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Abstract

We show that a certain class of light-like Wilson loops exhibits a Yangian symmetry at one
loop, or equivalently, in an Abelian theory. The Wilson loops we discuss are equivalent to one-
loop MHV amplitudes in N = 4 super Yang-Mills theory in a certain kinematical regime. The
fact that we find a Yangian symmetry constraining their functional form can be thought of as the
effect of the original conformal symmetry associated to the scattering amplitudes in the N = 4
theory.
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1 Introduction

Scattering amplitudes in gauge theories exhibit many surprising features hinting at an extraordi-
nary simplicity that is not apparent in direct Feynman graph calculations. This is demonstrated
at tree-level by the remarkable simplicity of the Parke-Taylor formula for maximally-helicity-
violating amplitudes [1]. Such simplicity continues to all tree-level amplitudes if one employs
the on-shell recursive BCFW relations [2, 3] to construct them from their known singularity
structure.

The level of simplification is even greater when considering the maximally supersymmetric
theory, N = 4 super Yang-Mills. In this case the recursive tree-level relations simplify [4, 5] and
admit a closed-form solution [6]. Furthermore the N = 4 theory exhibits a very large symmetry
algebra. On the colour-ordered tree-level amplitudes the original superconformal symmetry of the
Lagrangian combines with another copy of superconformal symmetry, called dual superconformal
symmetry [7] to form the Yangian of the superconformal algebra [8]. The individual BCFW
terms are each invariants under the full Yangian symmetry. They can be thought of as particular
contour choices in the Grassmannian integral of [9] (or equivalently its T-dual version [10, 11])
which collects together all Yangian invariant objects into a single simple formula [12, 13, 14].

At loop level it has recently been realised that the above statements all hold at the level
of the (unregulated) planar integrand. The integrand at a given loop order can be constructed
from its singularities via a generalisation of the BCFW recursion relations and, remarkably, each
term is individually invariant under the full Yangian symmetry up to a total derivative [15]. At
the level of the actual amplitudes the situation with the full symmetry is less clear, one issue
being that the amplitudes are infrared divergent and thus require regularisation. A particularly
useful regulator is the one obtained by introducing vacuum expectation values for the scalar fields
[16, 17, 18]. This regulator preserves the dual conformal symmetry so that the resulting integrals
are invariant. For work relating this picture to higher dimensions see [19, 20, 21].

It has been known for a while that amplitudes in N = 4 super Yang-Mills are connected
with light-like Wilson loops both at strong coupling (via the AdS/CFT correspondence) [22] and
in perturbation theory [23, 24]. While at strong coupling the dependence on the helicity configu-
ration of the amplitude appears as a subleading effect, in perturbation theory the correspondence
with Wilson loops was originally limited only to the MHV amplitudes (with direct evidence of the
correspondence coming up to two loops and six points [25, 26]). However the amplitude/Wilson
loop relation has recently been generalised to cover all helicity configurations [27, 28].

From the Wilson loop perspective the dual conformal symmetry of the scattering amplitudes
is the natural conformal symmetry of the light-like Wilson loops. Its effects are taken into ac-
count via an anomalous Ward identity [29, 30] which fixes the finite part of the Wilson loops (or
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equivalently MHV amplitudes) up to a function of conformally invariant cross-ratios. The Ward
identity therefore expresses the consequence of the dual conformal symmetry of the scattering am-
plitudes. What is not clear is how the original conformal symmetry of the scattering amplitudes
is realised beyond tree-level. The question of what happens to the original conformal symmetry
at one loop has been addressed before in several papers. In particular the non-invariance of the
one-loop amplitudes itself is not just due to the obvious breaking due to the presence of infrared
divergences. A further effect can be traced to the holomorphic anomaly which gives a contact
term variation even at tree level due to collinear singularities [31, 32, 33, 34]. Here, by appealing
to Yangian structure of the underlying algebra we will be able to give a simple realisation of the
symmetry on the one-loop amplitudes.

