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Abstract We study the homology and cohomology groups of super Lie al-

gebra of supersymmetries and of super Poincare algebra. We discuss in detail

the calculation in dimensions D=10 and D=6. Our methods can be applied to

extended supersymmetry algebra and to other dimensions.

1 Introduction

In present paper we will analyze homology and cohomology groups of the su-

per Lie algebra of supersymmetries and of super Poincare Lie algebra. We

came to this problem studying supersymmetric deformations of maximally su-

persymmetric gauge theories [8]; however, this problem arises also in different
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situations, in particular, in supergravity [1]. In low dimensions it was studied

in [3]

Let us recall the definition of Lie algebra cohomology. We start with super

Lie algebra G with generators eA and structure constants fK
AB. We introduce

ghost variables CA with parity opposite to the parity of generators eA and con-

sider the algebra E of polynomial functions of these variables. (In more invariant

way we can say that E consists of polynomial functions on linear superspace

ΠG.) We define a derivation d on E by the formula d = 1
2f

K
ABC

ACB ∂
∂CK .

This operator is a differential (i.e. it changes the parity and obeys d2 = 0.)

We define the cohomology of G using this differential:

H•(G) = Kerd/Imd.

The definition of homology of G is dual to the definition of cohomology: instead

of E we consider its dual space E∗ that can be considered as the space of

functions of dual ghost variables cA; the differential ∂ on E∗ is defined as an

operator adjoint to d. The homology H•(G) is dual to the cohomology H•(G).

Notice that we can multiply cohomology classes, i.e. H•(G) is an algebra.

The super Lie algebra of supersymmetries has odd generators eα and even

generators Pm ; the only non-trivial commutation relation is

[eα, eβ]+ = Γm
αβPm.

The coefficients in this relation are Dirac Gamma matrices. The space E used

in the definition of cohomology (cochain complex) consists here of polynomial

functions of even ghost variables tα and odd ghost variables cm; the differential

has the form

d =
1

2
Γm
αβt

αtβ
∂

∂cm
.

The space E is double-graded (one can consider the degree with respect to tα

and the degree with respect to cm). In more invariant form we can say that 1

E =
∑

SymmS ⊗ ΛnV

1We use the notation Symm for symmetric tensor power and the notation Λn for exterior

power
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where S stands for spinorial representation of orthogonal group, V denotes

vector representation of this group and Gamma-matrices specify an intertwiner

V → Sym2S. The differential d maps SymmS ⊗ ΛnV into Symm+2S ⊗ Λn−1V .

The description above can be applied to any dimension and to any signature

of the metric used in the definition of orthogonal group, however, the choice

of spinorial representation is different in different dimensions. 2 The group

SO(n) can be considered as a (subgroup) of the group of automorphisms of

supersymmetry Lie algebra and therefore it acts on its cohomology.

We will start with ten-dimensional case; in this case the spinorial represen-

tation should be considered as one of two irreducible two-valued 16-dimensional

representations of SO(10) (the spinors are Majorana-Weyl spinors). We will

work with complex representations and complex group SO(10); this does not

change the cohomology.

The double grading on E induces double grading on cohomology. However,

instead of the degrees m and n it is more convenient to use the degrees k =

m+ 2n and n because the differential preserves k and therefore the problem of

calculation of cohomology can be solved for every k separately. It important

to notice that the differential commutes with multiplication by a polynomial

depending on tα, therefore the cohomology is a module over the polynomial

ring C[t1, ..., tα, ...]. (Moreover, it is an algebra over this ring.) The cohomology

is infinite-dimensional as a vector space, but it has a finite number of generators

as a C[t1, ..., tα, ...]-module (this follows from the fact that the polynomial ring

is noetherian). One of the most important problems is the description of these

generators.

The action of orthogonal group on E commutes with the differential, there-

fore the orthogonal group acts on cohomology. (This action is two-valued, hence

2Recall that orthogonal group SO(2n) has two irreducible two-valued complex representa-

tions called semi-spin representations (left spinors and right spinors), the orthogonal group

SO(2n + 1) has one irreducible two-valued complex spin representation. One says that a

real representation is spinorial if after extension of scalars to C it becomes a sum of spin or

semi-spin representations. (We follow the terminology of [4].)
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it would be more precise to talk about the action of the spinor group or about

the action of the corresponding Lie algebra).

We will describe now the cohomology of the Lie algebra of supersymmetries

in ten-dimensional case as representations of the Lie algebra so10. As usual the

representations are labeled by their highest weight. The vector representation V

has the highest weight [1, 0, 0, 0, 0], the irreducible spinor representations have

highest weights [0, 0, 0, 0, 1],[0, 0, 0, 1, 0]; we assume that the highest weight of S

is [0, 0, 0, 0, 1]. The description of graded component of cohomology group with

gradings k = m+ 2n and n is given by the formulas for Hk,n (for n ≥ 6, Hk,n

vanishes)

Hk,0 = [0, 0, 0, 0, k] (2)

Hk,1 = [0, 0, 0, 1, k− 3] (3)

Hk,2 = [0, 0, 1, 0, k− 6] (4)

Hk,3 = [0, 1, 0, 0, k− 8] (5)

Hk,4 = [1, 0, 0, 0, k− 10] (6)

Hk,5 = [0, 0, 0, 0, k− 12] (7)

The only special case is when k = 4, there is one additional term, a scalar, for

H4,1.

