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A simple algebraic global isometric embedding is presented for the nonrotating

BTZ black hole and its counterpart of Euclidean signature. The image of the em-

bedding, in Minkowski space of two extra dimensions, is the interection of two quadric

hypersurfaces. Furthermore an embedding into AdS4 or H4 is also obtained, showing

that the spacetime is of embedding class one with respect to maximally symmetric

space of negative curvature. The rotating solution of Euclidean signature is also

shown to admit a quadratic algebraic embedding, but seemingly requires more than

two extra dimensions.
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I. INTRODUCTION

An isometric embedding is an invertible diffeomorphism of a manifold (M , g) into a

submanifold of some higher dimensional space - typically flat space En := (Rn, δ)[1] or

Minkowski spacetime M
p,q := (Rp+q, η) [2] - such that the pullback metric induced by the

embedding agrees with the intrinsic metric g. The idea of gaining further understanding of

solutions of Einstein’s equations in this way has a long history. For example, an embed-

ding of the Schwarzschild solution into 5+1 dimensional Minkowski space was found by C.

Fronsdal[3] in the 1950s. Embeddings are important in the definition of quasilocal mass in

General Relativity[4], and have shed light on fundamental questions such as the positive

mass theorem and the Riemannian version of the Penrose conjecture. Also some features of

BPS solutions of M theory/supergravity have been studied using embeddings into Minkowski

space with more than one time dimension[5].

In many ways the simplest example of a black hole is the solution of Bañados, Teitelboim

and Zanelli (BTZ)[6, 7] in 2+1 dimensional GR with negative cosmological constant. This

can be regarded as a quotient space of Anti de Sitter space and therefore the hyperboloid

model in M2,2 provides us with a local embedding. For some purposes this is sufficient.

(e.g. in Ref. [8] a concrete relation was established between the temperature and entropy

obtained from Hawking radiation with that of the Unruh effect for the accelerating observer

in the embedding Minkowski space. The embedding of AdS3 was used, this being sufficient

for their purpose, since only the geometry of the (r, t) plane was relevant. Embeddings of

the r, t plane of other black holes were obtained in [9].) However for other purposes it is

still desirable to have a faithful global embedding1, which respects the periodicity of the φ

coordinate.

Here we shall present a global isometric embedding for the BTZ spacetime. We concen-

trate mainly on the nonrotating spacetime, which takes the simple form of a real algebraic

variety in Minkowski space. The image of the embedding is given by a pair of quadratic

equations in the Minkowski space coordinates. This allows a very explicit geometrical rep-

resentation of the black hole, allowing us to obtain all the geometrical information by ele-

1 If M is the whole (maximally extended) specetime we shall say that the embedding is global. This is

appropriate for studying the global and causal structure of the spacetime. If there is a singularity, we

regard it as a boundary of M . For some well behaved kinds of singularities, the embedding may extend

to an injection of M̄ . This is in fact what happens for the BTZ spacetime (replacing T > 0 with T ≥ 0

in Proposition III.1 below), whose singularity is of the same character as the tip of a cone.
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mentary algebra, and gives some insight into the nature of the past and future singularities

inside the event horizon.

Furthermore, we show that the Euclidean nonrotating solution admits a global isometric

embedding into hyperbolic space H4. We analise this using the Klein model ofH4 and obtain

the donut model described in Proposition II.3.

In the case of hyperbolic space, all kinds of useful representations and coordinate systems

can be obtained from the hyperboloid model by projections. Similarly, the embedding of the

nonrotating BTZ spacetime can be used as a unifying model for obtaining many other useful

representations. Therefore, in what follows, we will give explicit coordinate transformations

to some of the more common representations.