There are two ways of looking at the full Yangian symmetry. The first is to treat the original
superconformal symmetry of the scattering amplitudes as fundamental. The additional dual
conformal symmetry then extends this symmetry algebra to its Yangian [8]. The second way
exchanges the roles of the original and dual copies of the superconformal symmetry [12]. The
equivalence of these two pictures should be thought of as the algebraic realisation of the T-duality
which maps scattering amplitudes to Wilson loops [35, 36, 37].

The second way of thinking about the symmetry is more important in this paper. We will
show that there is a natural (dual) conformally invariant finite quantity, described most naturally
in terms of Wilson loops, which exhibits a Yangian symmetry. The finite quantity in question is
the ratio of Wilson loops defined in [38, 39], corresponding to a choice of OPE channel when one
considers expanding some subset of light-like edges around its totally collinear configuration.

We will be working with Wilson loops with special light-like contours contained in a two-
dimensional subspace of the full spacetime [40]. The one-loop form of the light-like Wilson loops
has been known for some time [24] to be equivalent to the one-loop MHV amplitudes in N = 4
super Yang-Mills theory [41]. In the special two-dimensional kinematics they can be expressed
purely in terms of logarithms [40, 42]. Recently also two-loop functions have become available
for six points in general kinematics [43, 44] and for an arbitrary number of points in the two-
dimensional setup [45, 42, 39].

In the two-dimensional kinematics the conformal symmetry of the Wilson loops is broken
to an sl(2) ⊕ sl(2) subalgebra of the full conformal algebra sl(4). The extra symmetry we find
then corresponds to two commuting copies of the Yangian Y (sl(2)) and is best called a Yangian
symmetry of the light-like Wilson loop. It should be thought of as the remaining effects of the
original conformal symmetry of the scattering amplitudes in the special kinematics.

We begin by discussing representations of Yangians in section 2. We will construct multi-
parameter representations based on the coproduct and the freedom to change basis at each stage
in building up the representation on a tensor product space. Then in section 3 we will construct
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some simple Yangian invariants. Of particular relevance is the fact that we find non-trivial
logarithmic functions as possible invariants. In section 4 we discuss the geometrical setup of
light-like Wilson loops in the restricted two-dimensional kinematics. We then go on to show
that a natural finite, conformally invariant ratio constructed from the Wilson loops is actually
invariant under two commuting copies of the Yangian Y (sl(2)). The quantity we find to be
invariant is exactly the ratio defined in [38] corresponding to a particular choice of OPE channel
for expanding the Wilson loops near a multi-collinear limit.

2 Representations of Yangians

We are interested in particular kinds of representations of Yangian algebras [46, 47] based on the
oscillator representation of the underlying algebra. We will consider sl(m) as an example but
the reasoning works also for sl(m|n) if one includes both bosonic and fermionic oscillators. So
we will consider the representation of sl(m) given by

JA
B = WA ∂

∂WB
− 1

m
δABW

C ∂

∂WC
. (1)

We prefer to write the oscillators as variables WA and derivatives ∂/∂WB for A,B = 1, . . . , m
since we will eventually be interested in the space of invariant functions. The operator

h = WC ∂

∂WC
(2)

is central and so we can decompose the space of functions of the WA into those of fixed degrees
of homogeneity h. Thus we can think of W as homogeneous coordinates on CPm−1. Our repre-
sentation acts on functions with fixed degrees of homogeneity on this space (which we will denote
as F(CPm−1)). In practice we will be interested in the case h = 0.

To obtain a representation of the Yangian of the algebra we can apply the evaluation map [48]
which constructs the level-one operator J (1) in terms of the algebra generators J . We could do
this explicitly but there is a shortcut to the answer. In order to represent the level-one operator
J (1)A

B we need to write down an operator in the adjoint representation. Since the operator h is
central (and so can be assigned some fixed numerical value) our only choice is

J (1)
ν

A
B = ν

(

WA ∂

∂WB
− 1

m
δABW

C ∂

∂WC

)

. (3)

The parameter ν is free. Together the operators JA
B and J

(1)
ν

A
B generate the Yangian Y (sl(m)).

