapted approach Relativis-  AdS/CFT correspondence for the scalar field.
tic symmetries of theddS,.,; field dynamics are described  Action and Lagrangian for the massive scalar field in
by theso(d, 2) algebra. Ind-dimensional space, global sym- AdS,;1 background take the forkh

S = [dizdz L, (8.9)
7 Our massive gauge fields are obtained from gauge fields use stan-
dard gauge invariant approach to massive fields by the ibletransfor-
mation. Details of the transformation may be found in Appees[A[B. 9 In our approach onlyo(d — 1, 1) symmetries are realized manifestly. The
Discussion of interesting methods for solvidgls field equations of mo- so(d, 2) symmetries could be realized manifestly by using ambieatsp
tion without gauge fixing may be found in Refs.[22} 23]. approach (see e.d. |24+26])

8 We remind that the bulk action evaluated on solution of théchbiet prob-  1° Also see Ref<.[27].
lem is referred to as effective action in this paper. 11 From now on we use, unless otherwise specified, the Euclégmature.
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L =319l (" 0,20,® + m*®@?) . (8.10) AdS/CFT correspondence for spin-0 shadow field and

_ _ _ _ non-normalizable modes of scalar massive AdS field
In terms of the canonical normalized fiejddefined by rela- Following the procedure in Ref.[28], we note that non-

tion ® = >*= ¢ the Lagrangian takes the form (up to total normalizable solution of equations (8114) with the Dirich-

derivative) let problem corresponding to boundary shadow scalar field
1 1 osn(x) takes the form
L= §|d¢>|2 + §|7L%¢|27 (8.11)
) oe2) = o [ dyGula—y.2)0mln).  @2)
T, =0.+ 2, (8.12)
z UJF;
Goz,2) = — ° _ (8.22)
v=1/m2+ dzz ) (8.13) (22 + |x|2)l’+5
_Tw+9)
Equations of motion obtained from Lagrangian (8.11) take th v = BT (8.23)
f . o ,
orm To be flexible, we use normalization factoin (8.21). For the
0,6 =0, (8.14) case of scalar field, commonly used normalizatio in (8.21) i
1 ] achieved by setting = 1. Asymptotic behaviors of Green
0,=0+082 - 5(° - Z) . (8.15)  function [8.22) and solution (8.21) are well known,
z
z—0 _1,+% d
Normalizable solution of equation (8]14) is given by Gu(z,2) — = 0%(x), (8.24)
z—0 —p41
O(r,2) = UsFGeun(a), (8.16) Owz) = 2 Roow(). (829)

From [8.25), we see that our solution has indeed asymptotic
behavior corresponding to the shadow scalar field.
h, =2"T(v +1), ¢ =0, (8.18) Using equations of motiof (8.114) in bulk actidn (8.9) with
Lagrangian[(8.11) we obtain the effective action givettby
where.J,, stands for the Bessel function. The asymptotic be-

havior of solution[(8.16) is given by — Set = /dd:z:,ccﬁ-

U = hyy/zqdu(2q)a” "2, (8.17)

, (8.26)
z—0

20 vts 8.19 1
| ¢(w,jz) =z .¢C.ur(:v), (8.19) Lot = 50T,-36. (8.27)
i.e., we see that spin-0 curreti,, is indeed boundary value Plugging solution of the Dirichlet probleni {8121) into

of the normalizable solutlorl. _ ), [B2V), we obtain the effective action
In the case under consideration, we have no gauge sym-

metries and gauge conditions. Therefore all that is require  — S 4 = uc,,aQ/ddxldd:cQMw . (8.28)
to complete AJS/CFT is to match bulk global symmetries of 12|

AdS field¢(z, z) and boundary global symmetries of the cur- Using the commonly used value of, o = 1, in (8.28),
rent ¢ (). Global symmetries on AdS side and CFT sidewe obtain the properly normalized effective action found in
are described i (8.2)-(8.8) arld (2.B)-(2.11) respectivdle  Refs.[29, 30]. Interesting novelty of our computationSf
see that the Poincaré symmetries match automatically. Uds that we use Fourier transform of the Green function. Detai
ing the notationD, ,, and D,,.,. to indicate the respective ©f our computation may be found in Appendix C in Ref.[9].
realizations ofD-symmetry on the bulk field§ (8.4) and the

conformal current$ (2.10) we obtain the relation IX. ADS/CFT CORRESPONDENCE FOR SPIN-1 FIELDS

D ,us9(x,2) = Uy Dy Geur(2) (8.20) )

We now discussidS/CFT correspondence for bulk mas-
where the expressions fdp,, ., corresponding t@... can  sive spin-14dS field and boundary spin-1 anomalous con-
be obtained from{2.10) by using = £ + v with v given  formal current and shadow field. To this end we are going to
in B13). Thus,D-symmetries ofp(z, z) and ¢...(z) also
match. To match thé& *-symmetries in[(2.11) an@(8.5) we

note that the respective operatde§, and R act trivially, _ _ _ N
2 Following commonly used setup, we consider solution of thiécBlet

a _ a _ a_
Rm)(b(x’ Z) = 0, R*cur(z) = 0 and make sure thak’ problem which tends to zero as— oo. Therefore, in[(8.26), we ignore
symmetries also match. contribution toS,g whenz = oo
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useCFT adapted gauge invariant Lagrangian and the modi- , _ l|d¢a|2 llT 16
fied Lorentz gauge condition [1¥] Because our approach is :

closely related with gauge invariant approach to massile fie 1 9 9 1 5
) . . = d Tz --C°, 9.10
we start with brief review of the latter approach. + 2 k;;l (' oA+ | §+/\¢’\| ) 2 ( )
Gauge invariant approach to spin-1 massive field in
AdSg4,1 space In gauge invariant approach, spin-1 massive C=0"" +rd T+ T p1é1,  (9.11)

field is described by fields o ) ) 00 00 )
whereT7,, is given in [8.1P), whilex andr}”, 2 are defined

o4 D, (9.1) in B.3) and[(3.5)L(316) respectively. Lagrangian (9.H0nk
variant under gauge transformations
which transform in the respective vector and scalar reptase

tions ofso(d, 1) algebra. In Lorentzian signature, Lagrangian 0Pt = 0°¢, (9.12)
iven b
JHEnDY 661 =0T, €, (9.13)
1 1
“1p _ _1paABpAB L pApA
eTIL = — FPF S PP, (9.2) 56 = rOT €, (9.14)
AB _ nAgB BgA
P77 =D7e" —-D7ow, (9.3) where¢ is a gauge transformation parameter. Details of the
FA = DA 1+ maA (9.4) derivation of Lagrangiai (9.10) from the one[in {9.6) may be
’ found in AppendixA.
is invariant under gauge transformations Gauge invariant equations of motion obtained from La-
grangian[(9.10) take the form
504 = pAg, 60 = —m=. (9.5)
_ _ ) 0.9% —0°C =0, (9.15)
Details of our notation may be found in Appendix A. La-
grangian[(9.2) can be cast into the form which is more conve- Og_10-1 — rOOTm_lC’ =0, (9.16)
nient for our purposes,
D11 =771 C =0, (9.17)
1
_1£ _ _q)A D2 2 d q)A
c 2 ( m” +d) where the operatds,, is given in [8.1b).
1 ) ) 1, Global symmetries in CFT adapted approach General
+ QQ)(D —m)®+ 505“ (9.6) form of realization of global symmetries for arbitrary spin
Co = DCOC 4 md 9.7) AdS field was given in[(8]2)E(8]5). All that is required to com-

plete description of the global symmetries is to find reaidra
of the operatorz{, on space of gauge fields. For the case of

