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More than thirty years passed since the first discoveries of various aspects of integra-
bility of the symmetry reduced vacuum Einstein equations and electrovacuum Einstein
- Maxwell equations were made and gave rise to constructions of powerful solution gen-
erating methods for these equations. In the subsequent papers, the inverse scattering
approach and soliton generating techniques, Bäcklund and symmetry transformations,
formulations of auxiliary Riemann-Hilbert or homogeneous Hilbert problems and vari-
ous linear integral equation methods have been developed in detail and found different
interesting applications. Recently many efforts of different authors were aimed at finding
of generalizations of these solution generating methods to various (symmetry reduced)
gravity, string gravity and supergravity models in four and higher dimensions. However,

in some cases it occurred that even after the integrability of a system was evidenced,
some difficulties arise which do not allow the authors to develop some effective meth-
ods for constructing of solutions. The present survey includes some remarks concerning
the history of discoveries of some of the well known solution generating methods for
these equations, brief descriptions of various approaches and their scopes as well as some
comments concerning the possible difficulties of generalizations of various approaches to
more complicate gravity models and possible ways for avoiding these difficulties.
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Discovery of Integrability of Einstein’s field Equations a)

In mathematical physics, the period since the middle of 60th years of the previous

century was marked by a wonderful discovery of existence of very interesting class

of nonlinear partial differential equations which were called completely integrable

and which admit various powerful solution generating methods for explicit construc-

tion of infinite hierarchies of solutions with arbitrary large number of parameters

(e.g., such as multi-soliton and finite-gap solutions), constructing some nonlinear

superpositions of fields (solitons interacting with arbitrary backgrounds), solving

various initial and boundary value problems. It was the more important because

two-dimensional reductions of many fundamental equations from different areas of

mathematical and theoretical physics were found to belong to this class.b )

a) It is necessary to clarify that this integrability was discovered only for the ”symmetry reduced”
Einstein’s field equations, what means that these equations are considered in D = 4 space-times

with two commuting isometries (or, more generally, in space-times of D ≥ 4 dimensions with
D − 2 commuting isometries) such that one of them is time-like (the ”elliptic” reduction, e.g.,
stationary axisymmetric fields) or all isometries are space-like (”hyperbolic” reduction, e.g., plane,
cylindrical or other types of waves, cosmological models.) In this case, it is assumed also that all
field components and their potentials depend only on two of D space-time coordinates.
b) For the readers who are not closely familiar with this context, it seems useful to clarify, avoiding
rigorous definitions, that the notion of (complete) integrability for some nonlinear system of partial

http://arxiv.org/abs/1011.3846v1
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Integrability conjectures

Further progress in the theory of completely integrable nonlinear equations and

of its applications at the beginning of 70th years of 20th century gave rise to

obvious hopes and resonable expectations that the Einstein’s field equations at

least for the simplest cases of pure vacuum or electrovacuum space-times with

Abelian two - dimensional isometry group (stationary axisymmetric fields, plane

waves, etc) can happen to be also integrable. Thus in 1972 Geroch1 conjectured

that vacuum Einstein equations with two commuting Killing vector fields admit an

infinite-dimensionsl group of internal symmetries which allows to obtain any solu-

tion starting from Minkowski space-time. Later, in a series of papers Kinnersley2

and then Kinnersley and Chitre3−5 studied the internal symmetries of stationary

axisymmetric Einstein - Maxwell equations. These authors descovered the existence

of an infinite dimensional algebra of internal symmetries of these equations and

constructed its representation in terms of infinite hierarchies of potentials which

characterize every solution. For vacuum case, they had found in a closed form some

elements of the corresponding infinite dimensional group of symmetry transforma-

tions. It is worth to mention also a wonderful finding in the last mentioned paper of

differential equations does not mean necessarily that the solution can be found explicitly by a direct
integration. In general, the integrability of a nonlinear system of partial differential equations means
that it possess very rich internal structure such that it admits an infinite set of conservation laws,
infinite dimensional algebra of internal symmetries, a representation in terms of equivalent linear
(spectral) problem (e.g., Lax-pairs, AKNS or Zakharov - Shabat U-V linear systems), various
”dressing” procedures, such as, e.g., soliton or Bäcklund transformations acting on the whole space
of solutions, the so called ”prolongation structures” as well as many other features. Moreover,
in the infinite-dimensional space of solutions of an integrable system, it occurs possible to find
such transformation of ”coordinates” (i.e. of the functional parameters which characterize every
solution) that in these new ”coordinates” the transformed nonlinear equations can be trivially
solved. Thus, the original nonlinear problem transforms into the problem of constructing such
”coordinate transformation” – the so called ”direct” problem (to find such ”coordinates” for every
given solution) and the ”inverse” problem (to find the solution for any given values of these new
”coordinates”). For various known integrable systems the functional parameters which can be
chosen as such useful new ”coordinates” can possess different character: these are, for example,
the scattering data as functions of the spectral parameter in the well known inverse scattering
transform (called also Inverse Scattering Method or simply ISM), the Riemann - Hilbert data – a
set of arbitrarily chosen functions on the contour on the plane of auxiliary free complex (”spectral”)
parameter in various formulations of equivalent Riemann - Hilbert problems, the monodromy data
for the fundamental solution of associated linear system as functions of the ”spectral” parameter
in the monodromy transform approach, etc. It is remarkable, that in all cases, this allows to
reduce the problem of solution of the original nonlinear equations to solution of the direct and
inverse problems of these transforms which imply to solve the linear equations only: for solution
of the direct problem one has to solve an overdetermined linear system of differential equations
with a free ”spectral” parameter, while the solution of the inverse problem can be reduced to
solution of some linear integral equations (such as Gelfand - Levitan - Marchenko equation in the
case of traditional formulation of ISM, or some systems of linear singular integral equations or
(quasi-) Fredholm linear integral equations in other cases. These ”coordinate transforms” extend
considerably a variety of mathematical tools which can be used for solution of given nonlinear

system and allow, in particular, to develop different effective methods for constructing infinite
hierarchies of solutions, to perform asymptotical analysis of solutions and to construct solutions
for various initial and boundary value problems.
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Kinnersley and Chitre5 where these authors observed (a) that the infinite hierarchy

of potentials which correspond to a given stationary axisymmetric solution of vac-

uum Einstein equations admits a 2× 2 - matrix generating function, depending on

Weyl coordinates and a free complex parameter and (b) that this generating func-

tion should satisfy some system of linear partial differential equations. However, in

the papers3−5 the authors concentrated on the group-theoretical approach and the

question whether the linear system for generating function found in5 can play the

role of associated spectral problem did not arose in these papers.

