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Abstract

In this article, we explore the holographic Q-picture description for the charged
rotating black holes in the five-dimensional minimal supergravity. The central
charge in the Q-picture depends only on black hole charge, therefore can be
computed from the near horizon geometry of the extremal and non-rotating
counterpart. Moreover, the CFT temperatures can be identified by studying
the hidden conformal symmetry, and the related gravity-CFT dictionary can
be translated via thermodynamics analysis. The entropy and absorption cross
section computed from both gravity and CFT sides properly agree with each
other.
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1 Introduction

The holographic principle [1, 2, 3] is an outstanding concept which provides dual de-
scriptions connecting gravity and field theory. In the past years, numerous substantial
successes have been archived on the holographic dual description for the black holes,
in particular for the Kerr solutions [4, 5, 6, 7, 8, 9, 10, 11, 12, 13], as well as the
other generalizations [14]. The original paper on the Kerr/CFT correspondence [4]
explored the holographic correspondence for the extremal Kerr black holes. More
precisely, it has shown that the central charge of the dual CFT can be derived from
the asymptotic symmetry group of the near horizon geometry, and the temperatures
can be identified via the Boltzmann factor. The major evidence is the fact that the
CFT entropy computed by using the Cardy formula exactly reproduces the black hole
Bekenstein-Hawking entropy. Soon after this stimulating progress, the investigation
on the Kerr/CFT correspondence has been extended to the near extremal cases [7, 9]
with a new support that the scattering absorption cross section of a probe field, in
suitable limits, agrees with the two-point function of the dual operator. Recently, the
Kerr/CFT correspondence was remarkably generalized to the generic non-extremal
Kerr black holes [13]. For the non-extremal black holes, the near horizon geometry
does not contain an explicit AdS3 structure, nevertheless, there is a local conformal
invariance in the solution space of a specified probe field which merely ensures a dual
CFT description. This observation indicates that even though the near-horizon ge-
ometry of a generic Kerr black hole could be distinct from the AdS or warped AdS
spacetime, the local conformal symmetry on the solution space may still allow us
to explore its CFT description. Both the microscopic entropy counting and the low
frequency scattering amplitude in the near region support such intuitive judgement.
The study of hidden conformal symmetry has been generalized to various types of
black holes [15].

For the charged black holes the holographic duality changes to have multiple faces.
It has been shown in [16], see also [17], that there are two different individual 2D
CFTs holographically dual to the Kerr-Newman black holes refereing to the two pos-
sible limits: neutral Kerr and non-rotating Reissener-Nordstrom (RN) solutions. The
twofold holographic descriptions, called J-picture and Q-picture, distinctly are direct
extensions respectively of the Kerr/CFT correspondence and the RN/CFT correspon-
dence [18, 19, 20, 21, 22]. Just like the Kerr-Newman solutions, the charged rotating
black holes in the five-dimensional minimal supergravity [23] can provide another
interesting backgrounds to verity the validity of the holographic principle. Several
profound investigations have been done, including the duality for the extremal limit,
see for example [24], and the associated hidden conformal symmetry [25]. However,
all of the study were only focusing on the angular momentum description, namely the
J-picture. It is a natural expectation that there should be a holographic Q-picture
description for the black holes in the five dimensional minimal supergravity. In this
article, we will explore this picture in more details.

The paper is organized as follows. In section 2, we review some basic properties
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of the black holes in the five dimensional minimal supergravity. In section 3, the
dynamics of a probe massless charged scalar field propagating in considered black
hole background is studied. We investigate the Q-picture hidden conformal symmetry
by analyzing the wave equation of the probe scalar field. As expected, we confirm
that the microscopic entropy evaluated by the Cardy formula exactly reproduces the
black hole Bekenstein-Hawking entropy. In section 4, a further support of agreement
between the absorption cross section and two point function is checked. Finally, the
last section is devoted to the conclusion.

2 Black holes in 5D minimal supergravity

In this section we review and examine the black hole solutions in the five dimensional
minimal supergravity

S5 =
1

16π

[
∫

d5x
√−g

(

R− 1

4
F 2

)

− 1

3
√
3

∫

F ∧ F ∧A

]

. (1)

The electric charged rotating black holes [23], in the Boyer-Lindquist coordinates
xµ = (t, r, θ, ϕ1, ϕ2), have the following non-vanishing metric components

g00 = −
(

1− 2m

ρ2
− m2

ρ4

)