H4,1 = [0, 0, 0, 0, 0] + [0, 0, 0, 1, 1] (8)

The cohomology considered as C[t1, ..., tα, ...]-module is generated by H1,0,

H3,1, H6,2, H8,3, H10,4, H12,5.

Let us discuss shortly the Lie algebra of supersymmetries in other dimen-

sions (see [4] for more detail). We will start with the case of the space with

Minkowski signature (the case of orthogonal group SO(1, n − 1)). In this case

for an irreducible spinorial representation S there a unique (up to a factor)

intertwiner V → Sym2S; we use this intertwiner in the definition of the Lie

algebra of supersymmetries. Real representations are classified according the

structure of their algebra of endomorphisms: if this algebra is isomorphic to C

one says that the real representation is complex, if the algebra is isomorphic to
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quaternions one says that the representation is quaternionic. Irreducible spino-

rial representations in Minkowski case are complex for n = 8k and n = 8k + 4,

they are quaternionic for n = 8k + 5, 8k + 6, 8k + 7; correspondingly their au-

tomorphism groups contain U(1) and Sp(1) = SU(2). In the complex case the

cohomology can de considered as a representation of the group SO(n) × U(1)

(or, more precisely of the Lie algebra so10×u1), in the quaternionic case we ob-

tain a representation of the group SO(n)×SU(2) (of the Lie algebra son× su2).

It will be convenient for us to complexify the Lie algebra of supersymmetries;

the complexification does not change the cohomology. The cohomology can

be considered as a representation of the group of automorphisms of the super-

symmetry Lie algebra, of Lie algebra of this group or of the complexified Lie

algebra. The complexified Lie algebra is son × gl1 if S is a complex representa-

tion and son × sl(2) in quaternionic case. It is isomorphic to son if the algebra

of endomorphisms of S is isomorphic to R. (We abuse notations denoting the

complexified orthogonal Lie algebra in the same way as its real counterpart.)

One can consider also N -extended supersymmetry Lie algebra. In the case

of Minkowski signature this means that we should start with reducible spinorial

representation SN(direct sum of N copies of irreducible spinorial representation

S). Taking N copies of the intertwiner V → Sym2S we obtain an intertwiner

V → Sym2SN . We define the N -extended supersymmetry Lie algebra by means

of this intertwiner. The Lie algebra acting on its cohomology acquires an addi-

tional factor uN ( or glN if we work with complex Lie algebras).

Let us consider, for example the six-dimensional case. In this case there

are two irreducible spinorial representations, after extension of scalars to C

each of these representations becomes a direct sum S = S0 + S0 = S0 × T of

two equivalent semi-spin representations. (Here T stands for two-dimensional

space. )The intertwiner V → Sym2S can be obtained as a tensor product of

maps V → Λ2S0 and C→ Λ2T .

Now we will describe the cohomology of the Lie algebra of supersymmetries

in six-dimensional case as representations of the Lie algebra so(6) × sl2. The

vector representation V of so(6) has the highest weight [1, 0, 0], the irreducible

5



spinor representations have highest weights [0, 0, 1], [0, 1, 0]; we assume that the

highest weight of S0 is [0, 0, 1]. As a representation so(6)×sl2 the representation

V has the weight [1, 0, 0, 0] and the representation S = S0 × T has the weight

[0, 0, 1, 1]. The description of graded component of cohomology group with

gradings k = m + 2n and n is given by the formulas of Hk,n (for n ≥ 4, Hk,n

vanishes)

Hk,0 = [0, 0, k, k] (9)

Hk,1 = [0, 1, k − 3, k − 2] (10)

Hk,2 = [1, 0, k − 6, k − 4] (11)

Hk,3 = [0, 0, k − 8, k − 6] (12)

The only special case is when k = 4, there is one additional term, a scalar, for

H4,1.

H4,1 = [0, 0, 0, 0] + [0, 1, 1, 2] (13)

The cohomology considered as C[t1, ..., tα, ...]-module is generated by H1,0,

H3,1, H6,2, H8,3.

There are different ways to perform these calculations. In this paper we

describe the most elementary way. We used the program LiE [6] to decompose

SymmS ⊗ΛnV into irreducible representation of automorphism Lie algebra for

small k = m + 2n. We used the result to guess the general answer ; we check

it by means of Weyl dimension formula. Due to Schur’s lemma one can con-

sider every irreducible representation separately. Assuming that the kernel of

the differential is as small as possible (”principle of maximal propagation”) we

calculate the cohomology. We justify this calculation using the fact that the

differential commutes with multiplication by a polynomial ghost variables tα

and therefore the multiplication by such a polynomial transform a boundary

(an element in the image of differential) into a boundary . We write down ex-

plicitly the decomposition of SymmS ⊗ ΛnV into irreducible representation of

automorphism Lie algebra overlining the images of the differential (the bound-

aries) and underlining the terms mapped to the boundaries by the differential;
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the remaining terms give the decomposition of cohomology.

2 Calculations for D=10

To calculate the cohomology we decompose each graded component Ekn =

Symk−2nS ⊗ ΛnV of E into direct sum of irreducible representations.

