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ABSTRACT

Theories that attempt to explain cosmic acceleration by modifying gravity typically introduces a
long-range scalar force that needs to be screened on small scales. One common screening mechanism
is the chameleon, where the scalar force is screened in environments with a sufficiently deep gravi-
tational potential, but acts unimpeded in regions with a shallow gravitational potential. This leads
to a variation in the overall gravitational G with environment. We show such a variation can occur
within a star itself, significantly affecting its evolution and structure, provided that the host galaxy is
unscreened. The effect is most pronounced for red giants, which would be smaller by a factor of tens
of percent and thus hotter by 100’s of K, depending on the parameters of the underlying scalar-tensor
theory. Careful measurements of these stars in suitable environments (nearby dwarf galaxies not
associated with groups or clusters) would provide constraints on the chameleon mechanism that are
four orders of magnitude better than current large scale structure limits, and two orders of magnitude
better than present solar system tests.

Subject headings: stars: evolution – cosmological parameters – cosmology: theory

1. INTRODUCTION

The discovery of cosmic acceleration a decade ago has
spurred a number of attempts to modify general rela-
tivity (GR) on large scales. Such attempts generally
take the form of a scalar-tensor theory, at least in ap-
propriate limits (e.g. scales small compared to Hubble).
The fact that an extra (scalar) force is inevitably intro-
duced is a consequence of a theorem due to Weinberg
(1965) and Deser (1970), which states that a Lorentz-
invariant theory of a massless spin-two particle must be
GR at low energies, or long distances. In other words, to
modify the long range interaction between masses, one
has no other option but to introduce extra degrees of
freedom, such as a scalar field. The force mediated by
this scalar must be suppressed or screened in an envi-
ronment such as the solar system, to satisfy stringent
experimental constraints. One common screening mech-
anism is the chameleon (Khoury & Weltman 2004a,b;
Mota & Barrow 2004), where the scalar field has a mass
that depends on environment: the mass is large in high
density regions (and therefore the scalar force is short
range, or Yukawa suppressed), and small in low density
ones. The combined scalar + tensor force is thus de-
scribed by an effective Newton’s G that is smaller in
screened regions (such as the solar system), and larger
in unscreened regions such as voids. As we will discuss
below, the precise boundary between screened and un-
screened regions or objects is determined by the depth
of their gravitational potential.
Several recent papers discuss the observational impli-

cations of the chameleon mechanism on structure forma-
tion (Oyaizu et al. 2008; Schmidt et al. 2009a), and on
equivalence principle violations (Hui, Nicolis & Stubbs
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2009; Hui & Nicolis 2010). The latter arises when one
compares the motion of a screened versus an unscreened
object in an unscreened environment. A screened ob-
ject does not respond to the scalar field, while an un-
screened object does. Therefore, they fall at different
rates. Screening affects not only the response of objects
to the scalar, but also the sourcing of the scalar field
itself. Namely, a screened object does not source the
scalar field, while an unscreened object does. This will
be important for our discussion below.
In this paper, we show that stellar evolution is modified

in such scalar-tensor theories, and in particular the col-
ors and luminosities of red giant branch (RGB) stars are
measurably affected. Precision measurement of red gi-
ants in distant galaxies would place strong constraints on
theories that screen by the chameleon mechanism. The
key point is that while a red giant’s core is expected to
be screened, its envelope could well be unscreened de-
pending on the parameters of the theory. We focus on
red giants both because this sort of effect is most pro-
nounced in them, and because they can be observed at
great distances. But it should be mentioned that main
sequence stars in general will also be affected to some
extent by such spatial variations of the effective G. It
is also worth mentioning that another screening mecha-
nism, known as the symmetron (Hinterbichler & Khoury
2010), has a lot in common with the chameleon, namely
that screened and unscreened objects are distinguished
by their gravitational potential. We expect our conclu-
sions on the modification of the red giant’s structure to
apply to the symmetron case as well. On the other hand,
theories that make use of the Vainshtein screening mech-
anism, such as DGP (Dvali et al. 2000) and the galileon
(Nicolis et al. 2009), are not expected to greatly alter red
giants’ structure, because the screening extent is much
less localized than the chameleon or the symmetron.
We begin by giving a brief discussion of the chameleon

mechanism in §2, focusing on how it operates inside a
star, but also reviewing certain standard results. We
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then use an appropriately modified version of the stellar
evolution code, MESA, (Paxton et al. 2010) to calculate
the effects of modified gravity on RGB stars in §3. Fi-
nally, we discuss how constraints on these modified grav-
ity theories can be derived from careful measurements of
red giants in unscreened galaxies and close in §4.

