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Abstract

It has been suggested that the dark energy that explains the observed accelerating expansion of the

universe may arise due to the contribution to the vacuum energy of the QCD ghost in a time-dependent

background. The argument uses a four-dimensional simplified model. In this paper, we put the discussion

in more realistic model keeping all components of the QCD vector ghost and show that indeed QCD ghost

produces dark energy proportional to the Hubble parameterHΛ3
QCD (ΛQCD is the QCDmass scale) which

has the right magnitude ∼ (3× 10−3 eV)4.
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1 Introduction

The recent cosmological observations have confirmed the existence of the early inflationary epoch and the

accelerated expansion of the present universe [1]-[3]. Observational result is consistent with the picture

that the universe has an unknown form of energy density, named the dark energy, about 75% of the total

energy density. The simplest possibility is the existence of the vacuum energy or cosmological constant

whose origin is yet to be identified.

Such vacuum energy is easily incorporated in the quantum field theory. In the standard model of

particle physics, we have Higgs field which produces electroweak phase transition, which changes the

value of the vacuum energy. It has also been known that the vacuum fluctuations in quantum field

theory naturally induce such a vacuum energy, but the problem is how to control the size of it. The

contribution of quantum fluctuations in known fields up to 300 GeV, which is about the highest energy

at which the current theories have been verified, gives a vacuum energy density of order (300 GeV)4.

This is vastly larger than the observed dark energy density (3 × 10−3 eV)4 by a factor of order 1056.

Assuming the tree-level contribution is zero, it is a great challenge how to understand the origin of this

tiny energy density.

Recently a very interesting suggestion on the origin of a cosmological constant is made, without

introducing new degrees of freedom beyond what are already known, with the cosmological constant of

just the right magnitude to give the observed expansion [4]. In this proposal, it is claimed that the

cosmological constant arises from the contribution of the ghost fields which are supposed to be present in

the low-energy effective theory of QCD [5, 6, 7, 8, 9]. The ghosts are required to exist for the resolution of

the U(1) problem, but are completely decoupled from the physical sector [9]. The above claim is that the

ghosts are decoupled from the physical states and make no contribution in the flat Minkowski space, but

once they are in the curved space or time-dependent background, the cancellation of their contribution

to the vacuum energy is off-set, leaving a small energy density ρ ∼ HΛ3
QCD, where H is the Hubble

parameter and ΛQCD is the QCD mass scale of order a hundred MeV. With H ∼ 10−33 eV, this gives

the right magnitude. This coincidence is remarkable and suggests that we are on the right track.

However in this proposal, the authors discuss a four-dimensional model similar to the one based on

the Schwinger model (proposed by Kogut and Susskind [10]), keeping only the longitudinal and scalar

components of the QCD ghost. These scalar fields have positive and negative norms and cancel with

each other, leaving no trace in the physical subspace, but it is argued that they have small contribution

to the vacuum energy in the curved space or time-dependent background. (Similar system is used in a

mechanism of supersymmetry breaking in Ref. [11].) However it is known that the QCD ghost must be

intrinsically vector field in order for the U(1) problem to be consistently resolved within the framework

of QCD [12]. It is thus an interesting and important question to examine if the mechanism works even if

we formulate the proposal keeping all the modes of the vector ghost.

In the next section, we briefly recapitulate how the U(1) problem is resolved by the vector ghost

following [9], and also show how the ghost decouples from the physical sector. In sect. 3, following the

discussions in Ref. [13], we discuss the mechanism of generating a tiny contribution to the vacuum energy

in the Rindler space as a typical example of the time-dependent background [14, 15]. We argue that

due to the change of the definition of the vacuum, we indeed obtain small contribution to the vacuum

energy proportional to the Hubble parameter. We find that our result is factor 2 larger than the previous

estimate. Sect. 4 is devoted to the discussions and conclusions.
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2 Decoupling of the vector ghost in the Minkowski space

We consider the low-energy effective Lagrangian [7, 8, 9]

L =
1

2
(∂µS)

2 − 1

2
m2

NSS
2 +

1

2F 2
S(m

2
S −m2

NS)
(∂µK

µ)2 − 1

FS
S∂µK

µ, (1)

where S is a flavor-singlet pseudoscalar field with the decay constant FS , K
µ is an axial vector “field”,

which in QCD corresponds to the gluonic current

Kµ = 2Nf
g2

16π2
ǫµνλσAa

ν

(

∂λA
a
σ +

1

3
gfabcAb

λA
c
σ

)

, (2)

where Nf is the number of flavors.