In less than two weeks after the paper5 of Kinnersley and Chitre was submitted

for publication, another paper of a different author was submitted to another jour-

nal. It was the paper6 of Maison with the title ”Are the stationary, axially symmetric

Einstein equations completely integrable?”, where the author, using completely dif-

ferent approach, constructed for vacuum equations some ”linear eigenvalue problem

in the spirit of Lax” and noticed that this ”nourish some hope that a method similar

to the inverse-scattering method may be developed” and that this would allow to

reduce the solution of these nonlinear equations to a sequence of linear problems.

The papers mentioned above concluded the period of integrability conjectures,

because very soon after these papers were submitted and before their publication,

Belinski and Zakharov submitted a paper where the integrability of vacuum Einstein

equations with two commuting isometries was proved and began ”to work”.

Discovery of integrability of vacuum Einstein equations

In their well known paper, Belinski and Zakharov7 constructed a new overdeter-

mined linear system with a free complex (”spectral”) parameter whose integrability

conditions are equivalent to the symmetry reduced vacuum Einstein equations. The

conditions of reality and symmetry of metric coefficients were reformulated as the

explicit constraints (”reduction conditions”) on the space of solutions of this as-

sociated linear system. Thus the original nonlinear equations werereformulated in

terms of equivalent spectral problem. Using this spectral problem, these authors

(a) discovered the existence of gravitational solitons and developed a ”dressing

method” for constructing of N solitons on any chosen background;

(b) reformulated the spectral problem in terms of a classical matrix Riemann prob-

lem, i.e. the problem of finding of two matrix functions of one complex variable

which are analytical respectively inside and outside of some closed contour on

the complex (spectral) plane and which satisfy given matching conditions on

the contour. These matching conditions include some functional parameters

(”the contour data”) which characterize any particular solution of (symmetry

reduced) vacuum Einstein equations;

(c) they had transformed also the constructed Riemann problem to a system of

linear singular integral equations of a Cauchy type such that every particular

solution of these integral equations determines some solution of (symmetry re-

duced) vacuum Einstein equations and vise versa.
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Thus, in this paper, the first effective algorithm for constrcuting of infinite hierar-

chies of exact (N-soliton) solutions on arbitrary chosen background was suggested

and the main directions for further developments were discovered and outlined.

Many ”languages” of integrability

Many different mathematical structures, formalisms and mathematical languages

which can be associated with a completely integrable system, may give rise to

development of different approaches to its analysis and lead to some new ways for

its solution. For vacuum Einstein equations a number of different approaches began

to develop then independently by different authors. Some of these approaches were

generalized to electrovacuum Einstein - Maxwell euqations which also occur to have

integrable structure similar in many aspects to that of vacuum equations. Below

we mention only the earliest publications in these directions, concentrating in this

section on vacuum and electrovacuum cases only.

Inverse scattering method

Belinski and Zakharov soliton generating algorithm7 provides the explicit expres-

sions for all metric components besides the coefficient in the conformally flat part of

the metric. This conformal factor for vacuum solitons was found in8 in an explicit

(determinant) form. All other metric components of vacuum 2N-soliton solutionc)

also can be presented in a determinant form9 which includes only three determinants

of 2N × 2N - matrices.

For electrovacuum Einstein-Maxwell equations the Belinski and Zakharov ap-

proach did not admit a direct generalization.d) Therefore, to apply the inverse scat-

tering ideas for this case it was necessary to find some new form of this approach.

The spectral problem for the symmetry reduced Einstein - Maxwell equations and

the corresponding electrovacuum N -soliton solutions on arbitrary electrovacuum

background were constructed in11,12. This spectral problem, being restricted to vac-

uum case and compared with Belinski and Zakharov one, shows essentially different

structure. In particular, it does not include differentiation with respect to a spectral

parameter and the plane of the spectral parameter introduced in7 (”λ-plane”) cov-

ers twice the spectral plane introduced in11,12 (”w-plane”). The electrovacuum soli-

tons11,12 necessary have complex (but not real) poles and the vacuum part of these

N -soliton solutions (generated on a vacuum background) coincide with 2N -soliton

solutions of Belinski and Zakharov generated on the same vacuum background with

N pairs of complex conjugated poles. The electrovacuum generalizations of Belinski

c) In Belinski and Zakharov technique, the signature of metrics of soliton solutions generating on
the background of the Lorenz signature will be also Lorenz only if the number of solitons is even.
d) As it was shown in10, the Belinski and Zakharov linear system (considered not for 2 × 2 real

symmetric, but for Hermitian 3×3-matrices) can be used as spectral problem for symmetry reduced
Einstein - Maxwell equations, however, an appropriate reduction conditions providing equivalence
to Einstein - Maxwell equations have not been found in an appropriate form.
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and Zakharov solitons with real poles do not arise in this algorithm, however, for

appropriate choice of soliton parameters, such solutions arise as trivial analytical

continuations of solitons with complex poles in the space of their parameters.

Bäcklund and symmetry transformations

A few months after the Belinski and Zakharov paper was submitted, Harrison (who

was already acquainted with Belinski and Zakharov approach and cited this in his

paper), submitted a paper13 where he used a general approach of Estabrook and

Wahlquist14 based on the construction of the so called “prolongation structures”

for nonlinear evolution equations. In this paper, Harrison constructed the Bäcklund

transformations for vacuum Ernst equations. It is worth to mention here that a nice

technical improvement of this formalism based on the use of the so called constant

coefficient ideals (“CC-ideals”) of one-forms was suggested by Harrison in a later

paper15, where he presented also a generalization of his construction of vacuum

Bäcklund transformations to electrovacuum Einstein - Maxwell fields.