A. CFT adapted gauge invariant approach to massive spin-1 ~ massive spin-1 field, realization of the operakf, on space

field in AdSq+1 of gauge fields[(918) is given by
b ab 00 ab,,00
In our approach, the massive spimMiS field is described Riy@” = 2n®re o1+ 2nr ¢ (9.18)
by fields R 1 = —2r209" (9.19)
", b1, ;1 (9.8) R ¢y = —2r2¢”. (9.20)

which are the respective vector and scalar fields ofsti{€) Modified Lorentz gauge Modified Lorentz gauge is de-
algebra. Fields irL(918) are related by invertible transfation  fined to be

with fields in [9.1) (see AppendX]A)CFT adapted gauge
invariant action and Lagrangian for field (P.8) take the form C=0, modified Lorentz gauge (9.21)

S = /dd:z:dzﬁ, (9.9) whereC is given in [9.11). Using this gauge condition in
equations of motion[(9.15)-(9.117) gives simple gauge fixed
- equations of motion,

13 , . - : 0.0% =0 (9.22)
For spin-1 massless field modified Lorentz gauge was founceft{3 ], K )
while for massless arbitrary spin field the modified de Dorgierge was
discovered in Ref.[32]. Oeixdr =0, A==+1. (9.23)
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Thus, we see that the gauge fixed equations of motion are de- These statements can easily be proved by using the follow-

coupled. ing relations for the operatar,:
We note that modified Lorentz gauge and gauge-fixed equa-
tions have leftover on-shell gauge symmetry. Namely, modi- 77,_%U1, =Us-1, (9.33)

fied Lorentz gaugd (9.21) and gauge-fixed equatibns](9.22),
(9.23) are invariant under gauge transformations given in
(9.12)-[9.1%) provided the gauge transformation paramete T 41 (2Uy) = =201 0 42U, , (9.35)
satisfies the equation

T 1U, = — v+10, (934)

—v—3

which, in turn, can be obtained by using the following well-
0 =0. (9:24)  known identities for the Bessel function:

vy =Ju_1, vy =—Ju41. 9.36
B. AdS/CFT correspondence for anomalous current and 7. ! Tovdu 1 ( )

normalizable modes of massive AdS field Matching of bulk modified Lorentz gauge and bound-

) ary constraint. As an illustration we demonstrate how con-
We now ready to discuss AdS/CFT correspondence fOgirqint for the anomalous conformal curreéit]3.4) can be ob-
spin-1 massiveddsS field and spin-1 anomalous conformal y4ineq from modified Lorentz gauge conditién{3.21). To this

current. We begin with analysis of normalizable solution of 4 adapting relation§ {9133) arid (9.34) for the respectiv
equations[(9.22].(9.23). The normalizable solution ofeequ , _ . 1 1andv = & — 1 we obtain the relations

tions [9.22)[(9.213) takes the form
¢ (2, 2) = Ul o(2) , (9.25) TeryUst1=Us,  ToppgUe1=-UB. (937)
b_1(x,2) = —Up_1¢eur.—1() (9.26)  Plugging solutions*, ¢+ (9.25)-(9.2Y) inC' (9.11) and us-
ing (9.37) we obtain the relation
(bl (,T, Z) = UN+1¢cur,1(x) y (927)
1 C= Unccur ) (938)
Uy = hey/zqJ,(2q)g” "2 (9.28)

whereC.,, stands for left hand side df(3.4). From(9.38) we
see that our modified Lorentz gauge condit@n= 0 (9.21)
The asymptotic behavior of solution (9126)-(9.27) is gikgn  leads indeed to differential constraint for the anomalars c
formal current[(314).

Matching of bulk and boundary gauge symmetries As
second illustration, we demonstrate how gauge transforma-
tions of the anomalous conformal current {3[7)4(3.9) can be

250 s obtained from leftover on-shell gauge transformations a§m
o(@,z) — 2(k + 1)¢C‘”’1(x) ' (932)  ive Ads field (O.12){9.18*. To this end we note that the

: respective normalizable solution of equation for gaugesra
From [9.30){(9.32), we see thaf,, ;, ¢cur,+1 are indeed _
boundary values of the normalizable solution. formation parametef {9.P4) takes the form

In the rh.s. [[9.25)(9.27) we use the notatiofy, o, £(z. 2) = Unbonr ol2) (9.39)
deur.+1 SiNCE We are going to demonstrate that these boundary ’ e '
values are indeed the anomalous conformal currents egterir]:>|ugging [9.25) and(9.39) i (9112) we see that (9.12) leads
our gauge invariant formulation in the Seg.lll. Namely onejndeed to [(317). To match boundary gauge transformations
can prove the following statements: (3-8) and bulk gauge transformatidn {3.13) we plug solution
i) For normalizable solutiof (9.25)-(9]27) modified Lorentz for ¢ (@:39) in bulk gauge transformatidn (9113) and adapt re-

gauge conditior{(9.21) leads to differential constrdind(®f  |ation (9.3B) for =  to obtain
the spin-1 anomalous conformal current.

i) Leftover on-shelgauge transformation§ (9]12)-(9.14) of 8¢-1(z,2) = 10T 1 Uneuro()
normalizable solutiorf (9.25)-(9.P7) lead to gauge tramsto
tions [3.7)4(3.P) of the spin-1 anomalous conformal cutren

iii) Global so(d,2) symmetries of the normalizable massive . _ o ) ¢ shell . .

. . Transformations given i (9.12)-(9114) are off-shell gatr@nsformations.
spin-1 mpdes iMdSq1 become gIObahO(d’?) conformal Leftover on-shell gauge transformation are obtained fiha)-[9.1#) by
symmetries of the anomalous conformal spin-1 current. using gauge transformation parameter which satisfies iequiE23).

he =2°T(k + 1), ¢ =0. (9.29)

¢ (x,2) 0 2l (@), (9.30)

cur,0

z—0

b_1(2,2) = 262" Teur1(z), (9.31)
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= Us1rPcur0() (9.40) +2n®rP; + 2Py — %fa%b, (9.45)
on the one hand. On the other hand relation {9.26) implies 1
K = K{¢1 — 2r’¢" — 5,228“(;51 , (9.46)
6¢_1($,Z) = — H—I(S(bcur,—l(x)- (941)
a a a 1 a
Comparing[(9.40) and{3:41) we see that the boundary gauge & ¢-1 = Kad-1 — 21 ¢" — §Z23 ¢-1, (9.47)

transformations[{3]8) and bulk gauge transformation {9.13 _ _ o
match. In the same way, usifig(9.34), one can make sure th"€reX A and M are defined in[(Z191.{2.20), whil& is
the remaining boundary gauge transformatlon](3.9) and buIQ'Ven in [8.4). Using these transformation rules we find that
gauge transformatiof (9.14) also match. ¢ (@.13) transforms as

Matching of bulk and boundary global symmetries We
proceed to comparison of bulk and boundary global symme-

tries. To this end we note that representation for generator i.e., we see that the modified Lorentz gauge condi€ion: 0

given in [8.2){(8.5) is valid for gauge invariant theory4dS is not invariant w.r.tKX® transformations,
field. This to say that our modified Lorentz gauge respects the

Poicaré and dilatation symmetries, but bréék-symmetries. KeC ’c:o = —2¢°. (9.49)

In other words, expressions for generatéts, J** and D

given in [8:2)48.4) are still valid for the gauge-fixettS This implies that generatdt® given in [8.5) should be mod-
fields, while expression for the generafof (8.8) should be ified to restore the conformal boost symmetri&s'(symme-
modified to restore conformal boost symmetries for the gaugelries) of the gauge-fixeddsS field theory. In order to restore
fixed AdS fields. Therefore let us first to demonstrate match-these brokerK® symmetries we should, following standard
ing of the Poincaré and dilatation symmetries. What is refProcedure, add compensating gauge transformations to- main
quired is to demonstrate matching of thed, 2) algebra gen-  tain theK™ symmetries. Thus, in order to find improvéd'
erators for bulkAdsS fields given in [B.2)i8M4) and ones for transformations of the gauge-fixettiS fields [9.8) we start
boundary anomalous conformal current giver(inl(2B)=(p.10 With the generic globak® transformations (9.45)-(9.47) sup-
As for generators of the Poincaré algebR¥, Jot, they al- ~ Plemented by the appropriate compensating gauge transfor-
ready coincide on both sides (see formu(@sl(2[8)] (2.9) anfnation
the respective formulak (8.2).(8.3)). Next, consider titetat