II. THE EUCLIDEAN SPACETIME

The Euclidean BTZ spacetimes[10] are a 2-parameter family of smooth hyperbolic man-

ifolds. They are obtained from the black hole solutions[6] by analytic continuation of the

standard time coordinate and of the angular momentum parameter. As such they play a

role in understanding the thermodynamics of black holes and possibly in quantum gravity,

such as strings in three dimensions[11]. Let us first consider the spacetime without angu-

lar momentum, with a single parameter a (proportional to the mass). A standard way to

express the metric is the following:

ds2 = (ρ2 − a2)dτ 2E +
dρ2

ρ2 − a2
+ ρ2dφ2 . (1)

The range of the coordinates is a ≤ ρ < ∞, with φ ∼ φ + 2π and τE ∼ τE + 2π/a. The

latter identification is necesary to avoid the occurence of a conical singularity at ρ = a. This

periodicity in the Euclidean time also occurs for the Schwartzschild solution and naturaly

lends to the Euclidean path integral an interpretation of a statistical partition function.

There are some geometrical features of the spacetime which are not immediately apparent

from formula (1). One sees the global isometries generated by ∂φ and ∂τ but for example, it

is not manifest that the spacetime is a hyperbolic manifold, that is, of constant curvature.

There are various alternative ways of writing the metric, which bring to light different

geometrical features. Here we shall introduce the global embedded model, which, although

straightforwardly obtained, seems to be new or at least not to have received attention in the
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literature. Let us first state the result, and then relate the embedding to some other well

known models of BTZ and hyperbolic space.

Let us consider (4+1)-dimensional Minkowski space, with metric written in the form

ds2 = −dT 2 + dX2 + dY 2 + dZ2 + dW 2.

Proposition II.1. The non-rotating Euclidean BTZ spacetime can be globally isometrically

embedded into the half-space (T > 0) of (4+1)-dimensional Minkowski space M
4,1. The

image is the intersection of the two hyper-surfaces X2 + Y 2 + Z2 + W 2 − T 2 = −1 and

Z2 +W 2 = a2

1+a2
T 2.

The first hyper-surface is nothing but the standard embedding of hyperbolic space. There-

fore we have another interesting result:

Corollary II.2. The non-rotating Euclidean BTZ spacetime can be globally isometrically

embedded into 4-dimensional hyperbolic space H4.

As proof of Proposition II.1 it is sufficient to give the map f :M → M
4,1, f : (ρ, φ, τE) →

(T,X i).

T =

√
1 + a2

a
ρ , (2)

X =

√
ρ2 − a2

a
cos(aτE) , Y =

√
ρ2 − a2

a
sin(aτE) , (3)

Z = ρ cosφ , W = ρ sinφ . (4)

This map is manifestly injective, with T , X and Y being monatonic functions of ρ in the

entire range a ≤ ρ < ∞ and the periodicities of φ, τE being respected. Also, one can check

that the image is a submanifold (to check that the tangent space map f ∗ is injective at the

coordinate singularity ρ = a one can pass to the Kruskal coordinates below). The pullback of

the Minkowski metric with respect to f is (1). Therefore f is the desired global embedding.

Now let us consider some other models of the Euclidean BTZ and give the mappings

which take them into the embedded model.

a. The Kruskal coordinates Amodel analogous to the Kruskal model of the Schwartzschild

spacetime expresses the metric as:

ds2 = 4
dx2 + dy2

(1− x2 − y2)2
+ a2

(1 + x2 + y2)2

(1− x2 − y2)2
dφ2 . (5)
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The range of coordinates is x2 + y2 < 1, φ ∼ φ+2π. This makes it clear that the spacetime

is a warped product of the Poincaré disk (i.e. the hyperbolic plane) with a circle. The

embedding is:

T (x, y) =
√
1 + a2

(
1 + x2 + y2

1− x2 − y2

)
, (6)

X(x, y) =
2x

1− x2 − y2
, Y (x, y) =

2y

1− x2 − y2
, (7)

Z(x, t, φ) = a

(
1 + x2 + y2

1− x2 − y2

)
cosφ , W (x, t, φ) = a

(
1 + x2 + y2

1− x2 − y2

)
sin φ . (8)

b. Identification of concentric hemispheres in the upper half space model of H3. The

Euclidean BTZ is a quotient space of H3. A nice explicit way to see this, as pointed out

in Ref. [10], is using the upper half space model. Introducing spherical polar coordinates

(r̃, θ̃, φ̃) on R
3, we may model H3 as the upper half space 0 < θ̃ < π/2 with metric:

ds2 =
dr̂2 + r̂2dθ̂2 + r̂2 sin2 θ̂dφ̂2

r̂2 cos2 θ̂
(9)

The manifold is obtained by identifying concentric hemispheres r̂ ∼ r̂e2πa.