Very soon after the paper13 was submitted, but before its publication, Neuge-

bauer submitted a paper16 where he also constructed Bäcklund transformations for

vacuum Ernst equations, using different approach based on subsequent application

of simple non-commuting groups of transformation. In the subsequent papers17,18,

this approach was developed in more details and also gave rise to generation of so-

lutions with arbitrary number of independent parameters. In particular, for N -fold

Bäcklund transformation the generated Ernst potential was expressed in terms of

two determinants of (2N + 1)× (2N + 1) order.e)

In the papers of Julia19,20 the infinite dimensional symmetry transformations of

Geroch and Kinnersley were recognized as Kac-Moody symmetries. These papers

included also a reach material which provides much wider vision of the subject

including the enlargement of the symmetry groups, the structure of generalized σ-

models and supergravities in various dimensions. In the paper of Breitenlohner and

Maison21 the structure of the corresponding infinite-dimensional Geroch group was

described in detail.

Integral equation methods for effecting Kinnersley-Chitre transformations

A few months after the first of the above mentioned papers were published, Hauser

and Ernst suggested the integral equation method for exponentiating the Kinnersley

and Chitre infinitesimal symmetries to finite solution generating transformations,f)

e)It can be shown that these solution generating transformations coincide actually with the soliton
generating transformations constructed by Belinski and Zakharov.
f) Though this approach was constructed in essentially different context of Geroch and Kinnesrley
and Chitre symmetry transformations, the basic ideas used there for reformulation of the problem

in terms of a homogeneous Hilbert problem and corresponding singular integral equations seem to
be very close to those used by Belinski and Zakharov in their constrcution of a matrix Riemann
problem and linear integral equations in the framework of their inverse scattering approach.
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where, in particular,

⋄ it was found22 that a matrix generating function (“F-potential”) constructed

earlier by Kinnersley and Chitre5 for an infinite hierarchy of potentials asso-

ciated with any particular vacuum solution, should satisfy some 2 × 2-matrix

linear singular integral equation of a Cauchy type. The matrix kernel of this

integral equation depends on the F-potential of a chosen “seed” solution and on

some set of coordinate-independent functional parameters which characterize

any symmetry transformation. Given seed solution and given values of these

functional parameters, the solution of this matrix integral equation determines

the generating function (F-potential) of the Kinnersley-Chitre hierarchy of po-

tentials associated with the transformed solution.

⋄ In the next paper23, the authors constructed 3× 3-matrix generalization of the

F-potential which characterizes every stationary axisymmetric electrovacuum

solution and found a linear differential equation for this F-potential. In the same

paper23, these authors presented the corresponding electrovacuum 3× 3-matrix

generalization of the 2× 2-matrix linear singular integral equation constructed

in22 for pure vacuum case. Besides that, in this paper the authors suggested

another derivation of their integral equation for the F-potential which is not

based on infinitesimal symmetries and Kinnersley-Chitre infinite hierarchies of

potentials.

⋄ In24,25, the authors presented a more detail development of their linear singular

integral equation method and reduce the problem of constructing the symme-

try transformations of the so called Geroch group to a classical problem for

analytical functions of one complex variable – the matrix homogeneous Hilbert

problem (2 × 2-matrix problem for vacuum case or 3 × 3-matrix problem for

electrovacuum case).

⋄ In the subsequent papers26,27, Hauser and Ernst expressed explicitly the func-

tional parameters of the symmetry transformation which maps any given sta-

tionary axisymmetric vacuum or electrovacuum solution into any other one in

terms of the values of the Ernst potentials of these seed and transformed solu-

tions on some regular part of the axis of symmetry and proved in this way the

Geroch conjecture that any of such solutions can be generated by a symmetry

transformation from, e.g., the Minkowski space-time.g)

g) We note here that in the Hauser and Ernst papers24−26, many mathematical details of the
construction of the homogeneous Hilbert problem and of the derivation of their integral equation
method were elaborated in many interesting and useful details. However, in some other points
the authors used (clearly formulated) “working hypothesis”, which proof was not known to the
authors. These concerned, first of all, the zero values of the component indices of the constructed
homogeneous Hilbert problem and therefore, the existence of the solution of the derived singular
integral equations for any choice of the seed solution and transformation parameters. Another

such point concerns the existence of the gauges which minimize the F-potential singularities on
the plane of auxiliary complex parameter. It seems that a conjecture of existence of such gauges
restricts the class of stationary axisymmetric vacuum and electrovacuum fields by the solutions
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⋄ In23 it was shown also by concrete examples that if the functional parameters

in the kernel of the integral equation are chosen as rational functions of a

complex parameter, the integral equation can be solved analytically and the

corresponding transformation of the seed solution can be found explicitly.

A few years later, Sibgatullin29,30 suggested a modification of the Hauser and

Ernst integral equation method which facilitated considerably its application to

calculation of particular solutions if the “input data” for a constructing solution are

the values of its Ernst potentials on the axis of symmetry given as rational functions

of the canonical Weyl coordinate z along the axis. For this it was suggested

(i) to refuse for simplicity of the idea to have in the kernel of the integral equation

an arbitrary seed and to restrict a consideration by the Minkowski space-time as

the seed solution and

(ii) to express (using the way identical to that described in Hauser and Ernst pa-

pers26,27) the Geroch group functional parameters in the kernel of the Hauser

and Ernst matrix integral equation in terms of the input data – the axis values

of the Ernst potentials of the transformed solution.