2. THE SCALAR FIELD

The scalar ϕ in a chameleon theory is described by

∇2ϕ =
∂V

∂ϕ
+ α8πGρ, (1)

where V is the self-interaction potential, α is the scalar
coupling, and ρ is the mass density. Our notation and
normalization follows that of Hui et al. (2009). For in-

stance, α = 1/
√
2 means the (unscreened) scalar force

between two masses has exactly the same strength as
that mediated by the graviton; α > 0 in our convention.
We work in Einstein frame.
The potential V is typically chosen such that it is large

for small ϕ and small for large ϕ, such as in equation
(2) below. As a result, the equilibrium value for the
scalar field in a high density environment is small, and
corresponds to a large mass, which means it is Yukawa
suppressed, i.e. screened. Conversely, in a low density
environment, the equilibrium value for ϕ is large, and
the scalar field has a small mass and is unscreened. We
will use the symbol ϕ∗ to denote the equilibrium value
at cosmic mean density ρm.
For definiteness, we adopt a potential V of the form:

V (ϕ) = B +
A

ϕn
, (2)

where B, A and n are constants.3 Imposing the condition
ϕ = ϕ∗ for ρ = ρm implies:

A = 3H2
0Ω

0
m

ϕn+1
∗

n
α, (3)

where H0 is the Hubble constant today, and Ω0
m

= 0.3
is the matter density today. B should take a value such
that V (ϕ∗) accounts for the vacuum energy today:

B = 3H2
0

[

1− Ω0
m(1 +

αϕ∗

n
)
]

. (4)

However, as we are interested in the derivative of V with
respect to ϕ, B is irrelevant for our calculation. As we
will see, our conclusions are insensitive to the precise
form of the potential, for instance, the choice of n.
For an extended, spherical, object – say a star – de-

scribed by some mass density field ρ(r), the scalar field
profile is determined by equation (1), which can be solved
numerically as follows. Discretizing, labeling radial po-
sition using the index i, and using the potential outlined
above, we can rewrite equation (1) as

ϕi+1 + ϕi−1

2
+

ϕi+1 − ϕi−1

4
(∆ ln r) − η

2
ρir

2
i

= ϕi −
η

2
ρm

(

ϕ∗

ϕi

)n+1

r2i , (5)

3 Our convention is such that V , and therefore B and A, have
dimension of 1/ time2, and ϕ is dimensionless.

where η ≡ α8πG(∆ ln r)2. Equation (5) with the appro-
priate boundary conditions (dϕ/dr = 0 for small r and
ϕ = ϕ∗ for large r) is solved using a nonlinear Gauss-
Seidel algorithm with a Newton-Raphson root find at ev-
ery iteration (Press et al. 1992). More concretely, given a
guess for the scalar profile which can be plugged into the
left hand side of equation (5), one can solve for ϕi on the
right. Iteration then converges to the correct solution.
While this computation gives the most accurate answer

for a given ρ(r), it is sufficiently costly that it cannot
be used to construct hydrostatic models of stars, which
involves repeated calculations of ρ(r) itself. We there-
fore employ the following ansatz, which is fairly accurate.
First, we divide up the star into three regions, a screened
center, an unscreened ”mantle”, and an unscreened ex-
terior. In the screened central region, the scalar field sits
at the (small) local equilibrium value at each radius:

dV

dϕ
≈ −α8πGρ. (6)

Note that the screened center here might include both
the degenerate core of the red giant as well as part of
its envelope. In the unscreened ”mantle”, the scalar field
starts to be driven by the density:

∇2ϕ ≈ α8πGρ. (7)

Finally, outside the star, the density is so much lower
that we can approximate

∇2ϕ ≈ 0. (8)

The last approximation remains valid only for r smaller
than the Compton wavelength outside the star. In an un-
screened environment, this Compton wavelength is much
larger than the size of the star, and we assume ϕ asymp-
totes to ϕ∗ far away. Essentially the same approximation
scheme was worked out in Khoury & Weltman (2004a).
The main difference from their solution is that our ρ(r)
is not a top-hat, and we have an extended region i.e.
the mantle, where the scalar field is unscreened, but the
density is non-negligible.
At the radial boundary, rscr, between the screened cen-

ter and the unscreened mantle, let the field value and its
derivative be ϕscr and kϕscr/rscr, where k is a constant of
order unity. By demanding that ϕ and its derivative are
continuous at rscr, we find the solution in the unscreened
mantle (eq.[7]), rscr < r < R (stellar radius), to be:

ϕ(r) = G

∫

r

rscr

dr′
Q(r′)

r′2
− kϕscr

rscr
r

+ (1 + k)ϕscr, (9)

where Q(r) ≡ 8απ
∫ r

rscr
ρ(r′)r′2dr′ = 2α[M(r)−M(rscr)]

can be thought of as the scalar charge inside r. Here,
M(r) is the mass interior to r. Outside the star r > R,
the solution to equation (8) is