The embedded model is obtained by the map:

T =

√
1 + a2

cos θ̂
, (10)

X = tan θ̂ cos(φ̂) , Y = tan θ̂ sin(φ̂) , (11)

Z =
a

cos θ̂
cos

(
ln r̂

a

)
, W =

a

cos θ̂
sin

(
ln r̂

a

)
. (12)

c. Multivalued map from hyperboloid model of H3 into hyperboloid model of H4 Let us

now represent H3 as the hyper-surface ξ20 − ξiξi = −1, i = 1, 2, 3 in M
3,1. One obtains:

T =
√
1 + a2

√
ξ20 − ξ23 , (13)

X = ξ1 , Y = ξ2 , (14)

Z = a
√
ξ20 − ξ23 cos

(
1

a
ln

(
2

√
ξ0 − ξ3
ξ0 + ξ3

))
, (15)

W = a
√
ξ20 − ξ23 sin

(
1

a
ln

(
2

√
ξ0 − ξ3
ξ0 + ξ3

))
. (16)
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A. Explicit embedding into four dimensional hyperbolic space

As stated in the Corollary above, we can embed the manifold into H4. It is therefore

interesting to forget the Minkowski space and consider an intrinsic parameterisation of hy-

perbolic space. Since the embedding in Minkowski is expressed by homogeneous quadratic

forms, one can naturally pass to Kleins projective model. The standard inhomogeneous

coordinates are obtained from the hyperboloid model by projection from the origin onto the

surface T = 1 i.e. (ui, 1), with ui := X i/T . The entire hyperbolic space is represented as

the Klein ball K4 := {u |uiui < 1} with metric function:

d(u,u′) =
1− uiu

′
i√

1− uiui
√

1− u′iu
′
i

. (17)

Rather attractively, the BTZ is embedded as:

(u3)
2 + (u4)

2 =
a2

1 + a2
. (18)

A nice feature of the Klein ball is that the geodesics are represented as straight lines. The

surfaces with z, w constant are totally geodesic and are isometric to the hyperbolic plane.

As mentioned above, the BTZ is a warped product of the hyperbolic plane with a circle.

We now see that this warped product looks like a cartesian product in the natural cartesian

coordinates of Klein’s model.

We may regard the Euclidean black hole as a quotient space of the 3 dimensional Klein

model with inhomogeneous coordinates (v1, v2, v3). From the map from section c above we

obtain a map K3 → K4:

√
1 + a2 u1 =

v1√
1− (v3)2

,
√
1 + a2 u2 =

v2√
1− (v3)2

, (19)

√
1 + a2 u3 = a cos

(
1

a
ln

(
2

√
1− v3
1 + v3

))
, (20)

√
1 + a2 u4 = a sin

(
1

a
ln

(
2

√
1− v3
1 + v3

))
. (21)

By considering the distance function forK3 under this map, and introducing new coordinates

x :=
√
1 + a2 u1, y :=

√
1 + a2 u2 and φ for the angle in the u3, u4 plane, we obtain the

following model:
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Proposition II.3 (Donut Model of the Euclidean nonrotating BTZ). Let C := D2 × S1 =

{x := (x, y, φ) |x2 + y2 < 1, φ ∼ φ+ 2π} with distance function:

cosh d(x,x′) =
cosh (a(φ− φ′ + 2nπ))− xx′ − yy′√

1− x2 − y2
√

1− (x′)2 − (y′)2
(22)

where n is an integer chosen such that φ − φ′ + 2nπ is in the range (−π, π]. Then C is

isometric to the nonrotating Euclidean BTZ black hole.