,

g03 = −a(2mρ2 − q2) + bqρ2 sin2 θ

ρ4
,

g04 = −b(2mρ2 − q2) + aqρ2 cos2 θ

ρ4
,

g33 = (r2 + a2) sin2 θ +
a2(2mρ2 − q2) + 2abqρ2

ρ4
sin4 θ,

g44 = (r2 + b2) cos2 θ +
b2(2mρ2 − q2) + 2abqρ2

ρ4
cos4 θ,

g34 =
ab(2mρ2 − q2) + (a2 + b2)qρ2

ρ4
sin2 θ cos2 θ,

g11 =
ρ2

∆
, g22 = ρ2, (2)

and the gauge potential

A = −
√
3q

ρ2
(dt− a sin2 θdϕ1 − b cos2 θdϕ2), (3)

where

∆ =
(r2 + a2)(r2 + b2) + q2 + 2abq

r2
− 2m. (4)

For the above spacetime geometry, the determine of metric is
√

− det(gµν) =
√−g =

rρ2 sin θ cos θ, and the locations of the event horizons are given by the singularities of
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the metric function which are the real roots of r2∆ = 0. These black hole solutions
are characterized by four parameters m, q, a, b representing respectively the mass,
charge and two independent angular momenta

M =
3π

4
m, Q =

√
3π

4
q, J1 =

π

4
(2ma+ qb), J2 =

π

4
(2mb+ qa). (5)

The corresponding Hawking temperature, entropy, and the angular velocities and
chemical potential on the horizon are given by

TH =
r4+ − (ab+ q)2

2πr+[(r2+ + a2)(r2+ + b2) + abq]
,

SBH =
π2[(r2+ + a2)(r2+ + b2) + abq]

2r+
,

Ω1 =
(ar2+ + ab2 + bq)

(r2+ + a2)(r2+ + b2) + abq
,

Ω2 =
(br2+ + a2b+ aq)

(r2+ + a2)(r2+ + b2) + abq
,

µq =

√
3qr2+

(r2+ + a2)(r2+ + b2) + abq
. (6)

The central charges associated with two angular momenta, i.e. the holographic
J-picture description, has been discussed in [24] and the related hidden conformal
symmetries was analyzed in [25]. However, as pointed out in [16], the charged rotat-
ing black holes can have another proper dual CFT description, called the Q-picture,
essentially based on their charge parameters, see also [17, 22]. In this paper, we will
mainly focus on the Q-picture CFT description for the black holes in the five dimen-
sional minimal supergravity. The central charge of Q-picture actually is independent
on the angular momenta, therefore can be obtained simply from the non-rotating
countparts

ds25 = −
(

1− 2m

r2
+

q2

r4

)

dt2 +

(

1− 2m

r2
+

q2

r4

)−1

dr2 + r2dΩ2
3,

A = −
√
3q

r2
dt, (7)

where dΩ2
3 = dθ2 + sin2 θdϕ2

1 + cos2 θdϕ2
2. In the extremal limit m = q, the radius

of degenerated black hole horizons is r0 =
√
m =

√
q and the related near horizon

geometry can be achieved by taking the limit (ǫ → 0)

r → r0 + ǫr, t → m

4ǫ
t. (8)

As expected, the near horizon geometry has AdS2 × S3 structure and the gauge
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potential is linear in the radius coordinate

ds25 =
r20
4

(

r2dt2 +
dr2

r2

)

+ r20dΩ
2
3,

A =

√
3

2
r0rdt. (9)

Unlike the J-picture, the central charge of Q-picture is encoded both in the metric
and the gauge potential. In order to recover the AdS3 structure, one should embed
the near horizon solution (9) into a six-dimensional spacetime

ds26 = ds25 + (dy +A)2, (10)

which leads the following form

ds26 = Γ

(

−r2dt2 +
dr2

r2
+ αdΩ2

3

)

+ γ(dy2 + krdt)2, (11)

with

Γ =
r20
4
, α = 4, γ = 1, k =

√
3

2
r0. (12)

The left-sector central charge and temperature are given by

cL =
3k

2π

∫

dΩ3

√

(Γα)3 = 3πr30k, TL =
1

2πk
, (13)

assuming the periodicity of coordinate y is 2π. The Cardy formula for CFT entropy
exactly reproduces the black hole entropy

SCFT =
π2

3
cLTL =

1

2
π2r30 = SBH . (14)

Nevertheless, the Q-picture central charge is ambiguous up to the radius, ℓ, of the
extra circle, namely y ∼ y + 2πℓ periodicity [20, 21]. Moreover, both the left-sector
and right-sector central charges should be identical. Therefore, the general formula
of the central charges is

cL = cR =
3
√
3πq2

2ℓ
. (15)

There are two natural choices for the value of ℓ: one is ℓ = 1 (Planck length) and the
other is ℓ = r0 (about the size of the AdS3). From the brane construction point of
view, the later choice corresponds to the configuration of long strings winding on the
large extra circle [26].
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3 Q-picture hidden conformal symmetry