With such modification, the Hauser and Ernst matrix integral equation (restricted

to the Minkowski seed) can be reduced to a scalar integral equation for one unknown

function, supplied with a “normalization condition” also imposed on this function.h)

Choosing some rational values of the Ernst potentials on a regular part of the axis

of symmetry, assuming an appropriate rational structure of the desirable solution

of the integral equation on the complex plane and using the well known properties

of Cauchy principal vale integrals and the theory of residues, the integral equation

can be reduced to an algebraic system. It is clear that such algebraic system is

much simpler for the case of scalar integral equation derived by Sibgatullin than for

the original matrix integral equation of Hauser and Ernst. Accordingly, in the last

two decades, this integral equation was actively exploited by Sibgatullin and his

co-authors for calculation of particular examples of asymptotically flat stationary

whose domains include some regular part of the axis of symmetry. This conjecture looks physically
very natural for stationary axisymmetric fields, but it is not available for a similar class of fields
with two commuting space-like Killing vectors, such as, for example, colliding plane waves or
cosmological models in which we have respectively, instead of the axis of symmetry, the focusing
or initial curvature singularities.
h)Derivation of the integral equation given in29,30 by Sibgatullin had not been supplied by any
further development of the theory of integrability of the Ernst equations and therefore, its appli-
cability also restricted by the same “working hypothesis” used by Hauser and Ernst for derivation
of their matrix integral equation (see the comments in previous footnote). Moreover, such input
data for the solutions as the values of the Ernst potentials on some regular part of the axis of
symmetry outside the sources, typically can not be defined in advance, directly from some physi-

cally motivated conditions. Besides that, in this case, all solutions are defined only in the domains
which must include some regular part of the axis of symmetry and this clearly do not allow to
begin with the boundary conditions given anywhere outside the axis.
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axisymmetric vacuum and electrovacuum solutions with rational axis data.i)

Monodromy transform approach

Similarly to the inverse scattering method, the monodromy transform approach pre-

sented in31,32 (for the proofs and outlines see33−39 ) also starts from a formulation

of some “spectral problem” – an overdetermined linear system with a complex pa-

rameter supplied with some constraints which provide an equivalence of the entire

spectral problem to the Einstein’s field equations.

The key point of this approach is a definition of the monodromy data as a set of

coordinate-independent functions of a complex parameter which characterize any

local solutionj) of a given integrable reduction of Einstein’s field equations (e.g., the

symmetry reduced vacuum Einstein equations or electrovacuum Einstein - Maxwell

field equations). For a specific spectral problemk) used in this approach, the ap-

propriately normalized fundamental solution (which is equal to the unit matrix at

some chosen initial or “reference” space-time point) possess in general four singular

points on the spectral plane. These are algebraic branch points of the orders 1/2

(two points) and −1/2 (other two points). To select a holomorphic branch for any

normalized fundamental solution, we always choose the cut on the spectral plane

i) It is worthy to note that the soliton generating techniques (for vacuum7,8 as well as for elec-
trovacuum11 ,12) which had been developed much earlier, being applied to a Minkowski seed, also
give numerous stationary axisymmetric asymptotically flat solutions with rational axis data. It
is not difficult to show that at least in vacuum case, most of the solutions calculated from the
integral equations (or even all of them) can be identified as the particular cases of soliton solutions
or are the limits of the soliton solutions, as in the case of multiple poles. The situation with elec-
trovacuum solutions may seem to be not so simple because, as it was already mentioned above,
a direct application of the electrovacuum soliton generating technique11 ,12 do not lead directly
to solitons with real poles on arbitrary chosen background (i.e. to electrovacuum generalization
of Belinski and Zakharov vacuum solitons with real poles). However, it is obvious, that all such
solitons on the Minkowski background can be constructed as analytical continuations of solitons
with complex conjugated poles in the space of their (appropriately chosen) parameters or as the
limiting cases of these solutions, as in the case of multiple poles. This analytical continuation is
completely similar to the well known analytical continuation which connects the “underextreme”
part of the family of Kerr-Newman solutions representing charged rotating black holes with the
“overextreme” part of this family representing naked singularities. However, it was natural to ex-
pect that various integral equation methods may find other interesting applications in different
studies of solutions of integrable reduction of Einstein and Einstein - Maxwell equations and these
expectations were actually confirmed by the subsequent developments.
j) The “local solution” means that all metric components and field potentials are considered in
some neighborhood of a given space-time point where these are analytical functions of coordinates.
The “space of local solutions” at a given point means a set of all possible local solutions (each
with its own local domain) at the same “reference” point where all field variables as well as the

fundamental solution of the spectral problem are normalized by some standard values.
k) A construction of a class of possible associated linear systems with spectral parameters was
suggested in11,12. The simplest representative of these systems used in31 differs only slightly
from the vacuum linear system for generating function of Kinnersley and Chitre hierarchies of

potentials constructed in5 and generalized later for electrovacuum fields by Hauser and Ernst23.
An appropriate set of additional conditions providing equivalence of the entire spectral problem
to the field equations was found in31.
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which consists of two disconnected parts (cuts) joining the pairs of branch points

with opposite orders of branching l). On both parts of this compound cut, the holo-

morphic branch of the fundamental solution of our spectral problem possess some

discontinuities (“jumps”) which can be described by two coordinate-independent

monodromy matrices (one matrix for each cut) whose components are functions of

the spectral parameter only. These matrices determine the linear transformations

of the fundamental solution after its analytical continuations along the paths each

surrounding one of the endpoint singularities and joining the corresponding points

on different edges of the cut. In the general case, the structures of these monodromy

matrices are shown to be highly constrained (each matrix is equal to its inverse and

it is a unit matrix plus a matrix of the rank equal to 1). Certain complete set of

independent components of these matrices are called the monodromy data. For any

vacuum solution the monodromy data consists of two functions of the spectral pa-

rameter: one of them should be holomorphic on one cut and another one - on the

other, while for any electrovacuum solution we have two pairs of such functions.m)

This approach possess a number of important features, such as, in particular,

⋄ Generality: this approach is available both for hyperbolic as well as for elliptic

reductions of Einstein’s field equations and it does not need any additional

“working hypothesis” besides the basic space-time symmetry ansatzn).