More precisely we have defined a representation πν of the Yangian which depends on a parameter
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ν. The representation takes the form

πν

(

JA
B) = WA ∂

∂WB
− 1

m
δABW

C ∂

∂WC
, (4)

πν

(

J (1)A
B) = ν

(

WA ∂

∂WB
− 1

m
δABW

C ∂

∂WC

)

. (5)

The Yangian is a Hopf algebra so we can construct further representations acting on the
tensor product F(CPm−1)⊗ . . .⊗ F(CPm−1) by using the coproduct1

∆Ja = Ja ⊗ 1 + 1⊗ Ja , (6)

∆J (1)
a = J (1)

a ⊗ 1 + 1⊗ J (1)
a + fa

cbJb ⊗ Jc . (7)

We can project the RHS of each of these relations with πν1 ⊗ πν2 to obtain a two-parameter
representation acting on two sites,

πν1,ν2(J
A
B) =

2
∑

i=1

(

WA
i

∂

∂WB
i

− 1
m
δABW

C
i

∂

∂WC
i

)

, (8)

πν1,ν2(J
(1)A

B) =

(

WA
1

∂

∂WC
1

WC
2

∂

∂WB
2

− (1, 2)

)

+

2
∑

i=1

νi

(

WA
i

∂

∂WB
i

− 1
m
δABhi

)

. (9)

The operators

hi = WC
i

∂

∂WC
i

(10)

are central and so we can decompose the space of functions of the Wi into spaces of fixed
homogeneity in each of the Wi separately.

One can continue and repeated application of the coproduct and projection with πνi on the
ith site yields the representation

π~ν(J
A
B) =

n
∑

i=1

(

WA
i

∂

∂WB
i

− 1
m
δABhi

)

, (11)

π~ν(J
(1)A

B) =
∑

i<j

(

WA
i

∂

∂WC
i

WC
j

∂

∂WB
j

− (i, j)

)

+

n
∑

i=1

νi

(

WA
i

∂

∂WB
i

− 1
m
δABhi

)

. (12)

where ~ν = (ν1, . . . , νn). We will mostly use the symbols JA
B and J

(1)
~ν

A
B to denote this represen-

tation of the level-zero and level-one generators. Note that the construction of the representation
has provided an ordering of the sites from 1 to n.

1Here we use a, b, c to denote adjoint indices.
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3 Invariants

Now let us consider functions of the Wi which are invariant under the action of the Yangian
generators J and J (1). Firstly we make a general remark that when considering invariants we
are free to add any amount of JA

B to J
(1)
~ν

A
B without changing the problem. We can use this

freedom to set one of the νi to some fixed value, e.g. we could set νn = 0 if we wish.

If we are just interested in sl(m)-invariant functions of the Wi then we can have any function
of the invariant quantities,

(i1 . . . im) = WA1

i1
. . .WAm

im
ǫA1...Am

. (13)

There are obviously no such quantities if we have fewer than m sites as the above invariants are
totally antisymmetric in all labels i1, . . . im.

If we also require homogeneous functions with degree zero in all of the Wi then we must
consider functions of homogeneous ratios of the invariants in equation (13). Let us consider sl(2)
as it is the simplest example and the one most relevant for this paper. The first possibility to
form a homogeneous ratio is at four sites where we can write

u =
(13)(24)

(14)(23)
. (14)

This is the only independent invariant we can write. The only other possibility is related to u
using the cyclic identity (ab)WA

c + (bc)WA
a + (ca)WA

b = 0,

(12)(34)

(41)(23)
= 1− u . (15)

Thus the sl(2) invariant functions on four copies of (CP1) are functions of u. Requiring that they
are also Yangian invariant functions means we have to solve the equations

J
(1)
~ν

A
Bf(u) = 0 . (16)