The Lagrangian (1) is invariant under the gauge transformation

Kµ → Kµ + ǫµνλσ∂νΛλσ, (3)

where Λλσ denotes an arbitrary antisymmetric tensor. In fact this transformation reflects the color gauge

invariance of the underlying QCD. Under the QCD gauge transformation, the gluonic current transforms

as [9, 12]

[QB,K
µ] = 2iNf

g2

16π2
ǫµνλσ∂ν(C

a∂λA
a
σ), (4)

where QB is the BRST charge and Ca is the Fadeev-Popov ghost.

To quantize this system, we have to break the gauge invariance under (3). This can be done by adding

the term

1

4F 2
S(m

2
S −m2

NS)α
(∂µKν − ∂νKµ)

2, (5)

where α is a gauge parameter. The simplest case is to choose α = 1. One can then derive the Feynman

rules as follows:

Kµ-propagator:
iηµν
k2

F 2
S(m

2
S −m2

NS), S-propagator:
i

k2 −m2
NS

,

S −Kµ-mixing:
1

FS
kµ. (6)

It appears that the system (1) describes a scalar field S with mass mNS and a massless vector. However

it is not difficult to show that the mass of the scalar S gets shifted to mS due to the mixing of the scalar

and vector modes. This is the approach that Veneziano took in [6]. Alternatively, in the general gauge,

one can derive the two-point functions

T 〈Kµ(x)Kν(y)〉M =

∫

d4k

(2π)4
e−ik·(x−y)i

{k2 −m2
NS

k2 −m2
S

kµkν
(k2)2

+
α

k2

(

ηµν − kµkν
k2

)}

F 2
S(m

2
S −m2

NS),

T 〈S(x)S(y)〉M =

∫

d4k

(2π)4
e−ik·(x−y) i

k2 −m2
S

, (7)

T 〈S(x)Kµ(y)〉M =

∫

d4k

(2π)4
e−ik·(x−y)FS(m

2
S −m2

NS)

k2(k2 −m2
S)

,
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where T denotes the time-order and the subscript M stand for the expectation value by the Minkowski

vacuum. We see that the two-point function of S clearly shows that it has the shifted mass mS instead

of the original mNS , confirming the above claim. This is one of the consequences of the massless mode

Kµ and gives a resolution of the U(1) problem. What happens to the massless mode in the system?

Because we observe no massless field in the low-energy world, it must decouple from the physical sector.

The precise mechanism of this was not clear in the approach of Ref. [6] but it was simply assumed that

it decouples because it is gauge-variant, as indicated above. We now show how this can be achieved in

the Minkowski space.

One can derive the field equations from the Lagrangian (1):

2Kµ − ∂µ{(1− α)∂νKν + FS(m
2
S −m2

NS)S} = 0,

2S +m2
NSS +

1

FS
∂µKµ = 0. (8)

The first equation in (8) tells us that 2Kµ is expressed as a gradient of a field, so we find

2(∂µKν − ∂νKµ) = 0. (9)

Hence we can consistently impose the subsidiary condition on the physical states:

(∂µKν − ∂νKµ)
(+)|phys〉 = 0. (10)

In the gauge α = 1, we can write the mode expansion of the vector field. In terms of the canonically

normalized field K ′
µ(x) ≡ FS

√

m2
S −m2

NSK(x), it takes the form

K ′
µ(x) =

∫

d3k

(2π)3/2
√
2k0

e(λ)µ [e−ik·(x−y)a(k, λ) + eik·(x−y)a†(k, λ)], (11)

where e
(1)
µ = (0, e(1)) and e

(2)
µ = (0, e(2)) represent the transverse modes, e

(3)
µ = (0, e(3)) the longitudinal

mode, and e
(0)
µ = (1,0) the time component with

e
(3) =

k

|k| , e
(1) · e(2) = e

(1) · e(3) = e
(2) · e(3) = 0. (12)

Canonical quantization of the system then gives

[a(k, λ), a†(k′, λ′)] = ηλλ′δ3(k − k
′), (13)

We see that the transverse modes have the opposite sign to the usual gauge fields. It is then easy to see

that the condition (10) means that the two transverse components a(k, 1), a(k, 2) and the combination
1√
2
[a(k, 3) − a(k, 0)] should annihilate the physical state. This forbids the states generated by the two

transverse components and by 1√
2
[a†(k, 3) + a†(k, 0)]. The remaining component 1√

2
[a†(k, 3)− a†(k, 0)]

can only produce zero norm states, so that all the component of Kµ are completely decoupled from the

physical state. Nevertheless it produces the physical effect of shifting the mass of the singlet pseudo

scalar S and resolves the problem associated with the η′ meson decay [9]. In the Kogut-Susskind model,

similar subsidiary condition can be imposed [4, 11].