It is quite remarkable that the dependence on φ and φ′ factorises out of the denominator.

Also, we may easily obtain the geodesics, since they are the images of straight lines in K3.

They are of two types:

i) curves winding around the circle, whose restriction to the x, y plane trace out a hyperbola

x = c1 cosh aφ+ c2 sinh aφ, y = c3 cosh aφ+ c4 sinh aφ;

ii) straight lines in the x, y plane with φ constant.

Any two points are connected by an infinite number of geodesics corresponding to the infinite

number of images (x, y, φ+ 2mπ) of each point in the covering space.

III. THE LORENTZIAN NONROTATING BTZ SOLUTION

To find the embedding of the black hole solution one essentialy follows the same steps as

above, replacing Y → iS.

Proposition III.1. The nonrotating BTZ black hole spacetime can be globally isometrically

embedded into the halfspace T > 0 of Minkowski space M
2,3 as the intersection of the two

hyper-surfaces −S2+X2+Z2+W 2−T 2 = −1 and Z2+W 2 = a2

1+a2
T 2 . The past and future

singularities are located at the intersection of these surfaces with the hyperplane T = 0.

The standard coordinates: The standard way of presenting the metric is:

ds2 = −(ρ2 − a2)dτ 2 +
dρ2

ρ2 − a2
+ ρ2dφ2 . (23)

Two copies of the exterior region ρ > a are mapped into the embedded manifold by:

T =

√
1 + a2

a
ρ , (24)

X = ±
√
ρ2 − a2

a
cosh(aτ) , S =

√
ρ2 − a2

a
sinh(aτ) , (25)

Z = ρ cos φ , W = ρ sinφ . (26)
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Two copies of the interior region ρ < a are mapped by:

T =

√
1 + a2

a
ρ , (27)

X =

√
a2 − ρ2

a
sinh(aτ) , S = ±

√
a2 − ρ2

a
cosh(aτ) , (28)

Z = ρ cos φ , W = ρ sinφ . (29)

The Kruskal type coordinates: The metric in Kruskal-type coordinates is:[7]

ds2 = 4
−dt2 + dx2

(1 + t2 − x2)2
+ a2

(1− t2 + x2)2

(1 + t2 − x2)2
dφ2 . (30)

The domain of the coordinates is −1 < −t2 + x2 < 1, φ ∼ φ+ 2π. The singularities are at

t2 − x2 = 1 and conformal infinity is at x2 − t2 = 1. The event horizons are at x = ±t with
bifurcation surface at x = t = 0. This covers the maximally extended space-time. So, to

make more explicit the fact that our embedding is global, we give here the map:

T (x, t) =
√
1 + a2

(
1− t2 + x2

1 + t2 − x2

)
, (31)

X(x, t) =
2x

1 + t2 − x2
, S(x, y) =

2t

1 + t2 − x2
, (32)

Z(x, t, φ) = a

(
1− t2 + x2

1 + t2 − x2

)
cosφ , W (x, t, φ) = a

(
1− t2 + x2

1 + t2 − x2

)
sinφ . (33)

We may now take the (T,X, S) subspace of our embedded model as a kind of 3-dimensional

Kruskal diagram. As in the standard diagram, each point is actually a circle (with radius

ρ = aT/
√
1 + a2). The diagram consists of that half of the hyperboloid S2 + T 2/(1 + a2) =

X2 + 1 for which T > 0. The two singulatities are the curves S2 = X2 + 1, T = 0. The

horizons are the two straight straight lines S = ±X , T =
√
1 + a2 passing through the

bifurcation point X,S = 0 (the fact that each point on a hyperboloid has two straight lines

passing through it was apparently discovered by Sir Christopher Wren).

