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We derive a holographic dual description of free quantum field theory in arbitrary dimensions,
by reinterpreting the exact renormalization group, to obtain a higher spin gravity theory of the
general type which had been proposed and studied as a dual theory. We show that the dual theory
reproduces all correlation functions.

INTRODUCTION

One of the most striking and unexpected discoveries
of the 1994-98 “second superstring revolution” was the
AdS/CFT correspondence [1], according to which N = 4
supersymmetric Yang-Mills theory in four dimensions is
dual to type IIb superstring theory on AdS5 × S5. Since
then, the correspondence has been much generalized and
has found many applications, especially in providing sim-
ple models exhibiting nonperturbative physical phenom-
ena such as confinement, dissipation and quantum phase
transitions. However, despite a good deal of work, the mi-
croscopic workings of the duality are not well understood.
In no case has there been a first principles derivation.
In this work, we derive a gravity dual to free field

theory. Free scalar field theory is conjectured [2, 3] to
be holographically dual to higher spin gravity as devel-
oped by M. Vasiliev and other authors [4], and nontrivial
checks of this conjecture were made in [5, 6]. By standard
large N arguments, the same dual formulation should de-
scribe the large N limit of the O(N) model as well [3].
It is widely believed that AdS/CFT is at heart a geo-

metric reformulation of the renormalization group (RG),
in which the renormalization scale becomes an extra ‘ra-
dial’ dimension. Various explanations of this idea have
been given, such as the holographic RG [7], and a mixed
holographic/Wilsonian RG [8], while attempts at a pre-
cise reformulation were made in [9]. Here we begin by
reviewing the exact RG.

Exact RG equations: We study the theory of N free
complex scalar fields, denoted φA(x), in D dimensions.
The bare action will be a sum of a standard (two deriva-
tive) kinetic term, and a U(N)-invariant interaction term
with arbitrary position and momentum dependence,

S =
∑

A

∫
dDx |∂φA(x)|2−

∫
dDxdDy B(x, y)φ̄A(x)φA(y).

Going to momentum variables p, q, and writing φA(p)
for the Fourier transform, the Wilsonian effective action
at energy scale Λ is

S =

∫
dDp dDq

{
P (p, q)−B(p, q)

}
φ̄A(q)φA(p) , (1)

with a cutoff kinetic term

P = p2K−1(p2/Λ2)δ(D)(p− q) . (2)

The cutoff function K is chosen so that the propagator
vanishes for high momenta and goes to 1/p2 for small
momenta. We also define

α =
dΛK(p2/Λ2)

p2
δ(D)(p− q) . (3)

Applying the standard derivation of Wick’s theorem
from the functional integral, and taking a derivative with
respect to Λ, one obtains an exact RG equation [10].
Since the theory is free, under RG flow the effective action
remains quadratic in the fields. The coupling B flows as

dΛB(p, q) = (4)

−

∫
dDs

1

s2
∂K(s2/Λ2)

∂Λ
B(p, s)B(s, q) .

There is also a constant term F , satisfying the flow equa-
tion

dΛF = N

∫
dDpdDq α(p, q) (P (q, p) +B(q, p)) . (5)

Integrating this flow down to Λ → 0, one obtains the free
energy.

Connected correlation functions of the bilocal operator
φ̄A(x)φA(y) can be obtained as functional derivatives of
the free energy with respect to B(x, y). Of course, since
this is a free theory, there is an explicit expansion for it,

F = −N Tr log(P −B)

= −N Tr logP +N
∑

n≥1

1

n
Tr

(
P−1 ·B

)n
, (6)

where P−1 is the Green function, and Tr and · represent
integration and products of kernels. Terms in this expan-
sion correspond to one-loop diagrams with vertices taken
from the interaction B. Our question is, what does this
have to do with anti-de Sitter space and gravity?
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RG AS EQUATIONS OF MOTION ON ADS

We now rewrite the RG flow equation (4) as an equa-
tion of motion for fields propagating in an AdSD+1 space
with radial coordinate

r =
1

Λ
. (7)

The other coordinates of AdSD+1 are ‘reference coordi-
nates’ whose relation to the original space-time coordi-
nates will be explained below. The fields on AdSD+1 will
be a field B derived from the couplings B, and a connec-
tion W in the ‘higher spin gauge algebra hs(D − 1, 2),
also to be defined below.
The first step is to reformulate (4) in terms of opera-

tors B and α with a simple multiplication law. To make
contact with higher spin gravity as presented in [4], we
will use an explicit representation in which operators are
represented by symbols and operator products are repre-
sented by the Moyal star product. From now on we will
discuss dimensionless B, i.e. B → B( p