In this section, we consider the Klein-Gordon (KG) equation for a probe complex
scalar field propagating in the considered black hole background. For a massless
complex scalar field carrying the charge e, the KG equation

(∇µ − ieAµ)(∇µ − ieAµ)Φ = 0, (16)

can be simplified by assuming the following form of the scalar field

Φ = exp(−iωt+ im1ϕ1 + im2ϕ2)S(θ)R(r). (17)

The neutral scalar field (e = 0) is able to reveal, from the radial equation, the hidden
conformal symmetry (in J-picture) as shown in [25]. For the Q-picture description
we should consider the radial equation with conditions m1 = m2 = 0 [16, 22], so the
radial equation can be expressed as

1

r
∂r(r∆∂rR) +

[

(

[(r2 + a2)(r2 + b2) + abq]ω −
√
3eqr2

)2

r4∆
− a2b2ω2

r2
− λ

]

R = 0.

(18)
Defining a new variable u = r2 and u+ = r2+, u− = r2−, then

∆̃ ≡ r2∆ = (u− u+)(u− u−), (19)

and the above differential equation becomes

4∂u(∆̃∂uR) +

[

(

[(u+ a2)(u+ b2) + abq]ω −
√
3equ

)2

u(u− u+)(u− u−)
− a2b2ω2

u
− λ

]

R = 0. (20)

In the limits for the scalar field with low frequency ω2r+ ≪ 1 (consequently ω2m2 ≪
1, ωa ≪ 1, ωb ≪ 1) and small charge eq ≪ 1, the radial equation in the near region
rω ≪ 1 could be simplified as1

[

∂u(∆̃∂u) +
(β+ω −

√
3eqr+)

2

4(u− u+)(u+ − u−)
− (β−ω −

√
3eqr−)

2

4(u− u−)(u+ − u−)

]

R =
l(l + 2)

4
R, (21)

where

β± =
(r2± + a2)(r2± + b2) + abq

r±
. (22)

Following the idea proposed in [13] we are going to show that the equation (21)
actually can be reproduced by the Casimir operator of the AdS3 space

ds23 =
L2

y2
(dy2 + dw+dw−). (23)

1The separation constant λ reduces to l(l + 2) corresponding to the spherical harmonics of the
S

3.
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Here, the AdS3 radius L is not essential in our discussion. There are two sets of
symmetry generators

H1 = i∂+, H0 = i(w+∂+ +
1

2
y∂y), H−1 = i((w+)2∂+ + w+y∂y − y2∂−), (24)

and

H̄1 = i∂−, H̄0 = i(w−∂− +
1

2
y∂y), H̄−1 = i((w−)2∂− + w−y∂y − y2∂+), (25)

each of them satisfies the SL(2, R) algebra

[H0,H±1] = ∓iH±1, [H−1,H1] = −2iH0, (26)

and
[H̄0, H̄±1] = ∓iH̄±1, [H̄−1, H̄1] = −2iH̄0. (27)

Coordinately, the associated quadratic Casimir operator is

H2 = H̄2 = −H2
0 +

1

2
(H1H−1 +H−1H1) =

1

4
(y2∂2

y − y∂y) + y2∂+∂−. (28)

By introducing the following transformations from the conformal space to black hole
coordinates

w+ =

√

u− u+
u− u−

exp(2πTRχ+ 2nRt),

w− =

√

u− u+
u− u−

exp(2πTLχ+ 2nLt), (29)

y =

√

u+ − u−
u− u−

exp(π(TR + TL)χ+ (nR + nL)t),

the Casimir operator is transformed in terms of (u, t, χ) coordinates as

H2 = ∂u(∆̃∂u)−
u+ − u−
u− u+

(

TL + TR

4A ∂t −
nL + nR

4πA ∂χ

)2

+
u+ − u−
u− u−

(

TL − TR

4A ∂t −
nL − nR

4πA ∂χ

)2

, (30)

where A = TRnL − TLnR. Furthermore, from the black hole side, the radial equa-
tion (21) can be reexpressed as

[

∂u(∆̃∂u)−
(β+∂t − (

√
3qr+/ℓ)∂χ)

2

4(u− u+)(u+ − u−)
+

(β−∂t − (
√
3qr−/ℓ)∂χ)

2

4(u− u−)(u+ − u−)

]

R =
l(l + 2)

4
R,(31)

after introducing an operator ∂χ acting on the U(1) symmetry internal space of the
complex scalar field. The eigenvalue of the new operator is the scalar field charge [16,
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22], namely ∂χΦ = iℓeΦ, up to an undetermined parameter ℓ correlated with the
ambiguity in the central charge. Therefore, the radial equation can be realized as the
Casimir operator (30) acting on Φ with the following identifications, including the
CFT temperatures