Alternative Global Coordinates: In Refs. [12] the global structure was studied in

terms of Lie theory and foliations of symmetric spaces. They obtained a global expression

for the metric of the rotating and nonrotating black hole. The latter, which with a slight

change of notation we express as

ds2 = dξ2 + cosh2 ξ
(
−dϕ2 + a2 sin2 ϕdφ2

)
, (34)
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(with −∞ < ξ <∞, 0 < ϕ < π and φ ∼ φ+ 2π) is very naturally related to the embedded

model as follows:

X = sinh ξ , S = cosh ξ cosϕ , T =
√
1 + a2 cosh ξ sinϕ , (35)

Z = a cosh ξ sinϕ cosφ , W = a cosh ξ sinϕ sinφ . (36)

The embedding offers an interesting new perspective. We see that the continuation of

spacetime “beyond the singularity”, by including another copy embedded into the region

T < 0, is as natural as the extension of a cone to a double cone. The continued spacetime

would then be two copies of the eternal black hole with past singularity of one copy identified

with the future singularity of the other and vice versa. Hence closed timelike curves, winding

around the S, T plane in the embedding space, would pass across the singularities.

Some more comments are in order. The submanifold −S2 + X2 + Z2 +W 2 − T 2 = −1

has the topology of S1×R3. It is what mathematicians would call Anti de Sitter space. We

shall refer to it as AdS4. It contains closed timelike curves (CTCs) and therefore it is not a

physically meaningful spacetime. Physicists normally use the label to describe the spacetime

of constant negative curvature with topology of R4, which we shall refer to as ÃdS4, obtained

by uncompactifying the angular coordinate in the S, T plane. An embedding into ÃdS4 is

straightforwardly obtained from this. Since the embedding is in a region in which angular

coordinate in the S, T plane only runs from 0 to π, the embedding is consistent with

decompactifying. Therefore:

Corollary III.2. The nonrotating BTZ black hole admits global isometric embeddings into

ÃdS4 and AdS4.

Intuitively, the BTZ spacetime is the negative curvature analogue of the conical spacetime

of Deser, Jackiw and ’t Hooft[13], describing a point particle in 2+1 dimensions without

cosmological constant. The embedding offers a new way of viewing this. Let us denote by C2
a subluminal cone in M

2,1 . Then the BTZ spacetime is the intersection (C2 ×M
1,1) ∩AdS4

where these spaces are understood to be embedded into M
3,2 in the natural way, as in propo-

sition III.1. The point particle metric has geometry C2× time, where C2 is a Euclidean

cone. This can be embedded into M
3,1. By introducing an extra space dimension in a trivial

way we may regard the point particle as (C2×M
1,1)∩M3,1, embedded intoM4,1 . In summary:
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BTZ: ((C2 ×M
1,1) ∩AdS4) ⊂ M

3,2

Point particle: ((C2 ×M
1,1) ∩M

3,1) ⊂ M
4,1

IV. THE EUCLIDEAN ROTATING SOLUTION

Let us now briefly discuss the rotating Euclidean BTZ spacetime. This can be obtained

as a quotient of the upper half space model of H3 by identifying (r̂, φ̂) ∼ (r̂e2πa, φ̂+ 2πb) in

(9). Introducing coordinates φ := (1/a) log r̂, τE := −(b/a2) log r̂ + φ̂/a, ρ := a/ cos θ̂, then

the metric takes the form

ds2 = (ρ2 − a2)(dτE +
b

a
φ)2 +

dρ2

ρ2 − a2
+ ρ2dφ2 , (37)

with ρ ≥ a and the identifications being simply φ ∼ φ+2π, τE ∼ τE+2π/a. Note that a and

b correspond to the outer and inner horizon radii respectively of the Lorentzian spacetime.

Alternatively, introducing χ := cosh−1(ρ/a), θ := aτE ( 0 ≤ χ <∞),

ds2 = sinh2 χdθ2 + 2b sinh2 χ dφdθ +
(
b2 sinh2 χ+ a2 cosh2 χ

)
dφ2 + dχ2 . (38)

The embedding we present here is only partially successful in regard to simplicity, since it

involves many extra spacelike and timelike dimensions. But it does preserve the property of

being defined only in terms of quadratic equations. Perhaps a more efficient embedding can

be found. This is left as an open problem. The inspiration for what follows comes from the

embedding of a twisted torus in Euclidean space by winding around a higher dimensional

untwisted torus. Hence we start by rewriting the metric in the form:

ds2 = |b| sinh2 χ(dθ ± dφ)2 + (1− |b|) sinh2 χdθ2 +
(
a2 cosh2 χ− |b|(1− |b|) sinh2 χ