Λ ,
q
Λ)Λ

2−D. We
Taylor expand the sources B(p/Λ, q/Λ) in the momen-
tum variables

B(p/Λ, q/Λ) =

∞∑

s,t=0

Λ−s−t Ba1...as,b1...btp
a1. . . pasqb1. . . qbt

≡ Λ−s−t Bst p
s qt ,

where the indices ai and bi take values in {0, . . . , D− 1}.
We then define

αst = Λ2−D−s−t

∫
dDp

∫
dDq α(p, q)ps qt , (8)

so that the RG flow equation (4) becomes

d

dΛ
Bst = −Bsi α

ij Bjt + Λ−1(s+ t+ 2dφ)Bst , (9)

where dφ = D−2
2 is the conformal dimension of φA.

Now, an RG flow equation expresses an identifica-
tion between theories with the same physics, written in
terms of actions defined at infinitesimally different en-
ergy scales. Mathematically, such an infinitesimal rela-
tion should be expressed by a connection on the space of
actions. In fact it is simple to reinterpret (9) in this way.
Define a connection one-form, whose only component is

(WΛ)s
j = Bsi α

ij − sΛ−1δs
j , (10)

(W̃Λ)
k
t = −tΛ−1δkt ,

then (9) becomes

0 =
d

dΛ
Λ−2dφBst+(WΛ)s

j Λ−2dφBjt+Λ−2dφBsj(W̃Λ)
j
t .

(11)
Our description of the action also depends on a choice of
spatial reference point. By rewriting the position space
interaction term as∫

dDx′dDx B(a+ x, a+ x′)φ̄A(a+ x)φA(a+ x′),

one sees that an overall shift symmetry x → x + a acts
as

d

dai
Bstp

sqt = i(pi − qi)Bstp
sqt. (12)

We will also interpret this as a connection on the space of
actions. Thus, we need to reinterpret the right hand sides
of (9) and (12) as the action of a gauge algebra. Math-
ematically, this will be an algebra of pseudodifferential
operators. But here, motivated by the eventual contact
with higher spin gravity, we will define the gauge algebra
as the Lie algebra associated to an associative algebra,
defined by a Moyal star product.
We introduce oscillators (formal auxiliary variables)

yα, ȳα, z
α and z̄α, where α ∈ {•, r, 0, 1, . . . , D − 1}, sat-

isfying the Moyal star product [4]

(f ∗ g)(z, y) = (13)

1

π2(D+2)

∫
dsdte−2s·t̄−2s̄·tf(z + s, y + s)g(z − t, y + t) .

The metric on this auxiliary space is η̂βα = (−1, 1, η),
where η is the metric on the original flat space-time. We
further define for a ∈ {0, .., D − 1}

ya = Y a + Za, ȳa =
1

2
(Ȳa − Z̄a), (14)

za = Za − Y a, z̄a =
1

2
(Ȳa + Z̄a) .

Then the field B and the kernel α are defined to be func-
tions of the auxiliary variables, derived from the coupling
B and cutoff propagator variation α as (we trade momen-
tum p with iY/r and q with −iZ/r)

B(y, z, ȳ, z̄) = is−trD−2 Bst Y
s Zt e−Y Ȳ−ZZ̄ (z̄r − z̄•)

s+t ,

αµ(y, z, ȳ, z̄) = (15)

−
(−i)t−s

s!t!
r−D αst

µ Ȳt Z̄s e
−Y Ȳ −ZZ̄ (z̄r − z̄•)

−s−t ,

where µ ∈ {r, 0, . . . , D − 1}. To rewrite the equations
we just derived, from a starting point with an explicit
translation action on the coordinates, we can take αr = α
and αa = 0. This choice can be generalized as will emerge
below.

Standard connection on AdS: The group of linear
transformations on each set of auxiliary variables pre-
serving the metric ηβα is SO(D−1, 2), the group of isome-
tries of AdSD+1. As is well known, we can represent the
corresponding Lie algebra as star commutators with gen-
erators which are quadratic functions of the oscillators.
The dilatation and the translation generators are

Pr = z̄rz
• − z̄•z

r, (16)

Pa = z̄a (z
• − zr)− (z̄• − z̄r) z

a .