TL =
ℓ(β+ + β−)

2
√
3πq2

, TR =
ℓ(β+ − β−)

2
√
3πq2

, (32)

nL =
r+ + r−

2q
, nR =

r+ − r−
2q

. (33)

As the first evidence, one can easily verity the agreement of the microscopic and
macroscopic entropies

SCFT =
π2

3
(cLTL + cRTR) =

π2

2
β+ = SBH . (34)

4 Absorption cross section

For a further support to the holographic Q-picture, we will show that the absorption
cross section for the probe scalar field (with assumptions m1 = m2 = 0) scattered
in the near region of the black hole matches with the two point function of the dual
operator in the CFT with identified, left and right, central charges and temperatures.
The absorption cross section can be written as [16, 27]

Pabc ∼ sinh(2πγQ) |Γ(aQ)|2 |Γ(bQ)|2 (35)

where the three coefficients can be straightforwardly read out from the equation (21)

γQ =
β+ω −

√
3eqr+

2(r2+ − r2−)
,

aQ = 1 +
l

2
− i

(β+ + β−)ω −
√
3eq(r+ + r−)

2(r2+ − r2−)
,

bQ = 1 +
l

2
− i

(β+ − β−)ω −
√
3eq(r+ − r−)

2(r2+ − r2−)
, (36)

leading to the relation aQ + bQ = 2 + l − 2iγQ. In order to explicitly check that
the Pabs really matches with the microscopic greybody factor of the dual CFT, one
needs to identify the related parameters of the dual operator. Firstly, the conformal
weights of the dual operator is

(hL, hR) =

(

1 +
l

2
, 1 +

l

2

)

. (37)

Moreover, from the first law of black hole thermodynamics

THδSBH = δm− Ω1δJ1 − Ω2δJ2 − µqδq, (38)
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one can identify the conjugate charges as

δSBH = δSCFT =
δEL

TL

+
δER

TR

. (39)

In the Q-picture description, one should assume δm = ω, δq = e and δJ1 = δJ2 = 0,
and the solution of the conjugate charges is

δEL = ω̃L = ωL − qLµL, δER = ω̃R = ωR − qRµR, (40)

where

ωL =
ℓ(β2

+ − β2
−)

2
√
3q2(r2+ − r2−)

ω, µL =
ℓ(β+ + β−)

2q(r+ + r−)
, qL = e,

ωR =
ℓ(β2

+ − β2
−)

2
√
3q2(r2+ − r2−)

ω, µR =
ℓ(β+ − β−)

2q(r+ − r−)
, qR = e. (41)

Finally, the absorption cross section can be expressed as

Pabs ∼ T 2hL−1

L T 2hR−1

R sinh

(

ω̃L

2TL

+
ω̃R

2TR

) ∣

∣

∣

∣

Γ

(

hL + i
ω̃L

2πTL

)∣

∣

∣

∣

2 ∣
∣

∣

∣

Γ

(

hR + i
ω̃R

2πTR

)∣

∣

∣

∣

2

,

(42)
in agreement with the two point function of the dual operator.

5 Conclusion

The “microscopic hair conjecture” proposed in [16] claims that for each macroscopic
hair parameter, in additional to the mass, of a black hole there should exist an
associated holographic CFT2 description. For the charged rotating black holes in
the five dimensional minimal supergravity, the J-picture descriptions associated with
two angular momenta has been studied previously in [24] for the extremal case and
in [25] for the hidden conformal symmetry. In this paper, we have explored the
supplementary holographic description, the Q-picture, based on the electric charge of
the black hole. The central charge of the Q-picture CFT actually is independent on
the angular momenta, so it can be computed simply from the non-rotating countparts
of black hole. Unlike the J-picture, the central charge of Q-picture CFT is encoded
both in the metric and the gauge potential. The charge contribution can not be
obtained directly from the central extension of the asymptotic symmetry group [28].
In generic, the near horizon geometry of an extremal non-rotating charged black hole
has only an AdS2 structure and the U(1) fiber of the fundamental AdS3 is held by
the gauge potential which can been revealed by a Kaluza-Klein uplifting.

Specifically, we consider the wave equation of a massless charged scalar field in the
background of black holes in the five dimensional minimal supergravity. It turns out
that under certain low frequency and low charge limits, the radial part of the “near
region” KG equation is equivalent to a Casimir operator of SL(2, R)L × SL(2, R)R

9



group. The CFT temperatures then can be identified. The macroscopic entropy
and the absorption cross section of the probe scalar field match precisely to the
microscopic CFT entropy and the corresponding two point function. All our results
provide evidences for the validity of the holographic Q-picture description of the black
holes in the five dimensional minimal supergravity.
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