K'C=K%,,C— —z28“ — 20", (9.48)

b ab | gbeK®
tion generatorD. Here we need explicit form of solution to Kinpr¢” = K797 + 0°¢ (9.50)
bulk theory equations of motion given in (9125)-(9.27). tdpi K1 = K%_1 + TOOTKﬁgK (9.51)
the notationD ,,, andD_,.,. to indicate the respective real-

izations of the dilatation generatdr on bulk fields [84) and Kot = K1 + 707,165, (9.52)

bulk currents[(2.70) we obtain the relations . _
where¢ X" stands for parameter of compensating gauge trans-

D ,s¢™(2,2) = UnD 000 o() (9.42)  formation. Computin transformation of”
DAds(b*l(xv Z) = - ’1*1DCFT¢CUY7*1($)7 (9-43)
DAdS¢1(x7 Z) = Um-i—chFT(bcur,l(x) ) (9.44)

and requiring thex'?

where the expressions fdp,,, corresponding to¢cur0, conditionC = 0,
beur,—1, Geur,1 CAN be obtained froni (2.1L0) and the respec-

1mr

C=K%,,C— —226" —24% + 05" (9.53)

1mpr

-transformation to maintain the gauge

impr

tive conformal dimensions given in(3.2). Thus, the germsat KfiupC oo = 0, (9.54)
D,,s andD_,.. also match. . Ko

We now turn to matching of the conformal bookt®- we get equation fag
symmetries. Matching of th& “-symmetries requires anal- 065" —24* =0. (9.55)
ysis of some subtleties of our gauge fixing &S field. We
now discuss these subtleties. Thus, we obtain the non-homogeneous second-order differen

As we have already said our modified Lorentz gauge breakial equation for the compensating gauge transformation pa
the K2-symmetries. To demonstrate this we note that ~ rameter”. Plugging normalizable solution solutidn (91.25)
transformations of gauge fields are given by in (3.55) we obtain the equation

Ko¢b = K{o® + M¢* 0.5 (2, 2) = 2042 0() (9.56)
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Solution to this equations is found to be $1(z,2) = oo l/ddy Gz =y, 2)bsn—1(y), (9.63)
5 (,2) = AU 10040 0(2) (9.57) o —1 (0.64)

Plugging this solution in(9.30}-(9.52), we obtain the, - 1

transformations of gauge fixed fields. We then make sure %01 = "0 TT) (9.65)

that theseky;, , -transformations lead to the conformal boost

transformations for the anomalous conformal current giwen 00,1 = 2K, (9.66)

2.2).212) with operatok defined in[3.I0)KZ.12). where the Green function is given [0.(8122).

Using asymptotic behavior of the Green functi@p given

C. AdS/CFT correspondence for anomalous shadow field and i (8.24), we find the asymptotic behavior of our solution
non-normalizable mode of massive AdS field.

¢(w,2) B 2T, (), (9.67)
We proceed to discussion ofdS/CFT correspondence — k3
for bulk massive spin-14dS field and boundary spin-1 $_1(z,2) _h(bsh,l(fw, (9.68)
anomalous shadow field.
Matching of effective action and boundary two-point ¢1(, 2) =9 2/§z_“_%¢sh771(x). (9.69)

vertex. In order to find bulk effective actioS.g¢ we should,

following standard strategy, solve bulk equations of motio From these expressions, we see that our solution has in-
with the Dirichlet problem corresponding to the boundarydeed asymptotic behavior corresponding to the spin-1 anoma
anomalous shadow field and plug the solution into bulk aclous shadow field. Note that because the solution has non-
tion. Using gauge invariant equations of motibn (9.{[5E{Y. integrable asymptotic behavigr{9167)-(9.69), such swoiuis

in bulk action [9.9), we obtain the following effective amii referred to as the non-normalizable solution in the litgm t

We now explain the choice of the normalization factors

Sep = — / A Log , (9.58) 010, 00+ in (@64)-[9.66). The choice of , is a mat-
20 ter of convention. Following commonly used convention, we
Log = %(baTié(ba + % Z @7-7;“@ set this. no.rmalization factor to be equal to. 1. The. remaining
Pt normalization factors 1, are then determined uniquely by
1 requiring that the modified Lorentz gauge condition for the
- 5(78%_1 +121)C. (9.59) massive spin-14dsS field (9.21) be amount to the differential

constraint for the spin-1 anomalous shadow field](4.3). With

As we have already seen, use of modified Lorentz gaugg,e choice made if(9.p4)=(9166) we find the relations
considerably simplify equations of motion. Now, using mod-

ified Lorentz gaugd (9.21) il (9.59), we obtain 94" = /ddy Gz —y,2)0%% o(y) (9.70)
1 1
Eeff = _¢a7-7%¢a+ —= E (ZS)\T,%+)\¢>\7 (960)
c=0 2 2,4 T wr10-1 :/ddy Grl(z =y, 2)dsn1(y), (9.71)

i.e. we see that.q is also simplified. In order to fin@.g
we should solve gauge fixed equations of motion (9.22).9.23 7,161 = /ddy Gu(z —y,2)0¢sn,-1(y) . (9.72)
with the Dirichlet problem corresponding to the boundary
anomalous shadow field and plug the solution iffo (9.60). wdrom these relations anl (9111), we see that our choice of
now discuss solution of equations of motién (9.22).(P.23). 71,0, 01,+1 (9.64)-[9.66), allows us to match modified Lorentz
Because gauge fixed equations of motion (9.22).{9.23) argauge for the spin-144dS field (8.21) and differential con-

similar to the ones for scalatds field (8:12) we can simply ~straint for the spin-1 anomalous shadow field giver{in|(4.3).
apply result in Sed_VIlI. This is to say that solution of equa We note the helpful relations for the Green function which we
tions [9.22)[(9.23) with the Dirichlet problem corresporgd  use for the derivation of relations (917[).(9.72),
to the spin-1 anomalous shadow field takes the form

T3 Gt = =2(k = 1), 9.73)

$'(2.2) = o1 / Yy Gl — . )% o(y).  (9.61) X
ToryGrir = 5-0G, (9.74)

(]5_1(,@,2’) = 0'0,—1‘/ddy Gﬁ_l(l' — y72)¢sh,1(y)7 (962) WhereG,, = GU((E _ y,z)
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All that remains to obtairS.g is to plug solution of the On the other hand, relatiors (916 [)-(9.63) imply

Dirichlet problem for AdS fields, [9.61){(9.613) into[(9.58),
(9-60). Using general formula given in(8128), we obtain 3% (x,z) = 01,0 / dy G (x — 1, 2)00%0(Y) , (9.81)

