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Abstract

Asymptotically flat wormhole solutions are found in the deformed Hořava-Lifshitz gravity. It

turns out that higher curvature terms can not play the role of exotic matters which are crucial to

form a traversable wormhole, and external exotic sources are still needed. In particular, the exotic

matter behaves like phantom energy if Kehagias-Sfetsos vacuum is considered outside the worm-

hole. Interestingly, the spherically symmetric setting makes the matter and the higher curvature

contribution satisfy four-dimensional conservation of energy in the covariant form.
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I. INTRODUCTION

Recently, an ultraviolet (UV) completion of general relativity, motivated by the Lifshitz

theory in the condensed matter physics [1], has been proposed by Hořava [2]. The Hořava-

Lifshitz (HL) gravity is established as a power-counting renormalizable theory at the cost of

the violation of the Lorentz symmetry, which is responsible for the fact that the HL theory

is not invariant under the full diffeomorphism group of general relativity but under its

subgroup, called the foliation-preserving diffeomorphism. However, the full diffeomorphism

is somehow recovered in the infrared (IR) limit, though a mechanism for recovering the full

diffeomorphism or the renormalization group flow is yet unsolved issue. The HL gravity has

been intensively studied in the area of black hole physics [3–12] and cosmology [13–22].

On the other hand, a spacetime wormhole is a widely known object providing a conceiv-

able method for rapid interstellar travel. In 1988, Morris and Thorne studied traversable

wormholes in a realistic manner [23]. They pointed out some problems of Schwarzschild

wormholes to be used for interstellar travel and listed the desired properties that traversable

wormholes should possess. One important property for traversable wormholes is obviously

that there should be no horizon, since it would prevent two-way travel, which is actually

a critical problem of Schwarzschild wormholes. Considering matter sources, we can get rid

of the horizon out of the geometry, though the matter which is needed to make wormholes

traversable violates (some of) the desired energy conditions. This kind of matter is called

the exotic matter.

Motivated by the fact that the higher curvature terms in HL cosmology can make negative

contributions to energy density [13], we are trying to see if they can also play the role of

exotic matters. In this respect, we will find traversable wormhole solutions in HL gravity,

considering the “detailed balance” condition (DBC) with IR modification. The deformed

HL gravity is considered because the asymptotic flatness requires the IR modification to HL

theory, which was a key to have an asymptotically flat solution known as Kehagias-Sfetsos

(KS) black hole [6]. In the deformed HL gravity, however, it turns out that the exotic sources

are still needed, and the higher curvature contributions are not exotic at all.

The present paper is organized as follows. We catch a glimpse of HL gravity and KS

vacuum in section II. Then, the energy densities and pressures are obtained for the matter

source and the higher curvature contribution in section III, where it turns out that the higher
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curvature terms can not play the role of exotic source, considering the flaring-out condition.

In section IV, some conditions for traversable wormholes are found and three types of worm-

hole solutions are examined. Finally, in section V, some comments and discussion will be

given.

II. A GLIMPSE OF HOŘAVA-LIFSHITZ GRAVITY

Considering Arnowitt-Deser-Misner (ADM) decomposition of the metric with ds2 =

−N2c2dt2 + gij(dx
i + N idt)(dxj + N jdt) [24] and an anisotropic scaling between time and

space, t → bz t and xi → b xi, the HL gravity of z = 3 with the softly broken DBC is given

by [2]

IHL =

∫

dtd3x
√
gN

[

2

κ2

(

KijK
ij − λK2

)

− κ2

2ζ4

(

Cij −
µζ2

2
Rij

)(

C ij − µζ2

2
Rij

)

+
κ2µ2

8(3λ− 1)

(

4λ− 1

4
R2 + (ω − ΛW )R + 3Λ2

W

)]

,

(1)

whereKij ≡ 1
2N

[ġij −∇iNj −∇jNi] is the extrinsic curvature at t = constant hyper-surface,

and the dot denotes the derivative with respect to time t. Here, gij, R, and ∇i are the metric,

the intrinsic curvature, and the covariant derivative in the three-dimensional hyper-surface,

respectively. In addition, Cij is the Cotton-York tensor defined by

C ij = εikℓ∇k

(

Rj
ℓ −

1

4
δjℓR

)

, (2)