l) This structure of the cut which consists of two disconnected parts is available in the most general
case, for any solution, and this is the first important difference of this approach with the approach
of Hauser and Ernst, who assumed that a fundamental solution possess only two singularities and
therefore, the cut can consist of only one curve joining these two singularities. This “minimization”

of the number of complex plane singularities can not be introduced in general and it obviously
restricts the class of solutions and the domains where the solutions are defined (see one of the
previous footnotes given to the discussion of the integral equation methods).
m) If for stationary axisymmetric fields we impose the condition of regularity of the axis of symme-
try, it can be shown that the monodromy data functions in pairs should be analytical continuations
of each other, i.e. we shall have only one function which characterize any vacuum solution and
two functions which characterize any electrovacuum solution near the regular part of the axis of
symmetry. These specific kind of data have been called as analytically matched ones. In these case
these data can be simply related to the values of the Ernst potentials on this regular part of the
symmetry axis and our description of the fields for such data can be related directly to the Hauser
and Ernst approach (and therefore, with the Sibgatullin reduction also), where the regularity axis
condition eventually occurred as an underlying assumption. However, in contrast to the axis data,
the monodromy data functions can be determined also for solutions, which do not satisfy the reg-
ularity axis condition and therefore, which can not be considered in the Hauser-Ernst-Sibgatullin
approach (e.g., the Levi-Civita and van Stockum solutions in stationary axisymmetric case, or
various homogeneous or partially inhomogeneous singular cosmological solutions such as Kazner
solution, or solutions for colliding plane waves such as, for example, Szekeres, Khan and Penrose or
Nutku and Halil solutions as well as many others). However, even in stationary axisymmetric case,
the use of the monodromy data functions instead of the axis data allows to be not confined to the
local region near the axis and to calculate (in principle, at least) the monodromy data functions
from some boundary data given not necessarily on the axis.
n)This ansatz was described in the first footnote in this paper.
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⋄ The monodromy data as “coordinates” in the space of local solutions. Similarly

to the scattering data in the inverse scattering transform, the monodromy data

constitute a free space of functional parameters which play the role of “coordi-

nates” in the whole infinite-dimensional space of local solutions.

⋄ Direct and inverse problems of the monodromy transform. For construction of

the “coordinate” transformation in the space of solutions, we have to solve the

“direct” and “inverse” problems which admit in general the unique solutions:

• Direct problem: to find the monodromy data for any given solution. For

solution of this problem it is necessary to find the fundamental solution

of the associated linear system with a spectral parameter and with well

defined initial conditions at a chosen reference point.o)

• Inverse problem: given monodromy data, to find the field components and

potentials of the corresponding solution. The solution of this problem re-

duces to solution of a decoupled system of linear singular integral equations

of the Cauchy type on some compound cut on the spectral plane.p) The

coefficients of these integral equations possess simple algebraic expressions

in terms of the monodromy data functions. In terms of solution of these

integral equations, all field components and potentials can be calculated

in quadratures.

⋄ The linear algorithm for solution of initial and boundary value problems. To

determine the monodromy data functions, we do not need to know the corre-

sponding solution completely, but its initial or boundary data only. This allows

(in principle) to reduce the solution of various nonlinear boundary value prob-

lems as well as the Cauchy and characteristic initial value problems to the

following three steps which represent pure linear problems33,35:

(i) to find the monodromy data for the fundamental solution of the linear

ordinary differential equations along the boundary with the coefficients

depending on the boundary data;

(ii) with this monodromy data, to find the solution of the basic system of linear

singular integral equations solving the inverse problem of the monodromy

transform;

(iii) to calculate the quadratures which determine the field components and

o)Though a fundamental solution of the associated linear system always exists for any particular
solution of the field equations, it is clear that this solution (and therefore, the monodromy data
functions) can be found explicitly not for any choice of the solution, but for some specific cases
only. That is why we say that given a solution, the monodromy data can be found at least, in
principle. However, for many known cases this can be done explicitly.
p)The theory of such integral equations is well known. Using the standard method of analysis
of such equations, it was shown that at least in some small enough region near the space-time
reference point (where the fundamental solution and field components were normalized by some

standard values), for any given monodromy data functions the solution of this system of linear
singular integral equations always exists and is unique, what proves the existence and uniqueness
of the solution of the inverse problem of the monodromy transform.
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potentials in terms of solution of these integral equations.

⋄ Infinite hierarchies of exact solutions: for large classes of monodromy data cho-

sen as any rational functions of the spectral parameter, the inverse problem of

the monodromy transform can be solved and an infinite hierarchies of solutions

with any number of free parameters can be found explicitly (see33,40 for analyt-

ically matched rational monodromy data and 41 for analytically not matched

rational monodromy data).

⋄ Monodromy data and the solution generating methods: various soliton generat-

ing transformations as well as other known solution generating methods can

be described conveniently in terms of the corresponding transformation of the

monodromy data which can be given explicitly even in general form, i.e. without

a preliminary specification of the background (seed) solution37.

Various features of the monodromy transform approach mentioned above can give

rise to its diverse applications which examples can be found in40−45.

Later developments for vacuum and electrovacuum fields

In the subsequent years, a number of more specific developments, new methods and

interesting applications were found by different authors. In particular, these are

Algebro-geometrical methods and finite-gap solutions.

For soliton solutions generated on some arbitrary chosen background, the funda-

mental solution of the associated spectral problem “inherits” the singularities cor-

responding to the background solution and acquires a number of simple poles cor-

responding to the number of solitons generated on this background.q) In contrast

to the solitons associated with meromorphic (rational) functions on the (extended)

spectral plane (Riemanian sphere), the distinguishing feature of the finite gap so-

lutions is that the corresponding fundamental solutions of the associated spectral

problem are meromorphic functions on some compact Riemanian surfaces of a given

q)It seems useful to clarify here that there is no contradiction with what we said earlier that the
fundamental solution of associated spectral problem in the most general case possess only four
singular points (algebraic branch points) on the spectral plane. The point is that the fundamental
solutions of associated spectral problem are defined up to a “gauge” transformation which is
generated by multiplication of this solution from the right by any non-degenerate matrix function
depending only on the (constant) spectral parameter. This matrix multiplier always can be chosen
so that all other singularities (besides the four branch points mentioned above) will disappear.
Such “minimization” of singularities takes place for the fundamental solution “normalized” by the
condition that it takes the value of the unit matrix at some chosen space-time point (the reference
point). In particular, for solitons the poles, which arise in the components of the fundamental
solution of the spectral problem after application of a dressing method, can be removed by the