ϕ = ϕ∗ −
A

r
, (10)

where A is a constant. Demanding continuity and differ-
entiability at stellar radius R determines A and rscr:

A ≈ GQ(R) , (11)

GQ(R)

R
+

∫ R

rscr

GQ(r)

r2
≈ ϕ∗ , (12)
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where we have ignored terms involving ϕscr ≪ ϕ∗. The
acceleration due to the scalar force is given by −α∇ϕ.
The combined scalar + gravitational radial acceleration
geff is thus

geff = −G (M(r) + αQ(r))

r2
for r > rscr ,

geff = −GM(r)

r2
for r < rscr . (13)

The scalar force at r > rscr is sourced only by the un-
screened portion of the star, i.e. the scalar charge re-
ceives contribution only from the mantle. Within the
screened region r < rscr, the scalar force is Yukawa sup-
pressed, and therefore the only operating force is gravi-
tational (in the Einstein frame sense). The difference in
how the total acceleration relates to M(r), for r > rscr
and r < rscr, can be interpreted as a spatial variation of
an effective G. The G used in our expressions through-
out is a constant, and corresponds to the value observed
in the solar system.
Equations (11) and (12) can be rewritten as

∫ ∞

rscr

GM(r)

r2
dr − GM(rscr)

rscr
≈ ϕ∗

2α
(14)

The first term is simply (minus) the value of the gravi-
tational potential at r = rscr (fixing the potential to be
zero at infinity). The second term is of a similar order.
Equation (14) is a more accurate version of the com-
mon statement that the gravitational potential defines
the boundary between screened and unscreened regions
– regions with deeper gravitational potential than ϕ∗/2α
are screened (− grav. pot. ∼> ϕ∗/2α), while regions with
shallower potential are not (− grav. pot. ∼< ϕ∗/2α).
Note that only two parameters of the chameleon the-
ory are relevant for predicting the scalar force: α which
controls the strength, and ϕ∗/2α which controls where
screening takes place. Details of the potential V are
unimportant.
As a check of the accuracy of our ansatz, in Figure 1,

we compare the total force according to our ansatz (eq.
[13]) against that from an exact numerical calculation
(eq. [5]). We use the same stellar model as in Figure 2
(i.e. same ρ(r)). Here, as in elsewhere in this paper un-

less otherwise stated, we use α = 1/
√
6 which is the value

for f(R) (Carroll et al. 2004).4 Note however this value
is not protected by symmetry, the generic expectation is
α ≈ O(1) (Hui & Nicolis 2010). Figure 1 shows that our
ansatz is accurate at the level of ≈ 1%. We will use this
ansatz to perform our stellar evolution calculation.

3. RED GIANT STRUCTURE IN CHAMELEON GRAVITY

We modified the stellar evolution code MESA
(Paxton et al. 2010) to account for the scalar field
changes to the local gravity and calculate stellar evolu-
tion under these conditions. While the scalar field mod-
ified many different aspects of stellar evolution, we focus

4 Our treatment goes beyond f(R) theories and holds true for
any scalar-tensor theory with a scalar interaction of the chameleon
(or symmetron) kind. However, it is useful to note the relation
between ϕ∗/2α and the analogous parameter in a f(R) theory that
arises from a modified action of the type R → R+ f(R), where R
is the Ricci scalar. This relation is: ϕ∗/(2α) = −(df/dR)/(4α2) =
−1.5(df/dR).

Figure 1. Comparison of the total force (gravitational and scalar)
using a full numerical solution and our analytic ansatz, for the
density profile of a 1 M⊙ red-giant (Figure 2), and ϕ∗/2α = 10−6.
The numerical solution uses a potential V (eq. [2]) with n = 2.
Other choices of n gives very similar results. The upper panel
shows the total force, geff , normalized by the gravitational (non-
scalar) force, g = GM(r)/r2. The enhancement in the effective
gravitational force (i.e. total) is ≈ 20% in the outer envelope due to
the scalar field (a result of the choice 2α2 = 1/3; the enhancement
does not reach 1/3 because of the screened core). The screening
radius rscr is located at about 109 cm. The lower panel shows the
fractional difference in the total force between the numerical and
analytic solutions. It is at the percent level.