κ2 is a coupling related to the Newton constant GN , and λ is an additional dimensionless

coupling constant. Note that ω represents the IR modification which is essential to have

asymptotically flat solutions. The coupling constants µ, ΛW , and ζ come from the three-

dimensional Euclidean topologically massive gravity action [25],

W = µ

∫

d3x
√
g(R− 2ΛW ) +

1

ζ2

∫

χ(Γ), (3)

where χ(Γ) represents the gravitational Chern-Simons term. Then, the scaling of couplings

can be obtained as κ2 → κ2, µ → b−1µ, ΛW → b−2ΛW , ζ → ζ and ω → b−2ω. Note that

identifying the fundamental constants with

c =
κ2

4

√

µ2(ω − ΛW )

3λ− 1
, GN =

κ2c2

32π
, Λ = − 3Λ2

W

2(ω − ΛW )
, (4)

3



the Einstein-Hilbert action can be recovered in the IR limit with λ = 1:

IEH =
c3

16πGN

∫

d4x
√
−G [R− 2Λ]

=
c2

16πGN

∫

dtd3x
√
gN

[

KijK
ij −K2 + c2 (R− 2Λ)

]

,

(5)

where G and R are the metric and curvature scalar of four-dimensional spacetime. So, we

will assume λ = 1 to keep the Einstein limit and ΛW = 0 to consider an asymptotically flat

spacetime. Then, the HL action (1) can be split by IHL = IEH + IHC for the purpose of con-

sidering IHC as contributions to matter-energy in what follows and eventually investigating

the possibility to get a traversable wormhole without any external exotic sources.

Now, varying the total action Itot = IEH + IHC + Im with a static, spherically symmetric

metric ansatz,

ds2 = −e2Φ(r)c2dt2 +
dr2

1− f(r)/r
+ r2

(

dθ2 + sin2 θdφ2
)

, (6)

the equations of motion are obtained as

4

κ2r2
e−2Φf ′ = T tt, (7)

− 4c2

κ2r2
(1− f/r)

[

f

r
− 2 (r − f) Φ′

]

= T rr, (8)

− 4c2

κ2r4

[

1

2
r(f/r)′ − r (r − f)

(

Φ′2 + Φ′′)−
(

r − f − 1

2
r2(f/r)′

)

Φ′
]

= T θθ = T φφ sin2 θ,

(9)

where T µν = T µν
HC+T µν

m ≡ −2 (δIHC/δGµν + δIm/δGµν) are the total stress-energy tensors and

the prime denotes the derivative with respect to r. Here, the higher curvature contributions

of them are derived as

T tt
HC =− κ2µ2

16c2r2
e−2Φ

(

f 2

r3

)′

, (10)

T rr
HC =− κ2µ2

16r7
(r − f)

[

f 2 + 4rf (r − f)Φ′] , (11)

T θθ
HC =T φφ

HC sin2 θ

=− κ2µ2

16r5

[

f

(

f

r2

)′

+
2f

r
(r − f)

(

Φ′2 + Φ′′ − Φ′)−
(

f

r

)′

(−2r + 3f)Φ′
]

. (12)

Note that the higher curvature terms do not contain the parameter ζ , because the above

spherically symmetric metric ansatz makes the Cotton-York tensor vanish. So, in some

sense, the static, spherically symmetric metric reduces our model to effectively HL gravity

of z = 2.
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FIG. 1: The shape of wormhole is depicted for the case of (a) f(r) = −r3ω +
√

r3(r3ω2 +B), (b)

f(r) = −r3ω +
√

r3(r3ω2 +B(r/rth)2e−
√
ω(r−rth)).

III. FLARING-OUT CONDITION AND EXOTIC MATTER

Since traversable wormholes can not be built without the external sources, T µν
m , the

flaring-out condition for the shape of wormholes is introduced to see if the external source

and the higher curvature terms are exotic or not. Following Ref. [23], to study the wormhole

geometry, we embed a slice of t = constant and θ = π/2 in an axially symmetric Euclidean

space:

ds2 =
dr2

1− f/r
+ r2dφ2 = dz2 + dr2 + r2dφ2. (13)

Then, we have a relation for the embedding function of dz/dr = ±
√

f/(r − f), and the

wormhole throat is defined as the minimum radius rth at which its embedded surface is

vertical, i.e. dz/dr diverges as seen in Fig. 1, so that f(rth) = rth. Now, a flaring-out

condition d2r/dz2 > 0 should be required near the throat:

d2r

dz2
= −r2(f/r)′

2f 2
> 0 near r = rth, (14)

so that (f/r) should be a decreasing function at least near the throat and eventually vanish

as r → ∞ due to the asymptotic flatness.