normalizing multiplier. However, these poles do not disappear without any imprints: the poles
corresponding to solitons just can be observed in the analytical structure of the monodromy data
of the corresponding normalized fundamental solutions.
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genus. These functions can be expressed in terms of the Riemann theta-functions

and the whole construction becomes effective if the corresponding Riemann surface

is of the hyperelliptic type because just in this case one can construct explicitly the

basis of holomorphic differentials on this surface. For stationary axisymmetric vac-

uum Einstein equations such solutions were constructed in “axiomatic” manner by

Korotkin and Matveev46 and Korotkin47,48 using the methods of algebraic geometry

developed earlier for other integrable systems in mathematical physics49−51.

Self-consistent solution for a thin rigidly rotating dust disc.

The finite-gap solutions had emerged also in the papers of Neugebauer and

Meinel52−54 in a quiet different way. From the beginning, these authors aimed to

solve a complicate but physically interesting problem of construction of the self-

consistent solution for a rigidly rotating thin disc of dust in which both the “in-

ternal” and “external” parts of the solution (i.e. the density distribution of dust in

the disk and the potentials of the external gravitational field) should be determined

in a self-consistent way. In the mentioned above papers, this problem was reformu-

lated as a Dirichlet boundary value problem for vacuum Ernst equation, and then

it was shown that the solution of this problem can be reduced to the well known

Jacobian inversion problem for ultraelliptic case, whose solution, as it is well known,

can be expressed in terms of the corresponding Riemann theta functions. Many in-

teresting properties of this rigidly rotating dust disk solution and other relativistic

figures of equilibrium were described in the book of Meinel, Ansorg, Kleinwaschter,

Neugebauer and Petroff 55 and in the references given there.

Colliding plane waves and solutions of characteristic initial value problems.

At the very end of 80th, in a series of papers57−60, Hauser and Ernst considered the

characteristic initial value problem for colliding plane gravitational waves propagat-

ing initially through the Minkowski background. r) As a preliminary step, Hauser

and Ernst presented in a nice form a general solution for colliding plane gravita-

tional waves with collinear polarization (described by the linear Euler - Poisson -

Darboux equation) expressed in terms of the integral Abel transform and formu-

lated a new homogeneous Hilbert problem for this linear case.s) After that, this

homogeneous Hilbert problem approach to the characteristic initial value problem

r)Many previous results and particular solutions for colliding plane gravitational waves in General
Relativity with the corresponding references had been collected in the Griffiths book56
s)We recall here that the previous formulation of the homogeneous Hilbert problem suggested by
these authors for stationary axisymmetric case can not be used for description of colliding plane
waves on the Minkowski background because it was based on the assumption of regularity of the
axis of symmetry. However, in the case of hyperbolic Ernst equations, for colliding plane waves

the condition of regularity of the symmetry axis transforms into the condition of an absence of
focussing singularities for waves, but as we know now, such singularities tipically appear as a result
of interaction of colliding plane waves on the Minkowski background.
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for colliding gravitational plane waves was generalized in these papers to the case

of noncollinear polarization of colliding waves and the solution of this problem was

reduced to a matrix Fredholm equation of the second kind.

On the other hand, the monodromy transform approach and the corresponding sys-

tem of linear singular integral equations31,33 (already discussed above) also admit a

consideration of the solutions with focussing singularities which arise in the colliding

plane wave solutions. Besides that, later some new form of linear singular integral

equations was found38 and it occurred the most suited for solution of the charac-

teristic initial value problems for the hyperbolic Ernst equations. These equations

arose in further development of the monodromy transform approach where some

dual representations for solutions of the associated spectral problem in terms of

the “scattering” matrices were used. The condition of compatibility of these two

representations gave rise to a new set of linear (quasi-Fredholm) integral equations

equivalent to the dynamical parts of the symmetry reduced Einstein equations.

Unlike the previously derived linear singular integral equations which kernels were

expressed in terms of nonevolving monodromy data, the scalar kernels of new equa-

tions are constructed using the evolving (“dynamical”) monodromy data for the

scattering matrices. These integral equations were used in our papers with J. Grif-

fiths43,44 for construction of solutions of the characteristic initial value problem for

plane gravitational as well as gravitational and electromagnetic waves colliding on

the Minkowski background. In particular, in these papers it was shown that the dy-

namical monodromy data are completely determined by the parameters of the plane

waves before their collision, and the corresponding solution of the integral equations

allows to calculate the solution in the wave interaction region in quadratures.

Integrability in the presence of matter fields

Besides pure vacuum Einstein equations and electrovacuum Einstein - Maxwell

equations, in the presence of some matter fields, the symmetry reduced Einstein’s

field equations also give rise to integrable systems. Below we mention these cases

with some references and remarks.

Gravity coupled perfect fluid with a stiff matter equation of state ε = p.

In this case considered by Belinski61, the dynamical part of the field equations can

be solved using Belinski and Zakharov inverse scattering approach. It is nice that

these equations admit, in particular, the Friedman-Robertson-Walker solutions and

this allows to analyze a picture of nonlinear wave dynamics on this cosmological

background (the examples of such soliton “cosmological” waves also were consid-

ered in61). It is easy to observe, that the electromagnetic fields also can be included

into this scheme and the corresponding symmetry reduced field equations for the

Einstein - Maxwell fields and a neutral stiff matter fluid can be solved using the

methods developed for solution of electrovacuum Einstein - Maxwell equations.
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Einstein-Maxwell and dilaton fields.