We are now going to see what effects this massless mode may produce if our space is not just the

Minkowski but curved space or time-dependent.
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3 Vector ghost in Rindler space

In this section, we consider the QCD vector ghost in the Rindler space. Consider the Minkowski space

ds2 = dt2 − dx2 − dy2 − dz2 ≡ dūdv̄ − dx2 − dy2, (14)

where we have defined

ū = t− z, v̄ = t+ z. (15)

Under the transformation

t =
1

a
eaξ sinh aη, z =

1

a
eaξ cos aη, (−∞ < η, ξ < ∞, a > 0), (16)

we obtain

ds2 = ea(v−u)dudv − dx2 − dy2 = e2aξ(dη2 − dξ2)− dx2 − dy2,

ū = −1

a
ea(ξ−η) ≡ −1

a
e−au, v̄ =

1

a
ea(ξ+η) ≡ 1

a
eav, (17)

The Rindler coordinates η and ξ in (16) describes only the quadrant part z > |t| called R. The opposite

quadrant part L: z < −|t| is described by changing the signs in (16). The rest of our Minkowski space

are described by analytic continuation of these coordinates [14, 15].

The wave function to be used in our massless vector field can be obtained from the solutions for the

scalar wave equation

φ;α
;α = 0. (18)

Explicitly this becomes in our coordinate system

[e−2aξ(∂2
η − ∂2

ξ )− ∂2
x − ∂2

y ] φ = 0. (19)

We denote by Ru(k) the wave function which asymptotes

Ru(k) =

{

e−ik0ue−i(k1x+k2y) in R

0 in L
(20)

along the surface v = −∞, v̄ = 0, the past horizon of the Rindler coordinate. Similarly the wave function

in the L region is defined as

Lu(k) =

{

0 in R

eik0ve−i(k1x+k2y) in L
(21)

The positive-frequency Minkowski modes are characterized by the condition that they are analytic

and bounded in the lower half complex ū plane on v̄ = 0. The combinations

1

[2 sinh(πk0/(2a))]1/2
(eπk0/(2a) Ru(k) + e−πk0/(2a) Lu(−k)∗), (22)

1

[2 sinh(πk0/(2a))]1/2
(e−πk0/(2a) Ru(−k)∗ + eπk0/(2a) Lu(k)), (23)
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where Lu(−k) and Ru(−k) denote the wave function with minus momenta, have precisely this prop-

erty [14, 15], so we can use these modes to express our Minkowski space field:

K ′
µ(x) =

∫

d3k

(2π)3/2
√
2k0

e
(λ)
µ

[2 sinh(πk0/(2a))]1/2
[(eπk0/(2a) Ru(k) + e−πk0/(2a) Lu(−k)∗)a(1)(k, λ)

+(e−πk0/(2a) Ru(−k)∗ + eπk0/(2a) Lu(k))a(2)(k, λ) + h.c.], (24)

and the Minkowski vacuum is defined as

a(i)(k, 1)|0M 〉 = a(i)(k, 2)|0M 〉 = [a(i)(k, 3)− a(i)(k, 0)]|0M 〉 = 0, (i = 1, 2). (25)

The field in the Rindler space is written as

K ′
µ(x) =

∫

d3k

(2π)3/2
√
2k0

e(λ)µ [Lu(k) b(1)(k, λ) + Lu(k)∗ b(1)†(k, λ)

+ Ru(k) b(2)(k, λ) + Ru(k)∗ b(2)†(k, λ)], (26)

Comparing (24) and (26), we see that

b(1)(k, λ) =
1

√

2 sinh πk0

a

[

eπk0/(2a)a(2)(k, λ) + e−πk0/(2a)a(1)†(−k, λ)
]

,

b(2)(k, λ) =
1

√

2 sinh πk0

a

[

eπk0/(2a)a(1)(k, λ) + e−πk0/(2a)a(2)†(−k, λ)
]

. (27)

The resulting energy for each mode is then given by

〈0M |
∫

d3k′
3

∑

λ,λ′=0

k0ηλλ′b(1)†(k, λ)b(1)(k′, λ′)|0M 〉

= 〈0M |
∫

d3k′
3

∑

λ,λ′=0

k0ηλλ′b(2)†(k, λ)b(2)(k′, λ′)|0M 〉 = 4k0
e2πk0/a − 1

. (28)

The vector field has four degrees of freedom and all of them are decoupled in the flat Minkowski space.