For D = 10 spacetime, we have the cochain complex

0
d0

←− Symk(S)
d1

←− Symk−2(S)⊗ V
d2

←− Symk−4(S)⊗ ∧2V

d3

←− Symk−6(S)⊗ ∧3V
d4

←− Symk−8(S)⊗ ∧4V
d5

←− Symk−10(S)⊗ ∧5V

d6

←− Symk−12(S)⊗ ∧6V
d7

←− Symk−14(S)⊗ ∧7V
d8

←− Symk−16(S)⊗ ∧8V

d9

←− Symk−18(S)⊗ ∧9V
d10

←−− Symk−20(S)⊗ ∧10V
d11

←−− 0

(14)

where for Symm(S)⊗∧n(V ), a grading degree defined by k = m+2n is invari-

ant upon cohomological differential d. All components of this complex can be

regarded as representations of so(10). We have

S = [0, 0, 0, 0, 1] (choosen) or [0, 0, 0, 1, 0], V = [1, 0, 0, 0, 0]

∧2 V = [0, 1, 0, 0, 0], ∧3V = [0, 0, 1, 0, 0],

∧4 V = [0, 0, 0, 1, 1], ∧5V = [0, 0, 0, 0, 2]⊕ [0, 0, 0, 2, 0],

∧6 V = ∧4V, ∧7V = ∧3V, ∧8V = ∧2;V, ∧9V = V, ∧10V = [0, 0, 0, 0, 0],

(15)

For SymmS ⊗ ∧nV , where m ≥ 1,

Symk(S) =
[k/2]
⊕
i=1

[i, 0, 0, 0, k− 2i]⊕ [0, 0, 0, 0, k], (16)

Symk−2(S)⊗ V =
[k/2]
⊕
i=1

[i, 0, 0, 0, k− 2i]
[(k−4)/2]
⊕
i=0

[i, 0, 0, 0, k− 4− 2i]

[(k−3)/2]
⊕
i=1

[i, 0, 0, 1, k− 3− 2i]⊕ [0, 0, 0, 1, k− 3]

[(k−4)/2]
⊕
i=0

[i, 1, 0, 0, k− 4− 2i],

(17)
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Symk−4(S)⊗ ∧2V =
[(k−4)/2]
⊕
i=0

[i, 0, 0, 0, k− 4− 2i]
[(k−5)/2]
⊕
i=1

[i, 0, 0, 0, k− 4− 2i]

[(k−3)/2]
⊕
i=1

[i, 0, 0, 1, k− 3− 2i]
[(k−7)/2]
⊕
i=0

[i, 0, 0, 1, k− 7− 2i]

[(k−4)/2]
⊕
i=0

[i, 1, 0, 0, k− 4− 2i]
[(k−8)/2]
⊕
i=0

[i, 1, 0, 0, k− 8− 2i]

[(k−6)/2]

⊕
i=1

2[i, 0, 1, 0, k− 6− 2i]⊕ [0, 0, 1, 0, k− 6]

⊕ [0, 0, 1, 0, k− 6]
[(k−7)/2]
⊕
i=0

[i, 1, 0, 1, k− 7− 2i],

(18)

Symk−6(S)⊗ ∧3V =
[(k−9)/2]
⊕
i=0

[i, 0, 0, 0, k− 8− 2i]
[(k−5)/2]
⊕
i=1

[i, 0, 0, 0, k− 4− 2i]

[(k−7)/2]

⊕
i=0

[i, 0, 0, 1, k− 7− 2i]
[(k−8)/2]

⊕
i=1

2[i, 0, 0, 1, k− 7− 2i]

⊕ [0, 0, 0, 1, k− 7] ⊕
k−odd

[
k − 7

2
, 0, 0, 1, 0]

[(k−10)/2]
⊕
i=0

2[i, 0, 1, 0, k− 10− 2i]⊕ [0, 0, 1, 0, k− 6]

[(k−6)/2]

⊕
i=1

2[i, 0, 1, 0, k− 6− 2i]
[(k−9)/2]

⊕
i=0

[i, 0, 1, 1, k− 9− 2i]

⊕ [0, 1, 0, 0, k− 8]⊕ [0, 1, 0, 0, k− 8]

[(k−9)/2]
⊕
i=1

2[i, 1, 0, 0, k− 8− 2i]
[(k−8)/2]
⊕
i=0

[i, 1, 0, 0, k− 8− 2i]

⊕
k−even

[
k − 8

2
, 1, 0, 0, 0]

[ k−7

2 ]
⊕
i=0

[i, 1, 0, 1, k− 7− 2i]

[ k−11

2 ]
⊕
i=0

[i, 1, 0, 1, k− 11− 2i]
[ k−10

2 ]
⊕
i=0

[i, 1, 1, 0, k− 10− 2i],

(19)
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Symk−8(S)⊗ ∧4V = [0, 0, 0, 0, k− 8]⊕ [1, 0, 0, 0, k− 10]⊕ 2[1, 0, 0, 0, k− 10]

[(k−9)/2]
⊕
i=0

[i, 0, 0, 0, k− 8− 2i]
[(k−10)/2]
⊕
i=2

3[i, 0, 0, 0, k− 8− 2i]

⊕
k−odd

2[
k − 9

2
, 0, 0, 0, 1] ⊕

k−even
[
k − 8

2
, 0, 0, 0, 0]

⊕ [0, 0, 0, 1, k− 7]
[(k−8)/2]
⊕
i=1

2[i, 0, 0, 1, k− 7− 2i]