There are three independent equations here as the generators J
(1)
~ν

A
B are traceless. Obviously a

constant function is always a solution of the equations. We find that there is a non-trivial solution
only if ν1 − ν3 = ν2 − ν4 = 2. As we have discussed, although there are four νi our problem
only really depends on three of them, or equivalently on the three independent differences. Since
we have found two constraints from the condition of invariance there remains a one-parameter
family of non-trivial invariant functions. They are given by hypergeometric functions,

fµ(u) =
(1− u)1+µ

1 + µ
2F1(1, 1 + µ, 2 + µ; 1− u) , µ = 1

2
(ν2 − ν1) . (17)
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These functions represent the only homogeneous functions at four sites which are also Yangian
invariants. Note that the representation of the Yangian was also constrained by the analysis. Of
the three independent νi, two were fixed. A particularly simple case is when we take µ = 0, in
which case we have

f0(u) = (1− u) 2F1(1, 1, 2; 1− u) = log u . (18)

We will label this logarithmic invariant by

log u = log
(13)(24)

(14)(23)
= L(1, 2, 3, 4) , (19)

to recall the order of the Wi upon which it depends. Thus we have

JA
BL(1, 2, 3, 4) = 0 , J

(1)
~ν

A
BL(1, 2, 3, 4) = 0 , ~ν = (1, 1,−1,−1) . (20)

Here we have used the freedom of shifting all the νi so that ν1 = 1.

A very simple way to obtain invariants for n sites is simply to promote an invariant at (n−1)
sites. Suppose Yn−1(1, . . . , n−1) is an invariant under the representation with labels ~µ at (n−1)
sites. Then we can define an invariant at n sites under the representation with labels ~ν by the
definition,

Yn(1, . . . , n) ≡ Yn−1(1, . . . , n− 1) . (21)

Then since Y (1, . . . , n− 1) is an invariant at (n− 1) sites we have

J Yn−1(1, . . . , n− 1) = 0, J
(1)
~µ Yn−1(1, . . . , n− 1) = 0 . (22)

It is then simple to see that Yn(1, . . . , n) is an invariant at n sites,

J Yn(1, . . . , n) = 0, J
(1)
~ν Yn(1, . . . , n) = 0 , (23)

provided we choose the vector ~ν = (~µ, νn) for any value of νn. This is exactly the adding operation
of [15], taking into account the labels ~ν defining the representation. Note that we could have
introduced the site anywhere along the chain, i.e. we could have defined

Yn(1, . . . , n) = Yn−1(1, . . . , i, i+ 2, . . . , n) . (24)

As an example we can consider five sites and construct invariants from the logarithmic invariant
L; the combination

aL(1, 2, 4, 5) + bL(1, 3, 4, 5) + cL(2, 3, 4, 5) (25)

is invariant provided we choose ~ν = (1, 1, 1,−1,−1).
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4 Light-like Wilson loops

We will consider Wilson loops defined on polygonal light-like contours in four-dimensional gauge
theory. Our motivation is to understand how the integrable nature of planar N = 4 super
Yang-Mills theory manifests itself in the form of such Wilson loops.

Wilson loops with cusps have ultra-violet divergences. We will write the polygonal light-like
Wilson loops as follows,

logWn =
∑

i

[UV div]i + F anom
n (x1, . . . , xn) + In(u1, . . . , um) . (26)

Here we have a specific divergences coming from each cusp denoted by [UV div]i. The finite
part has been split into two parts, F anom

n and In. The first is a contribution which satisfies the
anomalous Ward identity due to conformal symmetry [29, 30],

KµF anom
n (x1, . . . , xn) = Γcusp(λ)

∑

i

(2xµ
i − xµ

i−1 − xµ
i+1) log x

2
i−1,i+1 . (27)

This part could be taken to be the one-loop result multiplied by the cusp anomalous dimension.
In this case it coincides with BDS ansatz part of the MHV scattering amplitude [49]. However
the definition of F anom

n is ambiguous because it can be modified by any function of the available
conformal invariants u1, . . . , uk (here k = 3n− 15).