)
dφ2 + dχ2

where ± is the sign of b. A global isometric embedding into M3,7, with ds2 = −dT 2− dS2
1 −
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dS2
2 + dXadXa, is parameterised by:

T =
√
1 + a2 cosh2 χ , (39)

S1 =
√

|b|(1− |b|) sinhχ cosφ , (40)

S2 =
√

|b|(1− |b|) sinhχ sinφ (41)

X1 =
√

|b| sinhχ cos(θ ± φ) , (42)

X2 =
√

|b| sinhχ sin(θ ± φ) , (43)

X3 =
√

(1− |b|) sinhχ cos θ , (44)

X4 =
√

(1− |b|) sinhχ sin θ , (45)

X5 = a coshχ cosφ , (46)

X6 = a coshχ sinφ , (47)

X7 =
√

|b|(1− |b|) sinhχ . (48)

(If |b| > 1 the signature of the embedding space should be changed accordingly i.e. X7 →
iX7). The global nature of the embedding is guaranteed by the fact that sinhχ and coshχ

are monotonic over the relevant range of χ. Using the double angle formula for sin(θ ± φ)

one obtains a set of quadratic equations. Therefore:

Proposition IV.1. The rotating Euclidean BTZ spacetime admits a global isometric em-

bedding into the region T,X7 ≥ 0 of M3,7 as an intersection of the quadric hypersurfaces:

S2
1 + S2

2 = (1− |b|)(X2
1 +X2

2 ) = |b|(X2
3 +X2

4 ) = X2
7 = |b|(1− |b|)

(
T 2

1 + a2
− 1

)
,

X2
5 +X2

6 =
a2

1 + a2
T 2 , (49)

X4X5 ±X3X6 =
a√

1 + a2

√
1− |b|
|b| X2T .

It is straightforward to check that this is a submanifold of the hypersurface X iX i−SaSa−
T 2 = −1. Therefore we get an embedding into AdS2,7, that is, a generalisation of AdS with

two times.
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V. THE LORENTZIAN ROTATING SOLUTION

A standard way of expressing the general BTZ metric in 2+1 dimensions is:

ds2 = −dt2 (r
2 − r2+)(r

2 − r2−)

r2
+

r2dr2

(r2 − r2+)(r
2 − r2−)

+ r2
(
dψ2 − r+r−

r2
dt
)2

. (50)

where r+ and r− are the outer and inner horizons respectively. This describes a rotating

black hole with mass and angular momentum given by M = r2+ + r2
−
and J = 2r+r−. By

the change of coordinates τ = t
(r2+−r2

−

)

r2
+

, ρ = r+

√
r2−r2

−

r2
+
−r2

−

, φ = ψ + r+
r
−

t, we put the metric in

the form:

ds2 = −(ρ2 − r2+)(dτ +
r−
r+
dφ)2 +

dρ2

ρ2 − r2+
+ ρ2dφ2 . (51)

Note that the above coordinate transformation is not defined for the extremal case r+ = r−.

Following the above steps, we first write

ds2 = |b| sinh2 χ(dτ̂ ∓ dφ)2 − (1 + |b|) sinh2 χdτ̂ 2 +
(
a2 cosh2 χ− |b|(1 + |b|) sinh2 χ

)
dφ2 + dχ2

where τ̂ := aτ . By analogy with the Euclidean metric we may try the following:

T =
√
1 + a2 coshχ , (52)

X1 =
√
|b| sinhχ cos(τ̂ ∓ φ) , (53)

X2 =
√
|b| sinhχ sin(τ̂ ∓ φ) , (54)

X3 = a coshχ cosφ , (55)

X4 = a coshχ sinφ , (56)

X5 =
√
(1 + |b|) sinhχ cosh τ̂ , (57)