⊕
k−odd

[
k − 7

2
, 0, 0, 1, 0]

[(k−12)/2]
⊕
i=0

2[i, 0, 0, 1, k− 11− 2i]

⊕
k−odd

[
k − 11

2
, 0, 0, 1, 0]

[(k−10)/2]
⊕
i=0

[i, 0, 0, 2, k− 10− 2i]

[(k−10)/2]
⊕
i=0

2[i, 0, 1, 0, k− 10− 2i]⊕ [0, 0, 1, 0, k− 10]

[(k−11)/2]
⊕
i=1

2[i, 0, 1, 0, k− 10− 2i] ⊕
k−even

[
k − 10

2
, 0, 1, 0, 0]

[(k−12)/2]
⊕
i=0

[i, 0, 2, 0, k− 12− 2i]
[(k−9)/2]
⊕
i=0

[i, 0, 1, 1, k− 9− 2i]

[(k−13)/2]

⊕
i=0

[i, 0, 1, 1, k− 13− 2i]⊕ [0, 1, 0, 0, k− 8]

[(k−9)/2]
⊕
i=1

2[i, 1, 0, 0, k− 8− 2i] ⊕
k−even

[[
k − 8

2
], 1, 0, 0, 0]

[(k−13)/2]
⊕
i=0

2[i, 1, 0, 0, k− 12− 2i] ⊕
k−even

[
k − 12

2
, 1, 0, 0, 0]

[(k−12)/2]
⊕
i=0

[i, 2, 0, 0, k− 12− 2i]

[(k−11)/2]
⊕
i=0

[i, 1, 0, 1, k− 11− 2i]
[(k−11)/2]
⊕
i=0

[i, 1, 0, 1, k− 11− 2i]

[(k−10)/2]

⊕
i=0

[i, 1, 1, 0, k− 10− 2i]
[(k−14)/2]

⊕
i=0

[i, 1, 1, 0, k− 14− 2i],

(20)
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Symk−10(S)⊗ ∧5V = [0, 0, 0, 0, k− 8]⊕ 2[1, 0, 0, 0, k− 10]
[(k−10)/2]
⊕
i=2

3[i, 0, 0, 0, k− 8− 2i]

⊕
k−odd

2[
k − 9

2
, 0, 0, 0, 1] ⊕

k−even
[
k − 8

2
, 0, 0, 0, 0]

⊕ [0, 0, 0, 0, k− 12]
[(k−14)/2]
⊕
i=1

3[i, 0, 0, 0, k− 12− 2i]

⊕
k−odd

2[
k − 13

2
, 0, 0, 0, 1]⊕ 2[0, 0, 0, 0, k− 12]

⊕
k−even

[
k − 12

2
, 0, 0, 0, 0]⊕ [0, 0, 0, 1, k− 11]

[(k−12)/2]
⊕
i=0

2[i, 0, 0, 1, k− 11− 2i]
[(k−12)/2]
⊕
i=1

2[i, 0, 0, 1, k− 11− 2i]

⊕
k−odd

[
k − 11

2
, 0, 0, 1, 0] ⊕

k−odd
[
k − 11

2
, 0, 0, 1, 0]

[(k−10)/2]
⊕
i=0

[i, 0, 0, 2, k− 10− 2i]
[(k−14)/2]
⊕
i=0

[i, 0, 0, 2, k− 14− 2i]

⊕ [0, 0, 1, 0, k− 10]
[(k−11)/2]
⊕
i=1

2[i, 0, 1, 0, k− 10− 2i]

⊕ ⊕
k−even

[
k − 10

2
, 0, 1, 0, 0]

[(k−15)/2]
⊕
i=0

2[i, 0, 1, 0, k− 14− 2i]

⊕
k−even

[
k − 14

2
, 0, 1, 0, 0]

[(k−12)/2]
⊕
i=0

[i, 0, 2, 0, k− 12− 2i]

[(k−16)/2]
⊕
i=0

[i, 0, 2, 0, k− 16− 2i]
[(k−13)/2]
⊕
i=0

[i, 0, 1, 1, k− 13− 2i]

[(k−13)/2]
⊕
i=0

[i, 0, 1, 1, k− 13− 2i]⊕ [0, 1, 0, 0, k− 12]

[(k−13)/2]
⊕
i=0

2[i, 1, 0, 0, k− 12− 2i]
[(k−13)/2]
⊕
i=1

2[i, 1, 0, 0, k− 12− 2i]

⊕
k−even

[
k − 12

2
, 1, 0, 0, 0] ⊕

k−even
[
k − 12

2
, 1, 0, 0, 0]

[(k−12)/2]
⊕
i=0

[i, 2, 0, 0, k− 12− 2i]
[(k−16)/2]
⊕
i=0

[i, 2, 0, 0, k− 16− 2i]

[(k−15)/2]

⊕
i=0

[i, 1, 0, 1, k− 15− 2i]
[(k−11)/2]

⊕
i=0

[i, 1, 0, 1, k− 11− 2i]

[(k−14)/2]
⊕
i=0

[i, 1, 1, 0, k− 14− 2i]
[(k−14)/2]
⊕
i=0

[i, 1, 1, 0, k− 14− 2i]