Depending on the choice of the definition of the anomalous part, there is an additional part
which is just a function of conformal invariants, In. If we choose F

anom
n to coincide with the BDS

ansatz for the MHV amplitude then In is the standard definition of the ‘remainder function’.
In this case it is non-zero only at two loops and beyond and for six or more points [50, 26, 25].
There are alternative definitions of the anomalous part which modify it by adding some function
of invariants and subtracting the same function from the remainder function. An example is the
definition of the ‘BDS-like’ piece of [40] where the anomalous part depends only on the shortest
distances x2

i,i+2.

A particularly interesting definition for the decomposition was made in [38]. In this case one
picks two of the light-like edges and forms a light-like square by picking two more light-like lines
intersecting them both. Then one can consider four different Wilson loops. The original Wilson
loop, the Wilson loop on the square and the Wilson loops formed by replacing the top or bottom
set of intermediate edges by the corresponding part of the square. This is best illustrated by Fig.
1. One can define a conformally invariant quantity by the following ratio of the Wilson loops2,
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Figure 1: The four different Wilson loops entering the definition of the ratio (28). The reference square
is shown by the dashed line. The bottom and top Wilson loops are obtained by replacing a sequence of
edges by the corresponding part of the square.

rn = log

(

WnWsq

WtopWbottom

)

. (28)

This quantity is a function of the cross-ratios u1, . . . , uk. Unlike the usual definition of the
remainder function, rn is non-zero already at one loop. It is also not cyclic invariant since its
definition required a choice of two special lines from which to form the square. This choice
essentially corresponds to the choice of OPE ‘channel’ in which one expands the Wilson loop
over exchanged intermediate excited flux tube states [38].

The quantity rn is particularly simple at one loop. It corresponds to the connected part of
the correlation between the two Wilson loops shown in Fig. 2. A further simplification is obtained
when considering restricted two-dimensional kinematics as in [40]. In this case one needs an even
number of sides to the Wilson loops, alternating in orientation between the x+ direction and the
x− direction as one travels round the loop. The number of independent cross-ratios is reduced
in the two-dimensional kinematics. In fact there are (n − 6) independent ratios left from the
original (3n− 15). Since n is always even the first non-trivial ratio is therefore at eight points.

A very useful way to picture this is by drawing the Penrose diagram, putting two of the
null sides of the loop at null infinity as in [40] (see Fig. 3). Due to the light-like nature of
the problem, it is very useful to describe the symmetry and kinematical dependence in terms
of twistor variables. Here we mean twistor variables corresponding to light-like lines in the
configuration space of the Wilson loop (corresponding to momentum twistors [51] when viewed
from the scattering amplitude perspective).

We recall that twistors can be defined from the position variables defining the light-like loop.

2In the generic situation there can be a single logarithmic divergence left in the ratio rn. This will be absent in
the ratio we study in this paper for two-dimensional loops. We would like to thank Johannes Henn for discussions
on this point.
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Figure 2: An alternative picture for the one-loop diagrams contributing to rn. The ratio of the Wilson
loops defined in (28) is equivalent to the connected diagrams in the correlator of the two loops shown
here.

x1x1

x2

x3

xi

xn

xi+1

w1
w2 w3

wi
wn

Figure 3: The reference square denoted by the dashed line separates the edges of the Wilson loop into
the two groups {1, . . . , i− 1} and {i, . . . , n}.
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Concretely we can write the light-like vectors defining the separations as a product of commuting
spinors,

xαα̇
i − xαα̇

i+1 = λα
i λ̃

α̇
i . (29)

We can define the twistor variables WA
i = (λα

i , µ
α̇
i ) from the incidence relations,

µα̇
i = xαα̇

i λiα . (30)

The twistors WA
i transform linearly under sl(4) conformal transformations, whose generators

take the simple form,

JA
B =

∑

i

(

WA
i

∂

∂WB
i

− 1
4
δABW

C
i

∂

∂WC
i

)

. (31)