The four-dimensional dynamical equations for gravitational, electromagnetic and

dilaton fields can be expressed in the Kaluza and Klein form of 5-dimensional

vacuum Einstein equations. The symmetry reduction of these equations for five-

dimensional space-times with three commuting isometries take the same form of

the matrix equations which were used by Belinski and Zakharov in their formula-

tion of the inverse scattering method for vacuum fields, but for 3×3- matrices. This

was used by Belinski62 and Belinski and Ruffini63 for constructing the stationary

axisymmetric solutions of the Einstein - Maxwell equations with a dilaton field ap-

plying the Belinski and Zakharov soliton generating technique.

The Einstein - Maxwell - Weyl equations for gravitational, electromagnetic

and massless two-component spinor fields.

For space-times with two commuting isometries, the symmetry reduced Einstein-

Maxwell-Weyl field equations also were found to be integrable64. In the reduced

equations and in the corresponding spectral problem, the spinor field is represented

by only one real “harmonic” function of two space-time coordinates. This function

plays the role of a potential for certain pair of componentst) of the spinor field

current vector and it is a solution of the two-dimensional d’Alambert equation (for

time-dependent fields, i.e. for hyperbolic reductions) or two-dimensional Laplace

equation (for stationary fields, i.e. for the elliptic reductions). It is interesting to

note, that an application of the dressing method leads to construction of solitons

on arbitrary Einstein-Maxwell-Weyl background, however this soliton generating

transformation does not change the mentioned above “harmonic” function which

characterizes the spinor field and therefore, the solitons with spinor field can not be

generated from pure vacuum or electrovacuum seed.

The Weyl spinor field enters very naturally into the constructions of the mon-

odromy transform approach31, but it changes significantly the analytical structure

of the fundamental solution of the spectral problemu) and the corresponding linear

singular integral equations solving the inverse problem of the monodromy trans-

form. Similarly to the electrovacuum Einstein - Maxwell case, these integral equa-

tions provide another way for constructing of solutions of Einstein - Maxwell -

Weyl equations. For example, these integral equations can be solved explicitly for

any choice of (analytically matched) as well as for some analytically not matched

t)These components correspond to the “nonignorable” coordinates which can be considered also
as coordinates on the orbit space of the space-time isometry group.
u)In particular, for example, the singular points of this fundamental solution (which are algebraic
branch points of the orders ±1/2 in the case of electrovacuum Einstein - Maxwell equations) may
become the branch points of the infinite orders in the presence of Weyl spinor field.
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rational monodromy datav).

The integrability of the Einstein - Maxwell - Weyl equations for stationary ax-

isymmetric fields was “rediscovered” later by Sibgatullin,28,30 who generalized to the

case of a presence of Weyl spinor field the group-theoretic approach of Kinnersley

and Chitre and the homogeneous Hilbert problem for Einstein - Maxwell equations

of Hauser and Ernst. Following the method of Hauser and Ernst for the proof of

the so called Geroch conjecture (i.e. the conjecture of transitive action of the group

of internal symmetries in the space of solutions of the reduced Einstein - Maxwell

equations), Sibgatullin also observed that these symmetry transformations do not

change the potential for the Weyl spinor field and therefore, these symmetries act on

the subspaces of the space of solutions labeled by this potential. He considered also

the particular examples of stationary axisymmetric solutions of Einstein - Maxwell

- Weyl equations and studied various singularities in these solutions.

Integrability of the field equations in gravity, string gravity and

supergravity models in four and higher dimensions

In the literature of the last two decades, a lot of attention have been given to the

studies of Einstein’s gravity in D > 4 dimensions and to investigation of string

gravity (D = 10) and supergravity (D = 11) models, their dimensional reductions

and truncations. In many cases, the purpose of these studies was a construction

of classical solutions describing the dynamics in the bosonic sector of these theo-

ries. For space-times with D − 2 commuting isometries, some of these models were

found to be integrable. However, not in all cases in which this integrability was

already asserted, this gave rise to development of some effective solution generating

methods and construction of various physically interesting solutions because some

difficulties arise typically on this way. To clarify this, consider various integrable

models separately.

Vacuum Einstein equations and electrovacuum Einstein - Maxwell equations

in D > 4 dimensions

The assumption of so large space-time symmetry (D − 2 commuting Killing vec-

tor fields) occurs from physical point of view to be more restrictive than it was

in D = 4 case. In particular, this assumption excludes for D > 5 the black hole

solutions which need more than two variables for their description. Nonetheless,

the symmetry reduced vacuum Einstein equations in D = 4 and in higher dimen-

sions represent the simplest case of the mentioned above integrable equations. The

sigma-model-like form of these equations supplied with the conditions of reality

and symmetry of the matrix of metric coefficients admits a direct application to

v)The details of such calculations for electrovacuum case can be found in33,41,42 and their gener-
alization to the presence of the Weyl spinor field does not meet any principle difficulties.



November 18, 2010 1:8 WSPC - Proceedings Trim Size: 9.75in x 6.5in MG12˙1

16

this case of Belinski and Zakharov inverse scattering approach and corresponding

soliton generating technique (or, may be, some alternative methods) without any

significant changes of the procedures. However, even in D = 5 case, the black hole

solutions do not arise as solitons on the Minkowski background, as it was in D = 4

case. In this case, the choice of appropriate set of coordinates and parameters and

especially, of the appropriate seed (background) geometry becomes very important

for construction of physically interesting solutions and this need more skill than

in D = 4 case. Nonetheless, in spite of these difficulties, applications of such gen-

eralized methods to five-dimensional pure vacuum Einstein equations allowed to

construct a number of interesting solutions as well as generalizations of the solu-

tions constructed earlier by other methods. This concerns, first of all, a rich series

of asymptotically flat field configurations of various compact black objects whose

existence was discovered in space-times with D = 5 dimensions and which were

shown to be or found originally as soliton solutions of five-dimensional vacuum Ein-

stein equations on some specially chosen (vacuum) background geometries. These

are the black hole solutions which generalize the known Myers-Perry solution65 and

possess two angular momenta66, various black ring solutions (the topology of the

horizon is S1
× S2)67−72, black Saturn73, black di-rings74,75, bicycling black ring76

and others – see also the surveys77,78 and references there.