Next, the traversable wormhole is known to be accompanied by the so-called exotic mat-

ter in GR. To see if the higher curvature terms can play the role of the exotic matter, a

dimensionless function is defined as [23]

ζ ≡ τ − ρ

|ρ| . (15)
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If ζ > 0, then the energy density is less than the tension so that a certain energy con-

dition should be violated. In this manner, a matter provided by ζ > 0 is called an

exotic matter. Now, the energy density and pressure contributions are obtained from

THC
µ
ν = diag(−ρHC,−τHC, pHC, pHC) as

ρHC =− κ2µ2

16r2

(

f 2

r3

)′

, (16)

τHC =
κ2µ2

16r6
[

f 2 + 4rf (r − f) Φ′] , (17)

pHC =
r

2
[(ρHC − τHC)Φ

′ − τ ′HC]− τHC, (18)

where ρHC, τHC, and pHC are the energy density, the radial tension, and the lateral pressure,

respectively. It is obvious that the higher curvature contribution to the energy density is

positive if (f 2/r3)′ < 0. Then, the exotic function for the higher curvature contribution is

given by

ζHC =
τHC − ρHC

|ρHC|
= − 4f 2

|3f − 2rf ′|
d2r

dz2
+

4r(r − f)

|3f − 2rf ′|Φ
′. (19)

Note that the finiteness of ρHC yields (3f − 2rf ′) 6= 0, and if (1 − f/r)Φ′ → 0 near the

throat, then the flaring-out condition reads ζHC < 0 near r = rth, which means the higher

curvature terms is not exotic at least near the throat. Indeed, let Φ′ = φ(r)/(1 − f/r)n

with φ(rth) > 0, then Φ goes to −∞ as r goes down to rth for n ≥ 1, so that the lapse

function eΦ vanishes. The vanishing lapse function reports that there is a horizon, which

forbids two-way travel. Since we want to find a two-way traversable wormhole, n should be

less than one and (1− f/r)Φ′ → 0 so that the higher curvature terms can not play the role

of the exotic matter.

Actually, a wormhole could be constructed without any matter source T µν
m , though it is

not traversable. When we remove the matter source, T µν
m = 0, then the solution is obtained

as

f = −r3ω +
√

r3(r3ω2 +B), Φ = C +
1

2
ln(1− f/r), (20)

where B and C are constants of integration. Here, the asymptotic flatness yields C = 0,

and then the solution is exactly the same with the KS solution as expected [6]. Note that

the exotic function of the higher curvature terms vanishes in this case, ζHC = 0, which is a

critical case. Now, we have KS wormhole (Fig. 1(a)), but it has a horizon at the throat like

Schwarzschild wormhole in GR [23], which is why it is not traversable.
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To check whether the external source is also exotic or not, let us now replace the function

f(r) by b(r) through the relation

f(r) = −r3ω + r
√

r3(r3ω2 + b(r)) (21)

for convenience. Then, b(rth) should be positive since 1−f(rth) = 0, and the energy density

and pressure of the external source can be obtained from Tm
µ
ν = diag(−ρ,−τ, p, p) as

ρ =
κ2µ2b′

16r2
, (22)

τ =
κ2µ2

16r3

[

− 4r3ω2 − b+ 4rω
√

r(r3ω2 + b)

− 4
√

r(r3ω2 + b)
(

1 + r2ω −
√

r(r3ω2 + b)
)

Φ′
]

, (23)

p =
r

2
[(ρ− τ)Φ′ − τ ′]− τ. (24)

Note that the expressions for ρ and p are the same as those in GR up to some factor [23],

while τ has quite different expression, and the energy density is positive when b′ > 0. That

is, the function b(r) should be monotonically increasing if the energy density is assumed to

be positive. Then, the exotic function is given by

ζ =
τ − ρ

|ρ| =
4

r4
(

f + r3ω
)

[

f 2

|b′|
d2r

dz2
− r(r − f)

|b′| Φ′
]

. (25)

Note that the flaring-out condition tells us that the external source is exotic near the throat.

In other words, the external exotic sources are still needed to make wormholes traversable

in our deformed HL gravity.