In the special two-dimensional kinematics the twistor variables are also restricted and preserve
two commuting copies of sl(2) inside sl(4). Specifically we can decompose the WA

i into upper
and lower components each transforming under its own sl(2). The alternating orientations of the
lines corresponds to an alternating between twistors transforming under the two copies of sl(2).
We take the odd-numbered twistors to transform under the first copy and the even-numbered
ones to transform under the second copy,

W2i+1 =

(

w2i+1

0

)

, W2i =

(

0
w̄2i

)

. (32)

The generators of the two copies of sl(2) are then

Ja
b =

∑

i odd

(

wa
i

∂

∂wb
i

− 1
2
δabw

c
i

∂

∂wc
i

)

, J
ā

b̄ =
∑

i even

(

w̄ā
i

∂

∂w̄b̄
i

− 1
2
δāb̄ w̄

c̄
i

∂

∂w̄c̄
i

)

. (33)

Here a, b and ā, b̄ run from 1 to 2.

Referring back to Fig. 3 we can identify the twistor variables with the edges. This leads us
to introduce some useful notation for rn. We will write it as a function of the twistor variables
which will be separated into two groups corresponding to the left and right groups of edges in
Fig. 3. Thus we have the general form

rn(1, 2, . . . , i− 1|i, i+ 1, . . . , n) . (34)

The vertical bar serves to indicate the separation into left and right groups, corresponding to the
choice of OPE channel in [38].

We recognise in (33) two copies of the representation of sl(2) that we discussed previously.

Thus we know how to extend each sl(2) to its Yangian. We just take the additional generators J
(1)
~ν

and J
(1)
~̄ν corresponding to the representations described in section 2. Let us consider the first non-

trivial case n = 8. We know from our previous analysis the form of the homogeneous invariants.
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x1x1

x2

x3

x7

x10

xa

xb

x8

w1

w2
w3

w7
w10

Figure 4: The ten-sided Wilson loop can be expressed as the sum of the eight-sided Wilson loops
passing through points xa and xb minus the one which passes through both.

Restricting to the simple integer weights we described in section 3 we have invariants L(1, 3, 5, 7)
and L(2, 4, 6, 8). The ratio rn is simple to compute since the relevant Wilson loops are known at
one loop [24] to coincide with the one-loop MHV amplitudes [41]. In the special two-dimensional
kinematics all quantities can be expressed in terms of logarithms [40, 42]. Remarkably the
function r8 at one loop is none other than [39]

r8(1, 2, 3, 4|5, 6, 7, 8) = g2L(1, 3, 5, 7)L(2, 4, 6, 8) + const. (35)

It is therefore Yangian invariant under two copies of the Yangian Y (sl(2)) for the choices ~ν =
(1, 1,−1,−1) and ~̄ν = (1, 1,−1,−1) where the entries range over the odd and even values of i
respectively.

As pointed out in [39] there is a very simple relation between rn and rn−2 for a given choice
of reference square. This amounts to the fact that at one loop the Wilson loops are additive
in nature. As the simplest example one can write r10 as a sum over three contributions of the
form of r8. We will label the three contributions with a, b or ab depending on whether the loops
contain the additional points xa, xb or both. The decomposition we have is

r10 = r8,a + r8,b − r8,ab . (36)

A useful diagram to represent this is Fig. 4.

To see exactly how the functional dependence of r10 is decomposed into contributions of
the form of r8 it is very useful to use twistor variables. If we take the twistors describing the
two-dimensional ten-sided contour to be given by {W1, . . . ,W10}, then the twistors for the three
eight-sided loops of Fig. 4 are given by

Ca : {W1,W4,W5,W6,W7,W8,W9,W10} ,

Cb : {W1,W2,W3,W6,W7,W8,W9,W10} ,

Cab : {W1,W4,W3,W6,W7,W8,W9,W10} . (37)
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1 111

22

3 33 444

55

6 666

7 777
8 888 9 999

10 101010

= + −

Figure 5: The twistor space configurations of the three contributions to r10. The points xa and xb
correspond to the lines (14) and (36) respectively.