— Sup = 2k, T, 9.75
ff e ( ) dd_1(x,2) = 01,_1/ddy Gr-1(x —y,2)0¢sn1(y), (9.82)

wherex andc, are defined in[(3]13].(8.23) respectively dnd
is gauge invariant two-point vertex of the spin-1 anomalous §¢, (z,2) = 0'1_’1\/\ddy Gri1(z —y,2)0bsn 1(y). (9.83)
shadow field given i (4.10),(4.1.1).
Thus we see thamposing the modified Lorentz gauge on Comparing [(9.718)E(9.80) witH (9.81)-(9183) we see that the
the massive spin-#AdS field and computing the bulk action on-shell leftover gauge symmetries of solution of the Diric
on the solution of equations of mation with the Dirichletipro let problem forAdS spin-1 massive field amount to the gauge
lem corresponding to the boundary anomalous shadow fieldymmetries of the spin-1 anomalous shadow field.
we obtain the gauge invariant two-point vertex of the spin-1 Following procedure in Séc.IX|B one can make sure that
anomalous shadow field global bulk and boundary symmetries match. It is thitch-
Because in the literaturg.s is expressed in terms of two- ing of the bulk on-shell leftover gauge symmetries of the so-
point vertex taken in the Stueckelberg gauge frairig:d lution to Dirichlet problem and bulk global symmetries and
(4.18), we usd (4.17) and represent our re§ult {9.75) as the respective boundary gauge symmetries of the anomalous
shadow field and boundary global symmetries that explains
¢, stand (9.76)  why the effective action coincides with the gauge invariant
two-point vertex for the boundary anomalous shadow field
This relation was obtained in Ref.J10]. Note that we have(see[(9.75))
obtained more general relation given[in (9.75), while ietat
(9.78) is obtained froni {9.75) by using the Stueckelberggau
frame. We note that for the systematical studyialS/CFT

correspondence it is important to know the normalizati@n fa ) _ )
tor in front of [*tand @78). Our normalization factor coin- Before discussingldS/CFT correspondence for massive
cides with the one found in Ref.[1%] spin-2AdS field and spin-2 anomalous conformal current and

Matching of bulk and boundary gauge symmetries shadow field we present o F'T" adapted gauge invariant

Modified Lorentz gauge[{9:21) and gauge-fixed equationé‘pproa‘:h to spin-2 massive AdS field. Because our approach
(@22),[9.2B) are invariant under gauge transformatiovesng is closely related with gauge invariant approach to massive
in (O12)-[9.1%) provided the gauge transformation papameﬁeld we start with brief review of the latter approach.

ter satisfies the equatidn {9124). Non-normalizable swiLtib Gauge invariant approach to spin-2 massive field in
this equation is given by AdSg44+1 space In gauge invariant approach, spin-2 massive

field is described by gauge fields
()= [dGua—pal).  OTD) e

k(2K + d)

T v d 2

X. ADS/CFT CORRESPONDENCE FOR SPIN-2 FIELDS.

oA P, (10.1)

3 )

We now note that, on the one hand, plugging (P.77 in ({9.12)which transform in the respective rank-2 tensor, vector and
(8-12) and using relationg {9178).(9.74) we representtmils scalar representations eé(d, 1) algebra. In Lorentzian sig-
gauge transformations of (z, z), ¢_1(z, z) and¢, (z,z) as  nature, Lagrangian found in Ref.[33] takes the f&tm

1 1 1 1
0¢° = / d'y G(w = y,2)0"n(y) . 0.78) L= 0B, 0+ 0%k, 0%+ 0D

00 + meA(DE®BA — DAGBE) 4 feDAPA

561 = 7’7_1) /ddy Gr1( —y,2)DEm(y) , (9.79)

2(k B mz—2(1),43(1),434_m2 +4d_2q)AA(I)BB
) :—2&7«00/(# Grr1(x — 1y, 2)éan(y) - 9.80 2
1 ¢ YGry1(z =y, 2)&n(y) (9.80) N me@AA@—g‘I’A@AJF(Z(Zl)g o2, (10.2)

15 Computation ofS.g for spin-1 massless field may be found in Ref.[30]
and, in the framework of our approach, in Ref.[9]. 16 Recent interesting discussion of massive AdS fields may tnedfin [34].
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(10.3)

°d 1/2
where the respective second-derivative Einstein-Hilbed
Maxwell operator€ ., E,,,. are given by

EH -
+DADPRCC 4+ pAB(DUDF T — D299 | (10.4)
o4 = D294 — DADBPE

E (10.5)

Max
Lagrangian[(10J2) is invariant under gauge transformation

2m AB=

848 = pA=B L pBEA 4 — "z, (10.6)
84 = DAZ —mEA, (10.7)
6 = —f2, (10.8)

where Z4, Z are gauge transformation parameters.
Ref.[12], we found new representation for Lagrangian (0.2

1 1
“L = -4B(D? —m? +2)948

e 4

1

- g<1>AA(732 —m? —2d + 4)®5P
1 A 2 2 A 1 2 2

+ 5®4D? —m? — )@ + S®(D? —m? — 2d)
1 AA 1 2

+ 5GCa + 50k (10.9)

1

cA =DBoBA §DA<I>BB +m®4,  (10.10)
Cu = DAGA + %@AA D, (10.11)

From [10.9), we see that it is the use of quantigsandCy;
that simplifies the structure of the gauge invariant Lagiamg
We note also that the relationgt‘ = 0, Cy = 0 define stan-
dard de Donder gauge condition for massive spin-2¥feld

Interrelation of gauge invariant Lagrangian and Pauli-
Fierz Lagrangian. As is well know spin-2 field can be de-
scribed by the Pauli-Fierz Lagrangian given by

1 1 m? —2
EEPF = Z¢gE(EEH¢PF)AB - 4 (I)ﬁffl)?f
m24+d—2_4a-58
+ T —elelr, (10.12)

In
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where®45 is rank-2 tensor field ofo(d, 1) algebra. Pauli-
Fierz Lagrangian can be obtained from gauge invariant La-
grangian[(I0[2) in obvious way. Namely, gauge transforma-
tions [10.7)[(10J8) allow us to gauge away the fields and

®. Doing so and identifying rank-2 tensor field [n_(710.2) with
@ﬁf we get the Pauli-Fierz Lagrangian from gauge invariant

Lagrangian[{10]2),

Lpp= £|<I>ABE<I>QI§, ®A=0,P=0 - (10.13)

For the case of flat space, it is well known that the gauge
invariant Lagrangian can be obtained from Pauli-Fierz La-
grangian. It turns out that this interrelation is still to\mdid
in AdS space too. Namely, inserting the following represen-
tation of Pauli-Fierz field in terms of the gauge fields (10.1)

1
AB AB Az B BagA
oy = o4 4 — (D49 + Do)
2 2m
+ —DADBep 4+
mf d-1)f

into Pauli-Fierz Lagrangiaf (10.9) we obtain gauge invaria
Lagrangian[{10J2¥.

nPd . (10.14)

A. CFT adapted gauge invariant approach to spin-2 massive
field in AdS4+1

We now discuss ou€' F'T' adapted approach to massive
spin-2 AdS field. For details of the derivation of th&:"T
adapted gauge invariant Lagrangian see Appendix B.

In our approach, the massive spin-2 field is described by
gauge fields

o™,
(blil ]
¢72 )

o1,
¢07 ¢2-

(10.15)

The fields¢®®, ¢4, and ¢g, ¢+o are the respective rank-2
tensor, vector and scalar fields of th€d) algebra. The&e' F'T
adapted gauge invariant Lagrangian for these fields takes th
form [12]

_ 1 ab|2 1 aa |2 1 ab|2 1 aa |2
L= F1do™ " = Sldo™ " + 7T 1 6™ = STy 0™
1 a a
P (146512 + 1Ty 12051
A==£1

17 Recent discussion of tretandardde Donder-Feynman gauge for massless 18 To our knowledge formuld{Z0.14) is new and has not been stgaiin the

fields may be found in Refs.[35-437]. To our knowledge explicrm of
C4, Cy ({0.10)[I0.11) has not been discussed in the earlieafites.

earlier literature. Foud flat space formuld{10.14) was given in Refl[38],
while for flat space withl > 4 was given in Ref.[8].



coce — %clc1 - %c_lc_1 , (10.16)

where we use the notation

1
o = 8b¢ab _ §aa¢bb
+ 0T 0t P08, (10.47)
a a 1 aa
C, = 07 — §r20T_N_%¢

+ 0T 160+ V2T 560, (10.18)
Cy = 0%, — —7‘007;_,¢aa
+ \/§r217‘,,{+g¢—2 + Tg Te-1¢0, (10.19)
and7, is given in [81R), whiles andr”", r¢'" are defined

in (5.3) and [5.7)E(5.72) respectively. Lagrangibn (1].i6

invariant under the gauge transformations

St = 9¢b + ob¢? (10.20)
+ ;T—_?Oznabﬁﬁfl + 5?0277‘“’7_%%5—1 ;

6%y =01 + r°07;_,§ : (10.21)

567 = 0% + rdT 1", (10.22)

0o = V2T, st 1, (10.23)

060 =12 T 1€ + 78 T 1601, (10.24)

o = V2r®T s, (10.25)

where¢?, £, are gauge transformation parameters.