(21)
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Symk−12(S)⊗ ∧6V = 2[0, 0, 0, 0, k− 12]
[(k−14)/2]
⊕
i=1

3[i, 0, 0, 0, k− 12− 2i]

⊕
k−odd

2[
k − 13

2
, 0, 0, 0, 1]

[(k−13)/2]
⊕
i=1

[i, 0, 0, 0, k− 12− 2i]

⊕
k−even

[
k − 12

2
, 0, 0, 0, 0]⊕ [0, 0, 0, 1, k− 11]

[(k−12)/2]
⊕
i=1

2[i, 0, 0, 1, k− 11− 2i]

⊕
k−odd

[
k − 11

2
, 0, 0, 1, 0]

[(k−16)/2]
⊕
i=0

2[i, 0, 0, 1, k− 15− 2i]

⊕
k−odd

[
k − 15

2
, 0, 0, 1, 0]

[(k−14)/2]
⊕
i=0

[i, 0, 0, 2, k− 14− 2i]

[(k−15)/2]
⊕
i=0

2[i, 0, 1, 0, k− 14− 2i] ⊕
k−even

[
k − 14

2
, 0, 1, 0, 0]

⊕ [0, 0, 1, 0, k− 14]
[(k−14)/2]
⊕
i=1

2[i, 0, 1, 0, k− 14− 2i]

[(k−16)/2]
⊕
i=0

[i, 0, 2, 0, k− 16− 2i]

[(k−13)/2]
⊕
i=0

[i, 0, 1, 1, k− 13− 2i]
[(k−17)/2]
⊕
i=0

[i, 0, 1, 1, k− 17− 2i]

⊕ [0, 1, 0, 0, k− 12]
[(k−13)/2]
⊕
i=1

2[i, 1, 0, 0, k− 12− 2i] ⊕
k−even

[
k − 12

2
, 1, 0, 0, 0]

[(k−17)/2]
⊕
i=0

2[i, 1, 0, 0, k− 16− 2i] ⊕
k−even

[
k − 16

2
, 1, 0, 0, 0]

[(k−16)/2]
⊕
i=0

[i, 2, 0, 0, k− 16− 2i]

[(k−15)/2]
⊕
i=0

[i, 1, 0, 1, k− 15− 2i]
[(k−15)/2]
⊕
i=0

[i, 1, 0, 1, k− 15− 2i]

[(k−14)/2]
⊕
i=0

[i, 1, 1, 0, k− 14− 2i]
[(k−18)/2]
⊕
i=0

[i, 1, 1, 0, k− 18− 2i],

(22)
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Symk−14(S)⊗ ∧7V =
[(k−17)/2]
⊕
i=0

[i, 0, 0, 0, k− 16− 2i]
[(k−13)/2]
⊕
i=1

[i, 0, 0, 0, k− 12− 2i]

[(k−16)/2]
⊕
i=0

2[i, 0, 0, 1, k− 15− 2i] ⊕
k−odd

[
k − 15

2
, 0, 0, 1, 0]

[(k−15)/2]
⊕
i=1

[i, 0, 0, 1, k− 15− 2i]

[(k−18)/2]
⊕
i=0

2[i, 0, 1, 0, k− 18− 2i]⊕ [0, 0, 1, 0, k− 14]

[(k−14)/2]

⊕
i=1

2[i, 0, 1, 0, k− 14− 2i]
[(k−17)/2]

⊕
i=0

[i, 0, 1, 1, k− 17− 2i]

[(k−16)/2]
⊕
i=0

[i, 1, 0, 0, k− 16− 2i]
[(k−17)/2]
⊕
i=0

2[i, 1, 0, 0, k− 16− 2i]

⊕
k−even

[[
k − 16

2
], 1, 0, 0, 0]

[ k−15

2 ]
⊕
i=0

[i, 1, 0, 1, k− 15− 2i]

[ k−19

2 ]
⊕
i=0

[i, 1, 0, 1, k− 19− 2i]
[ k−18

2 ]
⊕
i=0

[i, 1, 1, 0, k− 18− 2i],

(23)

Symk−16(S)⊗ ∧8V =
[(k−17)/2]
⊕
i=0

[i, 0, 0, 0, k− 16− 2i]
[(k−16)/2]
⊕
i=1

[i, 0, 0, 0, k− 16− 2i]

[(k−15)/2]
⊕
i=1

[i, 0, 0, 1, k− 15− 2i]
[(k−19)/2]
⊕
i=0

[i, 0, 0, 1, k− 19− 2i]

[(k−18)/2]
⊕
i=0

2[i, 0, 1, 0, k− 18− 2i]
[(k−20)/2]
⊕
i=0

[i, 1, 0, 0, k− 20− 2i]

[(k−16)/2]

⊕
i=0

[i, 1, 0, 0, k− 16− 2i]
[(k−19)/2]

⊕
i=0

[i, 1, 0, 1, k− 19− 2i],

(24)

Symk−18(S)⊗ ∧9V =
[(k−16)/2]
⊕
i=1

[i, 0, 0, 0, k− 16− 2i]
[(k−20)/2]
⊕
i=0

[i, 0, 0, 0, k− 20− 2i]

[(k−19)/2]
⊕
i=0

[i, 0, 0, 1, k− 19− 2i]
[(k−20)/2]
⊕
i=0

[i, 1, 0, 0, k− 20− 2i],

(25)

Symk−20(S)⊗ ∧10V =
[(k−20)/2]
⊕
i=0

[i, 0, 0, 0, k− 20− 2i] (26)

The decompositions [Eqs.16-21] can be verified by dimension check. The

dimensions of Symm ⊗ ∧nV are given by the formula

dim(SymmS ⊗ ∧nV ) = dim(SymmS) dim(∧nV )

=

(

s− 1 +m

s− 1

)(

v

n

)

= Cs−1
s−1+mCn

v (27)

12



where dim(S) = s, dim(V ) = v. The dimensions of the RHS can be obtained

from Weyl dimension formula. One can check that the RHS is a subrepresenta-

tion of the LHS, together with the dimension check this gives a rigorous proof

of [Eqs.16-21].