These can be used to define a connection

W (0)
µ =

1

r
Pµ , (17)
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which due to the commutation relations satisfied by Pµ

is flat

dW (0) +W (0) ∧ ∗W (0) = 0 . (18)

Now, there is a well-known way to rewrite theories
of gravity, not in terms of a metric, but in terms of a
connection acting on the frame bundle (see for example
[11]). The connection (17) is the one corresponding to
the AdSD+1 metric in the Poincare patch,

ds2 =
dr2 + dxadxa

r2
. (19)

The standard formulations of higher spin gravity are also
in terms of a connection, now living in an infinite dimen-
sional algebra hs(D− 1, 2) which contains SO(D− 1, 2).
By using (16) to define (17), we have postulated just this
structure. Of course this is just kinematic, a particular
way to describe AdSD+1.

RG as connection on AdS: Returning to (15), the
field B was dressed with the auxiliary variables in a way
so that [W (0), B]∗ reproduces the linear term in B in the
RG equations (9) and (12). In particular

[W (0)
r , (z̄r − z̄•)

s+t]∗ =
s+ t

r
(z̄r − z̄•)

s+t, (20)

[W (0)
a , B]∗ =

ya

r
(z̄r − z̄•)B −

zr − z•
r

∂

∂za
B.

The last term in the second of these equations does not
appear in (12), since in the field theory the components
of B do not have • and r indices. The cut-off kernel
α we have introduced is consistent with momentum con-
servation. With the notations introduced above, this fact
translates into the equation

dα+W (0) ∧ ∗α+ α ∧ ∗W (0) = 0 . (21)

In fact, this equation can be satisfied more generally,
which allows using position dependent cutoffs, or working
on space-times without translation invariance.
Finally, we define a fluctuation of the connection

(δW̃µ)
p
q
= 0, (δWµ)q

p
= Bqr α

rp
µ . (22)

With these definitions, the RG equations take the ap-
pealing form

d

dxµ

B +Wµ ∗ B −B ∗ W̃µ = 0 , (23)

where W = W (0) + δW and W̃ = W (0) + δW̃ Moreover,
by right star multiplication of the above equation by αν

and antisymmetrization with respect to the space-time
indices, we obtain that the total connection is flat

dW +W ∧ ∗W = 0 , dW̃ + W̃ ∧ ∗ W̃ = 0 . (24)

The equations (23) and (24) admit the standard gauge
transformations

δW = dǫ+ [W, ǫ]∗ , δW̃ = dǫ̃−
[
W̃ , ǫ̃

]
∗
, (25)

δB = B ∗ ǫ̃− ǫ ∗ B .

and this is a gauge theory with gauge algebra hs(D−1, 2)
as defined above. In gauge theory terms, these equa-
tions express the covariant constancy of a bulk field B on
AdSD+1 under transport by a flat connection W . Con-
ceptually, their field theoretic origin is clear. The AdS
space parameterizes choices which must be made to de-
fine the RG; an infinitesimal relation between equivalent
actions should be expressed by transport by a connection.
If we vary the RG scale and the reference point along a
closed loop in AdS we must recover the same action, so
the connection must be flat.
In the standard formulations of higher spin gravity [4],

one has the same connection Wµ, and the higher spin
fields are obtained by expanding it in the auxiliary vari-
ables. The equation (24) is an equation of motion, whose
linearization describes propagation of higher spin fields in
AdSD+1. The field B encodes, among others, the matter
field coupled to the higher spin gauge fields and satisfies
(23) or a similar equation of motion. Thus, we have refor-
mulated the RG flow for D-dimensional free field theory
in the terms of higher spin gravity in D + 1 dimensions.
Finally, we obtain the solutions which correspond to

RG flows by imposing (22), i.e. the relation W = B ∗ α.
This relation is not gauge invariant; while formally one
can postulate a transformation law for α which would
make it so, this requires taking the inverse B−1, which
may not exist. As a relation between one-forms, some of
it may correspond to a gauge fixing condition, while other
parts have suggestive analogs in higher spin gravity.