Gauge invariant equations of motion obtained from La-

grangian[(10.16) take the form

Dn¢ab _ aacb _ 8bca

J;Biﬁj T pp3Con— 22?0’7; T..1C1 =0, (10.26)
010y =90y =T, 1C* =0, (10.27)
Opr16f = 9°Cr =1 T_,,_, 0% = 0, (10.28)

Op-2¢-2 = V2r2'T,_3C_1 =0, (10.29)
Oudo — ¢ Ty 1 Coy =T 1 CL =0, (10.30)

Optade — V2rl'T_,_3C1 =0, (10.31)
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whered, is defined in[(8.155). We see that the gauge invariant
equations of motion are coupled.

Global symmetries We now discuss realization of global
symmetries on space of gauge fields (1D.15). The realization
of the of global symmetries in terms of differential operato
is already given in[(8]12)=(8.8). All that remains to complet
description of global symmetries is to find realization of th
operatorRZ{, on space of gauge fields (10115). Action of the
operatorRzf, on space of gauge fields (10/15) is found to be,

<o>¢bc = ZTc O(nes +ncel —

be
T a
21 )
ab ;c ac 277bc a
+ZT20(77 bébfl +n ¢le - mgf),l), (10.32)

RY ) = —2r0¢™ + 2n™(Vor®¢s +ri°¢), (10.33)

(0)¢b 1= _Zroo(bab + ZT/ (\/57‘21(;5_2 + Tgl(bO)a

(10.34)

R% 6o = —2V2ri0¢4 (10.35)
RY ¢ = —2ri0¢f — 2rd' ¢ (10.36)
Ry 6o = —2v2r2M 9% . (10.37)

Modified de Donder gauge Modified de Donder gauge is
defined to be

c*=0, C_,=0, Cy=0, modifiedde Dondergauge
(10.38)

Using this gauge in equations of motidn (10.26)-(1D.31¢giv

the surprisingly simple gauge fixed equations of motion,

0,.0% =0, (10.39)
Oeirdd =0, A= +1, (10.40)
Opgrdr =0, A=0,42. (10.41)

We see that the gauge fixed equations are decoupled.

Modified de Donder gauge and gauge-fixed equations have
leftover on-shell gauge symmetry. Namely, modified de Don-
der gaugel(10.38) and gauge-fixed equatibns {10[39)-(10.41
are invariant under gauge transformations giver(in (10.20)
(10.25) provided the gauge transformation parametersfgati
the equations

0,.6%=0, Oxinén =0, A=+1. (10.42)

B. AdS/CFT correspondence for anomalous current and
normalizable modes of massive AdS field

We now ready to discusddsS/CFT correspondence for
bulk massive spin-24dS field and boundary spin-2 anoma-
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lous conformal curreAf. To this end we use, as before, our sive spin-2 modes idldS,; become globato(d, 2) bound-
CFT adapted approach téddS field dynamics and modified ary conformal symmetries of the spin-2 anomalous conformal

de Donder gauge. current.
First of all we note that the normalizable solution of equa- These statements can be proved following procedure we
tions of motion[[10.39)E(10.41) is given by demonstrated for the case of spin-1 fields in[SeclIX B. There-
fore to avoid repetitions we briefly discuss some necessary
¢ (2, 2) = Unditro(@) (10.43)  details.
Matching of bulk and boundary gauge symmetries To
61 (2,%) = Uk 108 1(2),  (10.44) ’ . y Jue o
much gauge symmetries we analyze leftover on-shell gauge
3 (x,2) = Ugy10%,, 1(2), (10.45) symmetries which are described by solutions of equations
given in [10.4P). Normalizable solution to these equations
¢—2(«T7 Z) = UH—2¢CUF,—2(‘T) ) (10-46) takes the form,
¢o(@, 2) = —Ugdeur,0(2) (10.47) £, 2) = Uplly o() (10.55)
(bg(l‘, Z) = UH+2¢C1]I‘,2(‘T) , (1048) 5_1(1', Z) = — n—lgcur,—l(x) s (1056)
whereU,, is defined in[(9.28). From these relations, we find &z, 2) = Usr1€eurn () . (10.57)

the asymptotic behavior of the normalizable solution Plugging these solutions and solution for equations of omoti

for AdS fields [10.413)E(10.48) into bulk gauge transformas

ab z—=0 Kk+1 rab
¢*(x,2) — 2"TEL o(T) (10.49) (10.20)-(10.25) one can make sure that these leftover elt-sh
o (z, 2) z20 _2,%&—%(%“ (@), (10.50) bulk gguge transformatlons amount to boundary gauge t_rans-
’ formations of the spin-2 anomalous conformal current given
s I in (513)-(5.18).

(10.51) Matching of bulk de Donder gauge and boundary dif-

. ferential constraints. All that is required is to plug solution
¢-2(z,2) = =— 4k(k+1)2"" 2 ¢cur,—2(z), (10.52)  for equations of motion of AdS fieldE(10]43)=(10.48) inte th

20 el modified de Donder gauge and use relations for the operator
do(z,2) = — 2" Peuro(2) (10.53) U, given in [9.38)[(9.34). Doing so, we make sure that mod-

o ntE ified de Donder gaugé (10J38) amounts to differential con-
G2(v,2) = = oy Peur2 (@) (10:54)  strains[GH)56).

Matching of bilk and boundary global symmetries.
From [10.49){(10.34), we see that the fieltf, ;, #2,, ;.  Matching of bulk and boundary Poincaé symmetries is obvi-
Gecur,0, Peur,+2 are indeed boundary values of the normaliz-ous. Using conformal dimensions for spin-2 anomalous cur-
able solution. rent given in[(5.R), solution for bulk fields ib (1014 8)-(Z8),

In the r.h.s. [(I0.43)=(10.48), we use the notatifftj, ,,  and bulk dilatation operatdr(8.4) we make sure that dilaat
Beur,£15 Peur,0, Peur,+2 beCause these boundary values turnbulk and boundary symmetries also match. What is no-trivial
out to be the gauge fields entering our gauge invariant formuis to match conformal boost symmetrie& {-symmetries).
lation of spin-2 anomalous conformal currents in the[Sed.V AThe reason for this is that the modified de Donder gauge
Namely, one can prove the following statements: breaks bulkK“-symmetries. In order to restore these bro-
i) Leftover on-shelgauge transformations (10120)-(10.25) of ken K %-symmetries we should, following standard procedure,
normalizable solutiod (10.43)-(10]48) lead to gauge fians add compensating gauge transformations to maintaidthe
mations[(5.1B)E(5.18) of the anomalous conformal current. symmetries,
i) For normalizable solution (10.13)-(10148), modified de
Donder gauge conditiof (10]38) leads to differential con-
straints [[5.4){(516) of the anomalous conformal current. The compensating gauge transformation parameters can as
iii) Globalso(d, 2) bulk symmetries of the normalizable mas- usually be found by requiring improved transformation

(10.58) to maintain the modified de Donder gatige (10.38),

K&, C =0, K&,C =0, K& Ci=0.(10.59)

impr impr

K = K+ Gerxe . (10.58)