By the Schur’s lemma an intertwiner between irreducible representations

(a homomorphism of simple modules) is either zero or an isomorphism. This

means that an intertwiner between non-equivalent irreducible representations

always vanishes. This observation permits us to calculate the contribution of

every irreducible representation to the cohomology separately.

Let us fix an irreducible representation A and the number k. We will denote

by νn (or by νkn if it is necessary to show the dependence of k) the multiplicity of

A in Ekn = Symk−2nS ⊗ ΛnV. The multiplicity of A in the image of d : Ekn →

Ek,n−1 will be denoted by κn, then the multiplicity of A in the kernel of this map

is equal to νn− κn and the multiplicity of A in the cohomology Hkn is equal to

hn = νn−κn−κn+1. It follows immediately that the multiplicity of A in virtual

representation
∑

n(−1)
nHkn (in the Euler characteristic) is equal to

∑

(−1)nνn.

It does not depend on κn, however, to calculate the cohomology completely we

should know κn. In many cases a heuristic calculation of cohomology can be

based on a principle that kernel should be as small as possible; in other words,

the image should be as large as possible (this is an analog of the general rule of

the physics of elementary particles: Everything happens unless it is forbidden).

In [5] this is called the principle of maximal propagation. 3 Let us illustrate

this principle in the case when k = 9 and A = [0, 1, 0, 0, 1]. In this case ν4 = 1,

ν3 = 3, ν2 = 1. If we believe in the maximal propagation, then κ3 = 1, κ4 = 1,

thus we have ν3 − κ3 − κ4 = 1, and [0, 1, 0, 0, 1] contributes only to H9,3.

In decompositions [Eqs.16-21] some terms are printed in red and overlined,

some terms are printed in blue and underlined. We will prove that overlined red

terms [a, b, c, d, e] in SymmS ⊗ ∧nV denoted later by Bn(k) where k = m+ 2n

are in the boundary (in the image of the n-th differential dn in the cochain

3 Notice that the principle of maximal propagation should be applied to the composition

of cohomology into irreducible representations of the full automorphism group.
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complex (Eq. 14). The underlined blue terms [a, b, c, d, e] are mapped onto the

boundary terms by the action of differential. Both underlined and overlined

terms do not contribute to cohomology.

These statements follow from the maximal propagation principle, however

in our situation we can give a rigorous proof of these statements by induction

with respect to k = m+ 2n.

Let us assume that our statements are true for indices < k; in particular,

Bn(k − 1) consists of boundaries. We should prove that Bn(k) also consists of

boundaries. We will use the fact that the differential d commutes with multi-

plication by a polynomial depending on tα. To obtain the image of Bn(k − 1)

by multiplication by linear polynomial we should calculate S ⊗ Bn(k − 1) and

symmetrize with respect to the variables tα.

Generally, the tensor product of S and a representation [i, j, p, q, e] is given

by the formula

S ⊗ [a, b, c, d, e] = [a, b, c, d, e+ 1] + [a+ 1, b, c, d, e− 1]

+ [a− 1, b, c, d+ 1, e] + [a− 1, b, c+ 1, d− 1, e]

+ [a− 1, b+ 1, c− 1, d, e+ 1] + [a− 1, b+ 1, c, d, e− 1]

+ [a, b− 1, c, d, e+ 1] + [a, b− 1, c+ 1, d, e− 1]

+ [a, b, c− 1, d+ 1, e] + [a, b, c, d− 1, e]

+ [a, b, c+ 1, d, e− 1] + [a, b+ 1, c− 1, d+ 1, e]

+ [a, b+ 1, c, d− 1, e] + [a+ 1, b− 1, c, d+ 1, e]

+ [a+ 1, b− 1, c+ 1, d− 1, e] + [a+ 1, b, c− 1, d, e+ 1]

(28)

To derive (28) and (37) one can use the general result of [2] giving an expression

of multiplicity cµλ,ν of representation with highest weight µ in tensor product

of representations with highest weights λ and ν in terms of number of integral

points in a polytope. It follows from this general result that for ν ≫ 0 the

multiplicity cµλ,ν depends only of the difference µ−ν, therefore checking (28) for

finite number of cases we obtain a rigorous proof of it. We used this idea with

assistance of LiE code [6]. Using (28) and ( 16) we can describe the homomor-
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phism S ⊗ Symk−1S → SymkS and (multiplying by ΛnV ) the homomorphism

S ⊗ Ek−1,n → Ekn.

It follows from this description that all elements of Bn(k) are boundaries if

Bn(k − 1) consists of boundaries . Using this fact one can derive the maximal

propagation for k from maximal propagation for k − 1.