IV. CONSTRUCTING A TRAVERSABLE WORMHOLE

As mentioned in the previous section, a traversable wormhole should not possess a hori-

zon. To find a condition for it, let us introduce a new radial coordinate ℓ:

dℓ = ± dr
√

1− f/r
(26)

with ℓ = 0 at the throat. Note that |ℓ(r)| reads the proper distance from the throat to

r, and the throat (ℓ = 0) connects the upper spacetime (ℓ > 0) with the lower spacetime

(ℓ < 0). Then, the line element is written as

ds2 = −e2Φc2dt2 + dℓ2 + r2(ℓ)
(

dθ2 + sin2 θdφ2
)

(27)
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with r(ℓ) ≥ r(ℓ = 0) = rth by definition. Now, it is explicitly seen that there should be a

horizon when e2Φ → 0 at r = rh ≥ rth. In other words, all traversable wormhole should have

a finite Φ(r) for all r ≥ rth.

In addition, we want to find an asymptotically flat wormhole solution; however, if b(r) &

r3ω2 for large r, the asymptotic flatness cannot be achieved. Indeed, if b(r) ≫ r3ω2, then

f/r ≈ 1 −
√

rb(r) + O(r2ω2), and if b(r) ≈ αr3ω2 [1 + ǫ(r)] with a constant α 6= 0 and a

function ǫ(r → ∞) → 0, then f/r ≈ 1 − (
√
1 + α − 1)r2ω [1 +O(ǫ(r))]. In both cases, the

function f/r diverges, and we see that the asymptotic flatness is guaranteed only for the case

of b(r) ≪ r3ω2 at large r. Now, we arrive the final condition, b(r) ≪ rω for large r, from

the asymptotic flatness, since the function f/r approximates to f/r ≈ b(r)/2rω. In what

follows, three types of asymptotically flat, traversable wormhole solutions are suggested.

First, we can consider a solution with an exotic source falling off rapidly as r grows to

infinity. We choose b(r) = B(r/rth)
2e−

√
ω(r−rth) and Φ(r) = 0, then we have the energy

density of the exotic source as follows:

ρ =
κ2µ2B(2−√

ωr)

16r2thr
e−

√
ω(r−rth). (28)

Note that the energy density of the exotic matter decays exponentially to zero as desired,

but it becomes (small) negative for r > 2/
√
ω, though it may be positive near the throat

(see Fig. 2(a)). This kind of wormhole require an exotic matter spreading out all the spaces,

which seems more or less unphysical. Next, we consider a wormhole solution with an exotic

source confined in a region near the throat and a KS solution in the outside. For this

configuration, we try b(r) = B [1 + sin(π/16) (r/rth − 1)] and Φ(r) = (1/2) ln(1−f(r0)/r0)+

(1 − r/r0)(r0f
′(r0) − f(r0))/2(r0 − f(r0)) for r ≤ r0 ≡ 9rth and b(r) = 2B and Φ =

(1/2) ln(1− f(r)/r) for r > r0, then the energy density has the following form:

ρ =











κ2µ2πB

256rthr2
cos

π

16

(

r

rth
− 1

)

, for r ≤ r0,

0, for r > r0.

(29)

The energy density is positive and confined in a sphere of the radius r0, and the KS solution

outside the sphere tells that ρ = τ = 0. Finally, we consider a wormhole solution with an

exotic source confined in a region near the throat and a Minkowski vacuum in the outside.

For this case, b(r) = B [1− sin(π/16) (r/rth − 1)] for r ≤ r0 and b(r) = 0 for r > r0 and

8



rth

r

-1

1

Ρ, Ζ

(a) Exponential case

rth r0

r

-1

1

Ρ, Ζ

(b) WH + KS solution

rth r0

r
-1

1

Ρ, Ζ

(c) WH + Minkowski vacuum

FIG. 2: The exotic functions (solid lines) and the energy densities (dashed lines) of the exotic

source (thick lines) and the higher curvature contribution (thin lines) are plotted for the case

of (a) b(r) = B(r/rth)
2e−

√
ω(r−rth) and Φ(r) = 0, (b) b(r) = B [1 + sin(π/16) (r/rth − 1)] and

Φ(r) = (1/2) ln(1 − f(r0)/r0) + (1 − r/r0)(r0f
′(r0) − f(r0))/2(r0 − f(r0)) for r ≤ r0 ≡ 9rth and

b(r) = 2B and Φ = (1/2) ln(1− f(r)/r) for r > r0, and (c) b(r) = B [1− sin(π/16) (r/rth − 1)] for

r ≤ r0 and b(r) = 0 for r > r0 and Φ(r) = 0.

Φ(r) = 0 are considered, then the density is given by

ρ =











− κ2µ2πB

256rthr2
cos

π

16

(

r

rth
− 1

)

, for r ≤ r0,

0, for r > r0.