19 To our knowledgeAdS/CFT correspondence for bulk massive spin-2 .
AdS field and boundary spin-2 anomalous conformal current hastnd- One can make sure that equat"59) amount to the fol-

ied in the literature. lowing equations for the compensating gauge transformatio
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parameters, using modified de Donder gaude (10.38)in (10.66), we obtain
0,605 = 299 — pabdgee 10.60 1 1
5 (b n (b ( ) Eeﬂ”‘ ey = Z¢ab7- 7%¢ab _ §¢aa7- 7%¢bb
O, 165 =207, (10.61) Cx1=0
a 1 a a
O 166" = 269 (10.62) + 5 D BATeopadi
A==+1
Using [10.48){(10.45) we find solution for the compensating )
gauge transformation parameters, + 3 Z AT 142 5 (10.67)
. 1 A=0,+2
§° (@,2) = U1 (0 () = 51" 0%kn0) . (1063) | | .
i.e. we see thaf.« is also considerably simplified. In order to
5 (2, 2) = —2U0%,, 4 (2), (10.64)  find Sex we should solve equations of motién (10.39)-(10.41)
7 with the Dirichlet problem corresponding to the boundary
&' (2, 2) = 2Usr200y, 1 (2) - (10.65)  anomalous shadow field and plug the solution ifitg. To

where operatoil/, is given in [3.28). Using these com- this end we discuss solution of equations of mot[on (70.39)-

pensating gauge transformation parameters in improved bul)'

Kimpr-symmetries[[10.58) we make sure that thé&g, - As before our equations of motion take decoupled form
symmetries amount td -symmetries of spin-2 anom;rlous and similar to the equations of motion for the massive scalar
conformal current given if{2.11) arld (5] 10)-(5.24). AdS field. Therefore we can apply the procedure described in

Sec.[VINl. Doing so, we obtain solution of equati¢n (10.39)-

(10.41) with the Dirichlet problem corresponding to thenspi
C. AdS/CFT correspondence for anomalous shadow field and gnomalous shadow field,
non-normalizable mode of massive AdS field.

0 (w2) = aao [ Ay Gl — 1. 2)00(0) . (10.68)
We proceed to discussion ofdS/CFT correspondence
for ‘bulk massive Spiv24dS field and boundary D2 g~ gy [y G — 11680,
Matching of effective action and boundary two-point A==1, (10.69)
vertex. In order to findS.g we should solve equations of mo-
tion with the Dirichlet problem corresponding to the bouryda oa(z,2) = Uo,x/ddy Gria(® =y, 2)dsh, -2 (),

anomalous shadow field and plug the solution into action. Us- A= 0.42 (10.70)
ing equations of motior (10.26)-(10131) in bulk actién 9.9 T
with Lagrangian[{10.16), we obtain boundary effective@uti o20=1, (10.71)
(9.58) with L. given by S -5 1 = (10.72)
1 a a 1 aa A
Leg = Z¢ bﬂ,%gb b §¢ ﬁfé‘bbb o1,1 = 2K, (10.73)
1
1 @ @ 00,2 = 77— 10.74
£ T "2 = A= D)(n - 2) (10.74)
A=+1 00,0 = —1, (1075)
1
A=0,+2
) where the Green functiaf,, is given in [8.2P), whiles is de-
_ E(rg%‘il +rP¢})C* fined in [5.3). Choice of normalization factes o (10.71) is
a matter of convention. The remaining normalization fagtor
n (Q(baa B rgl(ZS B ﬁq& \C given in [10.72){(10.746) are uniquely determined by requir
4 V2 B IR ing that modified de Donder gaude (10.38) be amount to the
00 10 10 differential constraints for the spin-2 anomalous shadeld fi
+ (%q&““ — %% — Lng)Cl . (10.66) Using asymptotic behavior of the Green function given in
V2 (8.24), we find the asymptotic behavior of our solution

As we have demonstrated use of the modified de Donder
gauge considerable simplifies the equations of motion. Now o™ (z, 2) =9 z_“+%¢§£,0(w), (20.77)
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250 ZmrtE parameters satisfy the equatiohs (10.42). Non-normaézab
e —— Y 10.78 . . .
oa(@,2) — 2(k — 1) (7)) ( ) solution to equation§ (10.42) is given by
a z—0 —k—1L a
¢i(@,2) — 2rzT R, (@), Q079 (a2 = / A"y Gr(w =y, 2)Em0(y) (10.85)
z—0 Zﬁ'ﬂkg
0-2(02) = gyt @080 ) o1 [y G (o~ 1 (). (10.86)
do(x,2) 28 2oy 0(a), (10.81) X = +1, whereo,; 1, are given in [I0.72)(10.Y3). Using
20 o solution in [10.8b)[(10.86) and following procedure d ésed
$2(x,2) = k(K +1)27" 29 a(x). (10.82) 4o spin-1 field in SeEIXT one can prove that the on-shell

. eftover gauge symmetries of solution of the Dirichlet desb
From these expressions, we see that our squ0.68$— gaugesy H

(L0-70) has indeed asymptotic behavior correspondingeto th or AdS spin-2 massive field amount to the gauge symmetries
spin-2 anomalous shadow field of the spin-2 anomalous shadow field.

. . . . . Following procedure in S€c.IX|B one can make sure that
Finally, to obtain the effective action we plug solution loét gp

lobal bulk and bound tries match. It is thistch-
Dirichlet problem forAds fields, [TO:6B){(I070) intd (358), .o o oo andboundary symmeties maten. 1S thase

. . n . ing of the bulk on-shell leftover gauge symmetries of the so-
(L0.E). Using general formula given [0.(8128), we obtain lution to Dirichlet problem and bulk global symmetries and

(10.83) the respective boundary gauge symmetries of the anomalous

shadow field and boundary global symmetries that explains
wherer andc,, are defined in{513) anB{8123) respectively andwhy the effective action coincides with the gauge invariant
T is gauge invariant two-point vertex of the spin-2 anomalougwo-point vertex for the boundary anomalous shadow field
shadow field given if{4.10).(6.19). (see[(10.83))

Thus,using modified de Donder gauge for massive spin-2 Comparing our results for spin-1 and spin-2 fields given
Ads field and computing the bulk action on solution of equa-" (@-73) and[(10.83) respectively we see that our approach
tions of motion with the Dirichlet problem corresponding to gives uniform description of the interrelation between efie
the boundary anomalous shadow field we obtain the gaug@ctive action of massive fields and two-point gauge invaria
invariant two-point vertex of spin-2 anomalous shadow field Vertex of shadow field. Note however that value:dor spin-

Because in the literaturg.g; is expressed in terms of two- 1 field (3.3) should not be conf_used Wit_h _the one for spin-2
point vertex taken in the Stueckelberg gauge fraifignd field (53). For the case of arbitrary spirfield, thex was

(6.29), we us€(6.28) to represent our result (10.83) as found in Refs([12. 42],

— Seft = 2kc,I,

K264+ d+2)  iand \/ 2 d—4y2 10.87
— S = IR AT S pstand 10.84 R=fm?+ (s +——)" (10.87)
T @k+d—2)° (10.84) 2

All that is required to generalize the relatidn (10.83) te th

This relation was obtained in Ref.J11]. Note that we have _ o : .
) . L ) case of arbitrary spig-fields is to plugs (10.87) in [10.8B).
obtained more general relation given in (10.83), while ela Detailed study of arbitrary spin fields will be given in forth

Eon (10.8%) is obtained fronﬂIOZBQ) by using thesztasn'fiu_eckel-commg oublication.
erg gauge frame. The fact th8fg is related tol’ is

expected because of the conformal symmetry. What is im-

portant for the systematical study dfdS/CFT correspon- XI. CONCLUSIONS
dence is the computation of the normalization factor in fron

of I (10,84). We note that our normalization factor in | this paper, we extend the gauge invariant Stueckel-
(10.83) coincides with the one found in Ref/[11] berg approach t&'FT initiated in Refs|[8| 9] to the study
Matching of bulk and boundary gauge symmetries  of anomalous conformal currents and shadow fields. In
Modified de Donder gaugk (10138) and gauge-fixed equationge framework ofAdS/CFT correspondence the anomalous
(10.39){10.411) are invariant under gauge transformationconformal currents and shadow fields are related with mas-
given in [10.2D){(10.25) provided the gauge transfornmatio sjve fields of AdS string. It is well known that all Lorentz co-
variant approaches to string field theory involve large antou
of Stueckelberg fields and the corresponding gauge symme-