Let us consider as an example A = [0, 0, 0, 0, 0], the scalar representation,

for arbitrary k. For all k 6= 4, 12, we have νi = 0. For k = 4, we have all νi

vanish except ν1 = 1, hence all κi vanish. The multiplicity of [0, 0, 0, 0, 0] in H4,1

is equal to 1, and other cohomology H4,i do not contain scalar representation.

For k = 12, all νi vanish except ν5 = 1, hence H12,5 contains [0, 0, 0, 0, 0] with

multiplicity 1, and H12,i do not contain [0, 0, 0, 0, 0] for i 6= 5. This agrees with

Eq. 8 and Eq. 7, respectively.

3 Calculations for D=6

For D = 6 spacetime, we have the cochain complex

0
d0

←− Symk(S)
d1

←− Symk−2(S)⊗ V
d2

←− Symk−4(S)⊗ ∧2V
d3

←− Symk−6(S)⊗ ∧3V

d4

←− Symk−8(S)⊗ ∧4V
d5

←− Symk−10(S)⊗ ∧5V
d6

←− Symk−12(S)⊗ ∧6V
d7

←− 0

where for Symm(S)⊗∧n(V ), a grading degree defined by k = m+2n is invariant

upon homological differentials. All components of this complex can be regarded

as representations of so6 × sl2. We have

S = [0, 0, 1, 1], V = [1, 0, 0, 0]

∧2 V = [0, 1, 1, 0], ∧3V = [0, 0, 2, 0] + [0, 2, 0, 0],

∧4 V = ∧2V, ∧5V = V, ∧6V = [0, 0, 0, 0],

(29)

For SymmS ⊗ ∧nV , where m ≥ 1,

Symk(S) =
⌊ k

2
⌋

⊕
i=1

[i, 0, k − 2i, k − 2i]⊕ [0, 0, k, k], (30)
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Symk−2(S)⊗ V =
⌊ k

2
⌋

⊕
i=1

[i, 0, k − 2i, k − 2i]
⌊ k−4

2
⌋

⊕
i=0

[i, 0, k − 4− 2i, k − 4− 2i]

⌊ k−4

2
⌋

⊕
i=0

[i, 1, k − 3− 2i, k − 4− 2i]
⌊ k−3

2
⌋

⊕
i=1

[i, 1, k − 3− 2i, k − 2− 2i]

⊕ [0, 1, k − 3, k − 2]

(31)

Symk−4(S)⊗ ∧2V =
⌊ k−4

2
⌋

⊕
i=0

[i, 0, k − 4− 2i, k − 4− 2i]
⌊ k−5

2
⌋

⊕
i=1

[i, 0, k − 4− 2i, k − 4− 2i]

⌊ k−6

2
⌋

⊕
i=0

[i, 0, k − 4− 2i, k − 6− 2i]

⌊ k−4

2
⌋

⊕
i=2

[i, 0, k − 4− 2i, k − 2− 2i]⊕ [1, 0, k − 6, k − 4]

⌊ k−8

2
⌋

⊕
i=0

[i, 1, k − 7− 2i, k − 8− 2i]
⌊ k−7

2
⌋

⊕
i=0

[i, 1, k − 7− 2i, k − 6− 2i]

⌊ k−4

2
⌋

⊕
i=0

[i, 1, k − 3− 2i, k − 4− 2i]
⌊ k−3

2
⌋

⊕
i=1

[i, 1, k − 3− 2i, k − 2− 2i]

⌊ k−6

2
⌋

⊕
i=0

[i, 2, k − 6− 2i, k − 6− 2i]

(32)

Symk−6(S)⊗ ∧3V =
⌊ k−5

2
⌋

⊕
i=1

[i, 0, k − 4− 2i, k − 4− 2i]
⌊ k−6

2
⌋

⊕
i=0

[i, 0, k − 4− 2i, k − 6− 2i]

⌊ k−4

2
⌋

⊕
i=2

[i, 0, k − 4− 2i, k − 2− 2i]
⌊ k−9

2
⌋

⊕
i=0

[i, 0, k − 8− 2i, k − 8− 2i]

⌊ k−10

2
⌋

⊕
i=0

[i, 0, k − 8− 2i, k − 10− 2i]

⌊ k−8

2
⌋

⊕
i=1

[i, 0, k − 8− 2i, k − 6− 2i]⊕ [0, 0, k − 8, k − 6]

⌊ k−8

2
⌋

⊕
i=0

[i, 1, k − 7− 2i, k − 8− 2i]
⌊ k−8

2
⌋

⊕
i=0

[i, 1, k − 7− 2i, k − 8− 2i]

⌊ k−7

2
⌋

⊕
i=0

[i, 1, k − 7− 2i, k − 6− 2i]
⌊ k−7

2
⌋

⊕
i=1

[i, 1, k − 7− 2i, k − 6− 2i]

⌊ k−10

2
⌋

⊕
i=0

[i, 2, k − 10− 2i, k − 10− 2i]
⌊ k−6

2
⌋

⊕
i=0

[i, 2, k − 6− 2i, k − 6− 2i]

(33)
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Symk−8(S)⊗ ∧4V =
⌊ k−9

2
⌋

⊕
i=0

[i, 0, k − 8− 2i, k − 8− 2i]
⌊ k−8

2
⌋

⊕
i=1

[i, 0, k − 8− 2i, k − 8− 2i]