(30)

The confined exotic energy is negative, and the outside region is the Minkowski vacuum

with ρ = τ = ρHC = τHC = 0.

It is interesting to note that the exotic function of the higher curvature contribution is

vanishing as r grows to r0 in the wormhole surrounded by KS vacuum (Fig. 2(b)), while

it becomes −1 as r grows to the infinity in the exponential case (Fig. 2(a)) or to r0 in the
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wormhole surrounded by Minkowski vacuum (Fig. 2(c)). Since ρHC > 0 for all three cases,

we can rewrite the exotic function as ζHC = −1 + τHC/ρHC. Then, the vanishing exotic

function in Fig. 2(b) tells us that −τHC/ρHC = prHC/ρHC = −1, which is similar to the

equation of state of the vacuum energy in the cosmology, and ζHC → −1 in Fig. 2(a) and

(c) reflects −τHC/ρHC = prHC/ρHC → 0, which becomes the equation of state of the (dark)

matter. Similarly, the exotic function of the exotic source can be written as ζ = 1− τ/ρ for

(a) and (c) and ζ = −1 + τ/ρ for (b). Then, the equation of state becomes pr/ρ → 0, since

ζ → 1 for (a) and (c), and pr/ρ → −1.5, since ζ → 0.5 for (b). Note that the equation of

state for (b) implies that the exotic matter is a phantom energy in this case.

V. DISCUSSION

We have tried to build an asymptotically flat wormhole in the deformed HL gravity.

First of all, the KS wormhole can be constructed without any exotic source, but it turns

out to be non-traversable since it has a horizon right at the throat. Requiring the absence

of horizon, then, the exotic source is crucial to make a traversable wormhole at least in the

deformed HL theory, since it can not be replaced by the higher curvature terms. If DBC is

relaxed, however, the higher curvature contributions might play the role of the exotic source,

because it has been seen that the early acceleration of the universe can be obtained without

any inflaton fields in HL cosmology [21].

Otherwise, the analytic continuation might be considered to resolve this issue. Taking

into account µ → iµ and ζ2 → −iζ2 [3], the potential terms in the action (1) take the

opposite sign, and so do the energy density (22) and the tension (23). At first sight, it

seems that the matter source is no more exotic and the higher curvature terms play the role

of the exotic matter with this analytic continuation. However, the relation of the speed of

light (4) constrains ω < 0, so that f/r does not vanish in the asymptotic region; instead,

f/r ≈ −2r2ω and grr = 1/(1 − f/r) becomes large negative for r ≫ 1/
√
ω. To make grr

positive, Eq. (21) can be modified to f = −r3ω −
√

r3[r3ω2 + b(r)], which approximates to

f ≈ b(r)/2ω. Then, it has Schwarzschild limit with b(r → ∞) = 4ωM < 0. After some

tedious calculations, however, the exotic function is obtained as

ζ = − 4

r4
(

f + r3ω
)

[

f 2

|b′|
d2r

dz2
− r(r − f)

|b′| Φ′
]

. (31)
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Note that (f + r3ω) < 0, so the analyses on the exotic behavior are exactly same as those

in section III, i.e. the matter source is still exotic. Further study is needed in this issue.

Next, we have constructed three sorts of traversable wormholes: one is the wormhole with

an exponentially decaying exotic source in the radial direction, another is the wormhole with

an exotic source confined in the middle of the KS vacuum, and the other is the wormhole

with an exotic source confined in the middle of the Minkowski vacuum. Interestingly, in the

second case, the exotic source and the higher curvature contributions, respectively, behave

like the phantom energy and the dark energy near the boundary of the confined region, while

in the first and third cases, both the exotic source and the higher curvature contributions

behave like the (dark) matter in the boundary.

The final comment is in order. It is interesting to note that a spherically symmetric matter

distribution and the corresponding higher curvature contribution satisfy four-dimensional

covariant form of energy conservation in the deformed HL gravity, ∇(4)
µ T µν

m = ∇(4)
µ T µν

HC =

0, though it is obvious that the total energy satisfies the conservation of energy in the

covariant form in four dimensions, ∇(4)
µ T µν = 0, because the left-hand-sides of the equations

of motion (7)–(9) are the same as the four-dimensional Einstein tensor, Rµν − (1/2)GµνR,

up to the factor 4/κ2. This behavior is not supposed to be seen in HL theory if DBC is not

considered at all. However, we should not say that it is due to DBC. The general covariance

in matter-energy conservation deserves further investigations.
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