20 Computation ofS.g for spin-2 massless field may be found in Refs.[39— tries (See e.gl [43])' Because IOUI‘ approgch to anomalous con
41]. In the framework of our approacK,g was studied in Ref.[12]. formal currents and shadow fields also involves Stueckglber
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fields we believe that our approach will be helpful to under-  Appendix A: Derivation of CFT adapted Lagrangian for

stand string/gauge theory duality better. Note also thablwe massive spin-1 field inAdSq1

tain gauge invariant vertex for anomalous shadow fieldskwhic

provides quick and easy access to light-cone gauge vertex. | In this Appendix, we explain some details of the derivation
the framework ofAdS/C F'T correspondence this vertexis re- of the CF'T adapted gauge invariant Lagrangian for massive
lated toAdS field action evaluated on solution of the Dirichlet spin-1 fields given in[(9.10). Presentation in this Appendix
problem. Because on expects that quantizatioAd$ super- is given by using Lorentzian signature. Euclidean sigreatur
string is straightforward only in light-cone gauge we betie Lagrangian in SeC.IXA, is obtained from the Lorentzian sig-
that our light-cone gauge vertex will also be helpful in vari nature Lagrangian by simple substitutién— — L.

ous studies of AdS/CFT duality. The results obtained should Spin-1 massive field We use fieldb4 carrying flat Lorentz
have a number of the following interesting applications andalgebraso(d, 1) vector indicesA, B =0,1,...,d—1,d. The
generalizations. field ®4 is related with field carrying the base manifold in-

(i) In this paper we considered the gauge invariant apdices®”, u = 0,1,...,d, in a standard wap" = ¢/} @,
proach for spin-1 and spin-2 anomalous conformal currentéheree: is vielbein of AdSq., space. For the Poincaré
and shadow fields. It would be interesting to generalize ouParametrization ofldS,. spacel(811), vielbein® = ¢/} dx*
approach to the case of arbitrary spin anomalous conformaind Lorentz connectiore” + w” A ¥ = 0, are given by
cur-r-ents a-nd shadow f|elds: - - - A lgA | LAB _ 1(6’453 BN, (A1)

(i) In this paper we studied the two-point gauge invariant 2 " z 2R EH

vertex of anomalous shadow fields. Generalization of our ap; ; ;
- : ) ) pwhere&f} is Kronecker delta symbol. We use a covariant
proach to the case of 3-point and 4-point gauge invariant Verya ivative with the flat indice®4
tices will give us the possibility to the study of various &pp
cations of our approach along the lines of Refs.[44—46] Dy=elD,, D4 =n*PDp, (A2)

(iif) Because our modified de Donder gauge leads to ConSi%\/hereefQ is inverse ofAdS vielbein, eet, = 54 andnAB
erably simplified analysis of AdS field dynamics we believe,s . metric tensor. With choice macfe [n (A1), the covariant
that this gauge might also be useful for better underst;xywdinderivaﬁve takes the form
of various aspects of AdS/QCD correspondence which are dis-
cussed e.g. in Refs.[47,/48]. DASE = §49P 4+ 5804 — A Po* | HA =207, (A3)

iv) BRST approach is one of powerful approaches to anal-

s of . ts of relativistic d ) where we adopt the following conventions for the derivative
ysis of various aspects of relativistic dynamics (see €.9:nd coordinatesy? — WABOL. D4 = 004, 24 = §Agn,
Refs.[49]-[54]. We think that extension of this approacth® A d d_ "

. =z% % z% = 2.
case anomalous conformal currents and shadow field should : o .
. . In arbitrary parametrization ofAdS, Lagrangian of the
be relatively straightforward.

massive spin-1 field is givenih(9.6). We now use the Poimcar’
v) In the last years, there were interesting development§arametrization ofidS and introduce the following quantity:

in studying the mixed symmetry fields [55]-[59]. It would

be interesting to apply methods developed in these refesenc C=DY0Y + md + 207 (A4)

to studying anomalous conformal currents and shadow fiel%e note that it is the relatiof

There are other various interesting approaches in thatites

which could be used to discuss gauge invariant formulation o

anomalous conformal currents and shadow fields. This is to ,pAp2pA — e(fl)A(D

say that various recently developed interesting formaoifeti

in terms of unconstrained fields in flat space may be found in + 4D*C 4 (d— 1) D* — 4mq)q)z) . (A5)

Refs.[60]-[62] .

= 0 that defines the modified
Lorentz gauge. Using the relations (up to total derivative)

—1)94

0 AdS

edD*® = ed0O,,, O (AB)
C2 = C? —49*C + 40797, (A7)
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~o(0
2 (

d—3
——d*P*
2

—m?)®

0 AdS

1
+ — 2mPdD* + 502, (A9)

C

HA DA + (2 — d)D* + md. (A10)

Using canonically normalized fields*, ® andC defined by

d—1 d+1

@AZZ%ZIBA, (I)ZZTZI;, C=z72(C,
(A11)
we obtain
1~ 1 d? -1 ~
L = §<I>A(D+3Z2——2(m2—|— +1—d))q>A
z

1~ s 1, A -1\~
- O R
+ 2@( + 03 Z2(m + 1 ))(I)
d—3~, ~ 2m~_~ 1
O*P* — PP 4 —(C? Al2
* 222 22 +2C’ ( )
AT A 3_d~z =
C = 0804+ ——0* + — 0. (A13)

z

In terms ofso(d — 1, 1) tensorial components of the fiedet*
given by®®, ®*, Lagrangian(AIP) and’ (A13) take the form

1
L = £1+£0+502, (A14)
1~ . ~
£y = ;3" K" (A15)
1o, o~ 1xs ~ 2m~.~
Lo= -0 Ks g + 0Ky 1® — 253, (AL6)
2 2 22
C=0"%"+ Toa®* + 0, (A17)
z
K, :u+32—i(m2—3+w) (A18)
¥ 222 4 ’

wherex and7,, are defined in{313) and (8112) respectively. In
terms of fields[(918) defined by

P = ¢, (A19)
o =1rL¢ 1 +1 ¢, (A20)
:I; = —7’20@5,1 + rgogbl 5 (A21)

where ), r2° are defined in[{315L.(3.6), we cast, Lo

(A15),(AI8) into the form

L1 = 56"0.0", (n22)

Lo=3 Y 30erdn, (A23)

A==%1

while C (AT7) takes desired form given if_(9]11). Noticing
the relation

1 1
:_63+?(V2——

T
T 7.

v

(A24)

1
2

24

and taking into account expressions oy (A22), Lo (A23),
we see that Lagrangiah (Al14) takes the form of tHe'T
adapted gauge invariant Lagrangian (9.10).

Lagrangian[(9J6) is invariant under gauge transformations
(©@.8). Making the rescaling = z(4=3)/2¢, we check that
these gauge transformations lead to the ones givdn in| (9.12)

©.19).

Appendix B: Derivation of CFT adapted Lagrangian for
massive spin-2 field inAdS 41

We now present some details of the derivation of thHeT
adapted gauge invariant Lagrangian and the respectiveegaug
transformations of massive spin-2 fields given[in (1D.16) an
(10.20)10.25).