⌊ k−10

2
⌋

⊕
i=0

[i, 0, k − 8− 2i, k − 10− 2i]
⌊ k−8

2
⌋

⊕
i=1

[i, 0, k − 8− 2i, k − 6− 2i]

⌊ k−12

2
⌋

⊕
i=0

[i, 1, k − 11− 2i, k − 12− 2i]
⌊ k−11

2
⌋

⊕
i=0

[i, 1, k − 11− 2i, k − 10− 2i]

⌊ k−8

2
⌋

⊕
i=0

[i, 1, k − 7− 2i, k − 8− 2i]
⌊ k−7

2
⌋

⊕
i=1

[i, 1, k − 7− 2i, k − 6− 2i]

⌊ k−10

2
⌋

⊕
i=0

[i, 2, k − 10− 2i, k − 10− 2i]

(34)

Symk−10(S)⊗ ∧5V =
⌊ k−8

2
⌋

⊕
i=1

[i, 0, k − 8− 2i, k − 8− 2i]
⌊ k−12

2
⌋

⊕
i=0

[i, 0, k − 12− 2i, k − 12− 2i]

⌊ k−12

2
⌋

⊕
i=0

[i, 1, k − 11− 2i, k − 12− 2i]
⌊ k−11

2
⌋

⊕
i=0

[i, 1, k − 11− 2i, k − 10− 2i]

(35)

Symk−12(S) ∧6 V =
⌊ k−12

2
⌋

⊕
i=0

[i, 0, k − 12− 2i, k − 12− 2i] (36)

As in the case D = 10 the decompositions [Eqs.30-33] can be verified by dimen-

sion check.

Again we can prove that the terms printed in red and overlined (we de-

note them by Bn(k) where k = m + 2n) are in the boundary and the terms

printed in blue and underlined are mapped onto the boundary terms by the

action of differential. Both underlined and overlined terms do not contribute to

cohomology.

One can derive these statements from the maximal propagation principle or

give a rigorous proof by induction with respect to k = m+2n. To give the proof

we use the formula for the tensor product of S and a representation [i, j, p, q] :

S ⊗ [i, j, p, q] = [i, j, p+ 1, q + 1] + [i+ 1, j, p− 1, q − 1]

+ [i, j − 1, p, q − 1] + [i, j − 1, p, q + 1] + [i, j, p+ 1, q − 1]

+ [i+ 1, j, p− 1, q + 1] + [i− 1, j + 1, p, q − 1] + [i − 1, j + 1, p, q + 1]

(37)
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This formula allows us to compute the map S ⊗ Ek−1,n → Ek,n transforming

boundaries into boundaries. One can prove using this map that all elements of

Bn(k) are boundaries assuming that this is true for Bn(k − 1).

4 Homology of super Poincare Lie algebra

The super Poincare Lie algebra can be defined as super Lie algebra spanned by

supersymmetry Lie algebra and Lie algebra of its group of automorphisms. 4

To calculate the homology and cohomology of super Poincare Lie algebra we

will use the following statement proved by Hochschild and Serre [7] .(It follows

from Hochschild-Serre spectral sequence constructed in the same paper.)

Let P denote a Lie algebra represented as a vector space as a direct sum

of two subspaces L and G. We assume that G is an ideal in P and that L is

semisimple. It follows from the assumption that G is an ideal that L acts on G

and therefore on cohomology of G; the L-invariant part of cohomology H•(G))

will be denoted by H•(G))L. One can prove that

Hn(P) =
∑

p+q=n

Hp(L)⊗Hq(G)L.

This statement remains correct if P is a super Lie algebra. We will apply

it to the case when P is super Poincare Lie algebra, G is the Lie algebra of

supersymmetries and L is the Lie algebra of automorphisms or its semisimple

subalgebra. (We are working with complex Lie algebras, but we can work with

their real forms. The results do not change.)

Notice that it is easy to calculate the cohomology of semisimple Lie algebra

L; they are described by antisymmetric tensors on L that are invariant with

respect to adjoint representation. One can say also that they coincide with de

Rham cohomology of corresponding compact Lie group. For ten-dimensional

case L = so10 and the compact Lie group is SO(10,R). Its cohomology is a

Grassmann algebra with generators of dimension 3,7,11,13 and 9. In general

4Instead of Lie algebra of automorphisms one can take its subalgebra. For example, we

can take as a subalgebra the orthogonal Lie algebra
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the cohomology of the group SO(2r,R) is a Grassmann algebra with generators

ek having dimension 4k − 1 for k < r and the dimension 2r − 1 for k = r.

The cohomology of Lie algebra sln coincide with the cohomology of compact

Lie group SU(n); they form a Grassmann algebra with generators of dimension

3, 5, ..., 2n− 1.

As we have seen only L-invariant part of cohomology of Lie algebra of super-

symmetries contributes to the cohomology of super Poincare algebra. For D =

10 this means that the only contribution comes from (m,n) = (0, 0), (m,n) =

(2, 1) and (m,n) = (2, 5), for D = 6 the only contribution comes from (m,n) =

(0, 0) and (m,n) = (2, 1). (Here m denotes the grading with respect to even

ghosts tα and n the grading with respect to odd ghosts cm.)
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