S1 =
√
(1 + |b|) sinhχ sinh τ̂ , (58)

S2 =
√
|b|(1 + |b|) sinhχ cosφ , (59)

S3 =
√
|b|(1 + |b|) sinhχ sinφ (60)

S4 =
√
|b|(1− |b|) sinhχ . (61)

However, this does not lead to quadrics. Rather, the double angle formula for τ̂ ∓ φ will

lead to a curious expression of the form:

(1 + |b|)
(
X1 + iX2

S2 + iS3

)2

=

(
X5 + S1

X5 − S1

)∓i

. (62)

It is unclear whether this will give any geometrical insight. Also it is unclear at the present

how to proceed for the extremal spacetime.
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VI. NEGATIVE MASS AND ZERO MASS SPACETIME

We focus on the nonrotating spacetime with Euclidean signature. The solution of negative

mass is described by the line element:

ds2 = (ρ2 + α2)dτ 2E +
dρ2

ρ2 + α2
+ ρ2dφ2 , (63)

with α 6= 0.

Proposition VI.1. The Euclidean BTZ spacetime with negative mass can be globally isomet-

rically embedded into H4. It can be globally isometrically embedded into the region (T > 0,

X > 0) of M4,1 as the intersection of the two hyper-surfaces X2 + Y 2 +Z2 +W 2 − T 2 = −1

and Z2 +W 2 = α2

1−α2X
2 .

The map is:

T =

√
ρ2 + α2

α
coshατE ,

X =

√
1− α2

α
ρ

Y =

√
ρ2 + α2

α
sinhατE

Z = ρ cosφ ,

W = ρ sinφ .

We have an embedding into a submanifold of H4 which is given by z2+w2 = α2

1−α2x
2 in both

the Klein Ball and the Conformal ball models. Note that τE is not periodic in this case.

There is a conical singularity at X = 0.

The zero mass solution α→ 0 can be expressed, introducing u := 1/ρ as:

ds2 =
du2 + dτ 2E + dφ2

u2
. (64)

If τE is not regarded as periodic, this embeds straightforwardly into the upper half space

model of H4. If τE is periodic we may embed into H5. Let us consider the first case. Note

that the period of φ is arbitrary so we may write φ = cφ̂ where the period of φ̂ is 2π. Passing

to the hyperboloid model, we deduce:

Proposition VI.2. The Euclidean BTZ spacetime with zero mass and non-periodic in Eu-

clidean time can be globally isometrically embedded into H4. It can be globally isometrically
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embedded into the region (T > 0, X > 0) of M4,1 as the intersection of the two hyper-surfaces

X2 + Y 2 + Z2 +W 2 − T 2 = −1 and Z2 +W 2 = c2(T +X)2 .

The image of the embedding in the Klein ball K4 is z2 + w2 = c2(1 + x)2, which makes

clear that there is a “cusp at infinity” at x = −1.

VII. CONCLUDING REMARKS

When looking for an embedding of the Schwarzschild solution, following a standard proce-

dure, one encounters elliptic integrals. We have seen that for the 2+1 dimensional spherically

symmetric black hole, things are dramatically simpler. We have shown that the nonrotating

BTZ black hole is globally isometrically embedded into M
3,2 as an algebraic submanifold. I

would suspect that this is the minimal number of dimensions, but I know of no proof.

We have shown that the Euclidean BTZ spacetime is of embedding class one with respect

to a hyperbolic space with the same scalar curvature (and likewise for the Lorentzian black

hole w.r.t. Anti de Sitter space). Focusing on Euclidean signature and including positive,

negative and zero mass solutions, we obtain a satisfying unified picture: In each case, we

have the intersection in M
4,1 of the hyperboloid model of H4 with a cone. The axis of the

cone is timelike, spacelike and null respectively. For future study, there naturally arises the

question of rigidity: Is the embedding unique up to a global isometry of H4?

Embeddings have been given for the rotating solution and at least in the Euclidean case

an algebraic (quadratic) embedding exists. However, these are not altogether satisfactory

and a more economical embedding would be desirable.
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