As it was shown in79, under a special ansatz for metric and electromagnetic po-

tential, the symmetry reduced Einstein - Maxwell equations in D = 5 space-times

also can be presented in the form of sigma-model-like equations which can be solved

using the Belinski and Zakharov spectral problem. In79 the author presented also

some interesting method which allows to construct the solutions with electromag-

netic field from a pair of vacuum D = 5 solutions, and illustrated this method by a

construction of a dipole black ring starting from two vacuum black ring solutions.

Bosonic dynamics in the low-energy heterotic string theory and supergravity

The symmetry reduced dynamical equations which describe the bosonic sectors of

some gravity models in four and higher dimensions also admit a construction of

equivalent spectral problems based on the Belinski and Zakharov form of inverse

scattering method. In particular, in the papers80,81 the Belinski and Zakharov soli-

ton generating transformations were adapted for solution of the equations for dilaton

and axion fields coupled to gravity in D = 4 space-times.

In more complicate cases, a part of the symmetry reduced dynamical equations

also can take the sigma-model-like form. This immediately suggests the idea to use

the Belinski and Zakharov linear system with a spectral parameter and to apply

the inverse scattering approach for constructing solutions of these systems. Indeed,

the existence of an associated linear system with a spectral parameter is one of

the widely accepted evidences for integrability of a nonlinear system and this al-

lowed to many authors to assert their discovery of integrability of the corresponding

nonlinear field equations. However, the existence of such linear system itself does
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not lead directly to some effective methods for construction of solutions because

the integrability conditions of this linear system usually are not equivalent to the

corresponding dynamical equations. Namely, the space of solutions of this linear

system usually occurs larger than the space o solutions of the corresponding nonlin-

ear equations, and some additional constraints (“reduction conditions”) should be

imposed on the solutions of the linear system in order to provide an equivalence of a

complete spectral problem (i.e. the linear system with the reduction conditions) to

the original dynamical equations. However, for some cases in which a generalization

of the Belinski and Zakharov linear system was found, it occurred that the solution

of dynamical equations should possess some rather complicate (coset) structure for

which the corresponding reduction conditions have not been found in an appropri-

ate form and this does not allow to generalize the Belinski and Zakharov approach

(or some other ones based on the similar ideas) to these cases. Just this situation

evidenced, for example, in the case of electrovacuum Einstein - Maxwell fields in

General Relativity. In this case, the Belinski-Zakharov-like form of the linear system

with a spectral parameter for this case was constructed in10 (see also33), but the

corresponding reduction conditions had not been found in a desirable form. The

similar situation can arise in some other gravity models, such as, for example, in

the case of the symmetry reduced minimal supergravity equations in D = 5 dimen-

sions. For these equations, the Belinski and Zakharov linear system was constructed

in82, where the authors observed, however, that after an application of the soliton

generating transformations to a chosen seed, the transformed solution can leave the

corresponding coset space (a discussion of this problem also can be found in82).

The difficulties mentioned above had been solved in a series of cases considered

in the framework of the monodromy transform approach (discussed in detail in one

of the previous sections). In this approach, we consider another type of associated

linear systems with a spectral parameter 11,12,31,33, for which the integrability con-

ditions lead to the nonlinear dynamical equations in the self-dual form (instead of

the sigma-model-like form). The advantage of the use of the linear systems of this

type is that the corresponding reduction conditions (found in31,33), which provide

the equivalence of the complete spectral problem to the dynamical equations, take

a simple algebraic form. These supplementary conditions consist of two parts – the

conditions imposed on the structure of the canonical Jordan forms of matrix coeffi-

cients of the associated linear system and the condition of existence for this linear

system of a matrix integral of certain structure. It is interesting to note that for all

considered gravity models the structure of the linear system of this type and the

corresponding reduction conditions possess the same form in which only the dimen-

sion of the linear system, the structure of the Jordan forms of the linear system and

the symmetry properties of the first integral can be different for different models.

Just this “self-dual” form of the spectral problem was used by the author in

the formulation of the inverse scattering approach and for construction of the soli-

ton solutions for electrovacuum Einstein - Maxwell equations in D = 4 space-

times.11,12,31,33 The same form of the spectral problem was constructed for the
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gravity models which can be reduced to the matrix analogues of the Ernst equa-

tions for the cases in which the generalized (matrix) Ernst potential is (a) complex

symmetric or (b) Hermitian matrix of arbitrary dimension.39,83w)

More recently, an equivalent spectral problem of the same kind was constructed

also for a complete system of symmetry reduced field equations which describes

the bosonic dynamics in the low energy heterotic string effective theory in space-

times of D dimensions with D−2 commuting isometries.84 This system, besides the

gravitational field, includes also the dilaton, antisymmetric gauge field and arbitrary

number of Abelian gauge vector fields. The spectral problem found there allows

to construct for these equations some types of soliton solutions, to generalize for

this case the monodromy transform approach and the integral equations methods

developed earlier for constructing solutions of symmetry reduced vacuum Einstein

equations and Einstein - Maxwell equations in General Relativity in four dimensions.

Concluding remarks

A brief outline of thirty years of studies of integrable reductions of Einstein’s field

equations including integrability of symmetry reduced gravity, string gravity and

supergravity models in four and higher dimensions given above clearly can not be an

exhaustive and systematical survey. Inevitably, this can consist of some fragments of

the history only. The emphasis here was made on the origins of different approaches

and comparison of providing opportunities as well as on some papers and results

more or less “forgotten” or misinterpreted in other surveys, numerous introductions

and discussions. On the other hand, it is worth to mention that some of the results

which were described in other surveys very carefully, have not been mentioned

here with the same amount of details. Hopefully therefore, the present survey can

represent a useful supplement to the already existing ones.

It necessary to note also that the power of various mathematical methods men-

tioned or discussed in this paper had not been exhausted by the already known

applications. And, without any doubts, we can expect further developments of these

methods and their new interesting applications in General Relativity as well as in

the low-energy effective string gravity and supergravity models in four and higher

dimensions.
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