In arbitrary parametrization ofAdS, Lagrangian for the
massive spin-2 field is given in (10.9). We now use the
Poincaré parametrization gfdS and introduce the following
guantities

CA =04 +20%4 — 54088 (B1)

C=Cy +20°. (B2)

We note that it is the relation€4 = 0, C = 0 that define
the modified de Donder gauge. Using the relations (up to total
derivative)

1

e PPN — e(i@AB(D —2)pAP

0 AdS

d 5(1)214(1)214 + 2(1)22(1)1414 _ @@AA(I)BB
2 4

+
1207ACA — 9AAC? — 2mdFAPA + m<I>AA<I>Z), (B3)

1

1
5CiCa = ;€104 — 2070 + @ C”

1
+2074074 — 2072044 4 S@MAQBE, (B4)

—-1)94

cDAD2pA = e(fl)A(DoAdS
F4D7C + (d — T)O* D7 — 2mdA4D* — 4 f(I)(I)Z), (B5)
C2 = C? — 49*C + 49707, (B6)

whered, , .. is given in [A8), we represent Lagrangian (10.9)
andC4, C (B1),(B2) as

_ 1
e 1‘6 = Z(I)AB(DoAds _mQ)(I)AB
1
- gq)AA(DoAds - mQ)CI)BB



d—1
5 (I)ZA(I)ZA _ 2m(I)ZA(I)A

1
E(bA(DOAdS - m2 -

d—
T‘O’@Z@Z —2f D>

d—1)4

1
~o(D

—m? - 2d)®
2

0 AdS
~cic4 + Zcc, (B7)
2 2
~ 1.
IPAB — 58‘4(1)33 + (1 —d)®** + md“ | (B8)
HABA 1+ (2 — d)D* + %@AA +fD. (B9)

Using canonically normalized fields and quantit@$, C,

@AB:z%fi)AB, @Azz%é‘é‘, @zz%é,
(B10)
CA=.%C4 C=:%C, (B11)
we obtain
1= N~ 1- -
L = Z@ABKOq)AB_gq)AAKOq)BB
1~A 2% A Lz =~
+ 3R+ S PR
d_]‘NzANzA 2m~zA~A d_3~z~z
+—222(I)(I) 22<I><I>+222<I><I>
U o Tauxa 1x=
- —fq>Z<I>+—cAcA+—cc, (B12)
22 2 2
~ ~ 1 ~ ~ ~
Ce — abq)ab_§aaq)BB+T_%q)za+mq)a7 (813)
z
~ ~ 1 ~ ~ ~
Cz — 8a¢za—§T%¢BB+T7%®ZZ+T¢Z,(B].4)
= z
C = 0000+ T aad®+ 28411 L5 (B15)
2 2z z

wherer and K, are defined in[{5]3) an@{AIL8) respectively.
In terms of new fields defined by the relations

¢ab — (i)ab + — 277ab(i)zz , (816)
T XL (817)
T NS S

Lagrangian’ (BI2) andC“, C (BI3)-(B15) take the form

c:cg+cl+co+%éAéA+%éé, (B19)

25

1 . 1 .
Ly = 70" Kop™ — 2" Koo, (B20)
1 N 1 . 2m
L, = §¢zaK1_d¢za+§¢aKl+d¢a_ ?(bza(ba’ (821)
1 2z o zz 1 ZLr a1z L -
Ly = §¢ Ky 249 +§¢ Ky +§¢K2d¢
2 2
- Bore o, (822)
éa — ab¢ab_ %aa(bbb'i‘Tﬂ(bza‘f' m(ba, (823)
2 z
Nz a jza 1 aa 2z m. .
C = 8 (b —ET%(b +UT‘§;_d¢ +;¢ 5 (824)
C:8a¢a+7}7d¢z+ﬂ¢aa_ g ¢zz+i¢
= 2z (d—2)z 2"’
(B25)
d—2\1/2 d—1\1/2

wheref is defined in[(1013). We proceed as follows.
i) First, we note that’; (B20) can be represented as

1 1
Ly = 7¢"0ug™ — 20"0xg™,  (B27)

wherex andO,, are given in[(5.B) and (8.15) respectively.
i) Introducing vector fieldg¢ ,; by the orthogonal transfor-
mation

67 = 1062, + 10
¢a

wherer?, 20 are given in[(5.J7).(5.10) we cast (BZI) into
the form

(B28)

= —r?oqﬁ‘il + 79049 | (B29)

1 a a
Ly = B Z AN a0 -

A==+1

We note that inverse of the transformatign (B28).(B29) is
given by

(B30)

9%y =12 — 1",
gz/)zlz — Tgo(bza 4 T20¢a .

i) Introducing scalar fields,, ¢-o by the orthogonal trans-
formation

(B31)
(B32)

@*% = 811¢_2 + 1200 + 51302, (B33)

@° = sa10_2 + s22¢00 + S2302 , (B34)

@ = S310—2 + S3200 + 53302, (B35)
(k4 d) 2k d—2)(d - 2)\1/2

1= ( 16k(r — 1)(d — 1) ) ’ (B36)
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o1y — ((211 +d)(2k — d)d)1/2 (837)  (B52), we see that Lagrangiai (B19) takes the form of the
8(k? —1)(d — 1) 7 CFT adapted gauge invariant Lagrangian (10.16).
(26 — d) (26 — d + 2)(d — 2)\ /2 We now present some details of the derivation of gauge
813 = ( 16r(k + 1)(d— 1) ) ; (B38)  transformation given if(10.20)-(10]25). Lagrangian 8)0s
invariant under gauge transformations given[in (L0.6)}d1L0
S91 = _((2“ —d)(2k+d-2) ) 1/2 ’ (839) Interms of canonically normalized fields (B10) these gauge
8r(r—1) transformations take the form
d(d—2) \1/2
= (A2 ) (840)
(K N 1) 5(i)ab o 8a€b +8b£a _g abgz + 2m,'7ab é- (853)
((2/@—|—d)(2m—d—|—2))1/2 (B41) N 2 (d—1)z>"
523 = ’ -
8%(%& + 1) 5(1)211 — aaé-z 4 T%ga , (854)
(2 —d)(25 —d +2)d\1/? ~ o9m
531 = ( 16k(k —1)(d — 1) ) ’ (B42) 0P~ = 27@55 + mfv (B55)
2k +d—2)(2k —d+2)(d—2)\ /2 50 we Mo,
__ do = gog — Dea B56
s == 82— 1)(d—1) ) @) §-7¢ (856)
m
_ 1/2 = Ta3&— —&%, B57
833:((2I€+d)(21€+d 2)d) | (B44) 28— —¢ (B57)
16k(k + 1)(d — 1) i f
_ d=—=L¢. (B58)
we castl, (B22) into the form z
In terms of fields defined in (B16)-(BIL8), gauge transforma-
Z ATk +A0x - (B45)  tions [B53)(B58) take the form
A=-2,0,2
For the readers convenience, we note that inverse of the-tran oyab 9mmnd
formation [B33){B3b) is given by 3¢ = 9°¢b + ¢ + 1 27‘_%52 +o- i 5 & (B59)
P2 =5110"" + 521" + 5310, (B46) 0¢** = 9€" + Taa1&", (B60)
= 510" : B47
G0 = 51207 + 52207 + 5320, (B47) 097 = uTus& + (dn—mi)zg’ (B61)
$2 = 81397 + 5230° + s330. (B48)
a ___ a _ @ a
iv) Representing>®, C#, C in terms of the vector fieldg? , 09" =0 i (B62)
and the scalar fieldgy, and introducing”®, C+; by re-
- dso, ¢ro g, Ci1 by 56% = Tust — ﬂgz 7 (B63)
ations 7 P
cr=Ce, (B49) 5 = —ig. (B64)
z
_ .00~z 00 ¢~
Cr=r¢ C~ e C: (B50) Introducing new gauge transformation parameters by the or-
C_1 =r0C* —r’C, (B51)  thogonal transformation

we find that theseC®, C, take the form given in[{10.17)-

(10.19). We note the helpful relation

CACA+CC=CC*+C_1C_1+C.C,.  (B52)

& =61 + 0%, (B65)

6 = —Tgoffl + 7’2051 5 (B66)

and using the vector fields; and the scalar fieldgy, ¢-o,

v) Making use of relation[(A24) and taking into account ex-we find that gauge transformatiofis (B50)-(B64) take desired

pressions forl, (B21), £, (B30), £, (B4H) and formula

form given in [10.2D){(10.25).
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