However, we find that they all contribute to the vacuum energy in the Rindler space. This is somewhat

surprising because naively one would expect that the longitudinal and scalar modes would cancel. Here

instead of cancelling, they add up. This is the main result. The result is factor 2 different from that in

Ref. [4], but the order of magnitude is the same.

One may ask why such a difference occurred and whether the disagreement is resolved if we consider

the Faddeev-Popov (FP) ghost. Actually the FP ghost was already discussed in Ref. [13], and the author

concludes that the BRST charge does not annihilate the vacuum. Under these circumstances it is not

useful to use it to discuss the contribution. However we should note that this system is abelian and

the contribution can be discussed perfectly well without such complication. (In fact it is argued that

the ghost does not make any contribution [13].) Rather the difference comes not from this but from the

treatment of the transverse modes. It was assumed there that the transverse modes decouple and make no

contribution, so they were completely eliminated from the outset. This is true for the Minkowski space,

but the whole point of the discussions is that the result and cancellation is modified when the system

is considered in the time-dependent background. So eliminating these modes from the start cannot be

justified. Thus it is expected that all four components contribute to the dark energy.
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The contribution of high frequency modes are suppressed by the factor e−2πk0/a and the main con-

tribution comes from k0 ∼ a. In the cosmological context, a ∼ H and hence k0 ∼ H , giving the vacuum

energy proportional to the Hubble parameter. In the context of strongly interacting confining QCD with

topological nontrivial sector, this effect occurs only in the time direction and their wave function in other

space directions is expected to have the size of QCD energy scale. As a result, this ghost gives the vacuum

energy density HΛ3
QCD of the right magnitude ∼ (3 × 10−3 eV)4. Thus this vacuum energy arises due

to the mismatch between the vacuum energies computed in slowly expanding universe and Minkowski

space.

For the modes with k0 ∼ 1 K ∼ 10−4 eV as in our present universe, the contribution is suppressed

by exp(−k0

H ) ∼ exp(−1029). The deviation from Minkowski space starts only for modes with large wave

length λ ∼ a−1. Thus the effect is infrared in nature. The local physics with k0 ≫ a is not affected by

the unphysical modes with high accuracy.

4 Discussions and conclusions

In this paper, correcting the argument of Ref. [4] in accordance with QCD, we have first clarified the

decoupling mechanism of the QCD vector ghost in the flat Minkowski space, and then evaluated the

contribution of the QCD vector ghost to the vacuum energy density in the Rindler space as a typical

example of time-dependent spacetime, and found that it gives the vacuum energy proportional to the

Hubble parameter.

This model has extremely interesting feature. First of all, this does not assume new degrees of freedom

only to produce nonzero cosmological constant. Rather it is induced by the already existing field just

because the universe is expanding. Secondly it gives the amazing result of the cosmological constant of

right magnitude without artificial fine tuning. Note that the vacuum energy is not just a constant but

depends on the Hubble parameter.

One may wonder that the unphysical modes or polarization of QED photon may also contribute to

the dark energy of the similar amount if the QCD vector ghost makes such contribution. However, QED

is weakly interacting theory unlike QCD and also does not have nontrivial topological structure, and

hence there is no restriction on the wave function as in QCD. So the contribution to the energy density

is very small of order H4 by dimensional reason and need not be considered [4]. However, see [16] for

alternative suggestion.

Other possible origin of such a “vacuum energy” was also suggested based on the QCD condensate [17],

assuming that there is no contribution for the flat Minkowski spacetime. Our mechanism is different in

that such an assumption is not necessary.

It has been suggested that the same ghost may also generate magnetic field in an expanding uni-

verse [18]. This is also discussed keeping only two components of the QCD vector ghost. It would be

interesting to check if this mechanism makes sense with the vector ghost. Another interesting question

is to try to find if there is any other effects to check the proposed mechanism. There are already some

discussions on this type of dark energy [19, 20]. These problems will be discussed elsewhere.
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