The twistor configurations of the original loop and the three reduced loops are shown in Fig. 5.
We see that the points xa and xb correspond to the twistor lines (14) and (36) respectively.

Thus we have that r10 is given by

r10(1, 2, 3, 4, 5, 6|7, 8, 9, 10) = r8(1, 4, 5, 6|7, 8, 9, 10) + r8(1, 2, 3, 6|7, 8, 9, 10)

− r8(1, 4, 3, 6|7, 8, 9, 10)

= L(1, 5, 7, 9)L(4, 6, 8, 10) + L(1, 3, 7, 9)L(2, 6, 8, 10)

− L(1, 3, 7, 9)L(4, 6, 8, 10) (38)

For both w and w variables this is exactly of the form of an invariant at five points constructed
from four-point ones as in equation (25). We thus see that r10 is invariant under two copies of
the Yangian Y (sl(2)) with representation labels ~ν = (1, 1, 1,−1,−1) and ~̄ν = (1, 1, 1,−1,−1).

Indeed quite generally we find that any definition of the reference square gives a Yangian
invariant form for the function rn. Let us take the general case in the two-dimensional kinematics
with several kinks on the top and bottom sides of the reference square (see Fig 3). As described
in [39] we can use the reduction argument step by step to reduce the number of kinks on each
side until we are left with a sum over eight-sided contributions. Then the reduction procedure
means we can write

rn(1, 2̄, . . . , i− 1|i, i+ 1, . . . , n) = rn−2(1, 4, 5, 6, . . . |i, . . . , n)

+ rn−2(1, 2, 3, 6, . . . |i, . . . , n)

− rn−2(1, 4, 3, 6, . . . |i, . . . , n) . (39)

We can apply the same mechanism to the right group until we arrive at an expression made
from many terms of the form of r8(1, p, q, i− 1|i, s, t, n) for different values of p, q, s and t. All
such terms are invariants of the two copies of the Yangian Y (sl(2)) with the representation
labels ~ν = (1, . . . , 1,−1, . . . ,−1) and similarly for ~̄ν. Here the labels νi and νi corresponding
to twistors in the left group take the value 1 while those for the right group take the value −1.
Thus we conclude the rn is always invariant under the two commuting Yangians with a natural
representation corresponding to the choice of OPE channel (i.e. choice of reference square).
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The analysis we have presented here is the first indication that the Yangian symmetry seen
at the level of the tree amplitudes (or the integrand for loop amplitudes) exhibits itself in a simple
and natural way on the functions at one loop. Of course we have only two copies of the bosonic
Yangian Y (sl(2)) in the Wilson loop problem, not the full Y (psl(4|4)), however we believe this
is a firm indication that the symmetry is still present at loop level, acting in a predictive way
and constraining the amplitudes. The fact that the conformal symmetry extends to its Yangian
is the effect of the original conformal symmetry of the scattering amplitudes. At tree level the
amplitudes can be recursively defined via the BCFW relations, with each term being invariant by
itself under the Yangian symmetry. The situation we have seen here for the Wilson loops at one
loop is similar to that at tree-level for the scattering amplitudes. We find that the relevant finite
part of the Wilson loop is defined recursively down to the octagonal loop. Each term appearing
in the recursive procedure is invariant on its own under the same representation of both copies
of the Yangian Y (sl(2)). The symmetry is expressed as certain second-order equations acting on
the ratio rn. In this respect it similar to the equations in [52] acting on individual loop integrals
of a certain type. One difference here is that the equations for rn are homogeneous while those
for the loop integrals are inhomogeneous. Furthermore the differential equations for the loop
integrals were valid in arbitrary kinematics while here we have restricted ourselves to the two-
dimensional setup. It will be very interesting to understand if the symmetry persists beyond one
loop and whether it extends beyond the two-dimensional kinematics we have examined here. In
this regard we should point out that the results we have found for the light-like Wilson loops
hold in any gauge theory since we are only looking at one-loop expressions. Of course if the
symmetry is to persist beyond one loop it would be most natural to find it in the planar limit of
the N = 4 theory.
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