Action: One may reasonably ask what action gives rise
to these equations. Actually this problem has not been
solved for the standard higher spin gravity theories; the
equations (23) and (24) do not naturally come from an
action in dimensions D + 1 ≥ 4. One can still postu-
late an action whose variational equations include these
equations, most simply by postulating a Lagrange mul-
tiplier λ for each equation. Such an action will be zero
evaluated on a solution, i.e. on-shell.
From our derivation, the on-shell action of our dual

theory is the sum of such a zero on-shell action, and the
holonomy of the U(1) part of the connection,

Sbulk = −N Tr

∫
dxµ δWµ + Son−shell, (26)

integrated along a contour which runs from a point on
the boundary to r = ∞. This follows from the expres-
sion (5) for the free energy of the field theory and the
identification (22). Mathematically, it follows from the
identification of TrWµ as a connection on the determi-
nant line bundle of operators −P +B.
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Since the connection is flat, one can deform the contour
and obtain the same result. One can also vary the choice
of base point on the boundary; this corresponds to a
gauge transformation.

Correlators: Correlators in AdS/CFT correspondence
are obtained by varying the bulk action (26) with respect
to the sources. We take the contour to extend between
two boundary points and take the limit of one point going
to infinity.

When evaluated on-shell the action of our bulk the-
ory is equal to a holonomy. The gauge transformations
change Wµ and thus change the sources. To compute the
holonomy one has to evaluate the connection Wµ in the
bulk.

This task can be achieved by solving the equations
of motion perturbatively in the sources (i.e. by Witten
diagrams). We define a perturbative expansion of B as

Wµ

a b

r

FIG. 1. A graphic representation of the calculation of a four
point correlator. The dashed line is the holonomy contour. a
and b are two points on the boundary; one of which is taken
to infinity. The (brown) lines represent boundary-to-bulk and
bulk-to-bulk propagators.

B = B(0) +B(1) +B(2) + . . . . (27)

Here B(0) is the solution to the linearized equation (23),

d

dxµ
B(0) +W (0)

µ ∗B(0) −B(0) ∗ W̃ (0)
µ = 0 . (28)

One defines the boundary-to-bulk propagator,K(x, x′, r)
as a solution to the above equation with δ-function
boundary condition, and the bulk-to-bulk propagator,
Gν(x, x′, r, r′), as a solution with δ(D)(x−x′)δ(r−r′)ηνµ
source on the right-hand side.

The solution to the linearized equations of motion for
the fluctuations (22) is given by δB = g−1 ∗ b ∗ dg with

g(x; z) = P exp∗

(
−

∫ x0

x

W (0)
µ dx′µ

)
, (29)

with W (0) as in (17). By taking a straight contour with
base point xµ

0 = (r0, x
a
0) we get rid of the path ordering

g(x; y) = exp∗

(
Pµ

(x− x0)
µ

r − r0
ln

r

r0

)
. (30)

The boundary conditions are given by specifying the
boundary sources B̂. Then,

B(0)(x, r) =

∫
dDx′ K(x, x′, r) ∗ B̂(x′), (31)

B(1)(x, r) =

−

∫
dr′dDx′ Gν(x, x′, r, r′) ∗

[
B(0) ∗ αν ∗B(0)

]
(x′, r′),

and the higher corrections are obtained in a similar
manner. Since α appears in the interaction vertex, it
should be chosen to be regular at p = 0, e.g. α ∼
exp(−p2/Λ2)/Λ3. The correlators are then given by vary-
ing the holonomy integral (26) with respect to B̂ and by
construction reproduce the field theory results. This pro-
cedure is illustrated in figure 1. Summing the diagrams
and doing the r integrals, one reproduces the expansion
(6), thus answering the question of our introduction.

DISCUSSION

Starting from free bosonic field theory, with an ar-
bitrary position or momentum-dependent kinetic term
(dispersion relation), we have derived a dual description
as a higher spin gravity in anti-de Sitter space, and ar-
gued that it can reproduce all correlation functions. Al-
though the higher spin gravity we arrived at is not of the
standard form, it contains the structure tested in explicit
comparisons such as [5] and seems as well motivated from
this point of view as the standard theories. One point
which could be improved is to rephrase the relation (22)
in a more covariant way.
One of the outstanding conceptual questions about

AdS/CFT is to understand the relation between the two
dual space-times. There is a common though not uni-
versal belief that the relation is nonlocal away from the
boundary and that any microscopic derivation must in-
clude some sort of nonlocal transformation. On the other
hand, our derivation did not do this; rather, we moved all
of the nonlocality into the interactions and dependence
on the auxiliary variables. If the same can be done in
gauge theory, in which higher derivative operators have
large anomalous dimension at strong coupling, then it
seems reasonable to look for a local understanding of the
duality there as well.
In the end, the significance of this result depends on

the extent to which these ideas and techniques apply to
interacting theories. The only case for which this gener-
alization will be direct is the interacting O(N) model, as
we will discuss elsewhere.
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