Figure 2. Radius (thin lines) as a function of mass fraction for
a 1 M⊙ red giant for a star near the TRGB, with ϕ∗/2α = 10−6

(dashed line; core screened) and 0 (solid line; entirely screened i.e.
GR), and 2α2 = 1/3. Also plotted is the ratio between the radiative
acceleration, arad, and effective gravity, geff , in thick lines. The age
of the two stars is respectively 10.9 and 11.9 Gyrs for the partially
and completely screened case (the age is chosen to yield the same
luminosity of 2000 L⊙). Note the 10R⊙ difference in photospheric
radius between these two cases.
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Figure 3. Left plot shows evolutionary track of stars of various masses (denoted in units of solar masses for each track: 1M⊙ in thick red
lines and 1.5M⊙ in thin blue lines) for different values of ϕ∗/2α = 0 (solid lines; scalar completely screened i.e. GR), 10−6 (short-dashed
lines), 10−7 (long-dashed lines), and 10−8 (dotted lines), all with 2α2 = 1/3 appropriate for f(R) gravity. Right plot is a closeup of the
star on the RGB highlighting the difference between the completely screened star, and the partially screened ones. Note the difference in
Te between the two is ≈ 130 K.

on the RGB phase as these stars are sufficiently bright
that they can be observed in distant galaxies (see our
discussion in §4). In Figure 2 we show the structure of a
≈ 2×103 L⊙ RGB star that evolved from a 1M⊙ main se-
quence star with ϕ∗/2α = 10−6 (i.e. screened at its core)
and 0 (i.e. screened in its entirety, meaning GR limit).
Solar metallicity is assumed, as in the rest of the paper.
The difference in photospheric radius between the two
stars is ≈ 10R⊙ with the completely screened star being
larger (R ≈ 145R⊙). Because of the smaller radius of
the scalar-field influenced star, its effective temperature
is larger by ≈ 150 K (Teff = 3395 K vs 3258 K).
In Figure 3, we plot the HR diagram for 1 (red) and 1.5

(blue) M⊙ stars with different degrees of screening. We
evolve a star from the zero-age main sequence (ZAMS) up
to the tip of the red giant branch (TRGB) for ϕ∗/2α =
0 (solid lines; no scalar correction i.e. complete screen-
ing), 10−6 (short-dashed lines), 10−7 (long-dashed lines),
and 10−8 (dotted lines). We have not considered val-
ues smaller than ϕ∗/2α < 10−8 as the potential depth
(v2cir/c

2) of dwarf galaxies are typically ∼ 10−8. This
means that cases where ϕ∗/2α < 10−8 are subject to
blanket screening: a host galaxy with a potential as shal-
low as that of a typical dwarf is sufficient to screen the
scalar for the star of interest (see §4 for more discussions
on blanket screening).
We note the following features. For ϕ∗/2α = 10−6,

significant departures from the main sequence is imme-
diately apparent, whereas for ϕ∗/2α = 10−7 and 10−8,
significant deviation do not appear until the RGB phase.
That is to say, the scalar field affects the outer envelope
for a 1 M⊙ star even on the main sequence, effectively in-
creasing the star’s mass (i.e. increasing its photospheric
temperature for the same luminosity). This effect is re-
duced and harder to observe for smaller values of ϕ∗/2α.
We do not comment on this effect here, choosing instead
to focus on RGB stars, but it potentially allows for yet

another probe of modified gravity, albeit for larger val-
ues of ϕ∗/2α (∼ 10−6). Second, all three ϕ∗/2α’s show
measurable differences from the the fully screened case
(i.e. GR limit) on the RGB. Namely, the scalar-field
influenced 1 M⊙ case has nearly the same effective tem-
perature as the 1.5M⊙ RGB for ϕ∗/2α = 10−6 and 10−7

, i.e., the scalar-influenced star is hotter by ≈ 150 K (this
effect is smaller – ∆Teff ≈ 60 K – for the ϕ∗/2α = 10−8

case).
To develop a better qualitative understanding of why

red giants are such good probes of chameleon gravity, we
plot the ratio of the radiative acceleration, arad, and the
effective gravity, geff (total scalar + gravitational accel-
eration), as a function of mass fraction in Figure 2. Here
we define arad = κL/4πr2c as a function of the total lu-
minosity, L, where κ is the Rosseland mean opacity. As
arad > geff for the vast majority of the envelope, the en-
ergy flux is not carried outward by radiation, but rather
by convection (Kippenhahn & Weigert 1990; Paczyński
1969). Only near the photosphere, where arad = geff ,
can radiation carry away the star’s luminosity. It is this
condition arad = geff that determines the position of the
photosphere for both the fulled screened and partially
screened (scalar-influenced) star.
The opacity in the envelope is dominated by H− opac-

ity, which scales like T 9 for 3000 . T . 6000 K
(Hansen et al. 2004). The scaling between effective grav-
ity of the red giants (due to scalar fields) and the photo-
spheric temperature of ǫeff ∼ 9∆Tph/Tph then gives

∆Tph ≈ 110

(

Tph

4000K

)

( ǫeff
0.25

)

K, (15)

which roughly matches what we are finding in the full
calculation.
Finally in Figure 4, we consider the effect of differ-

ent values of the scalar coupling, α, on RGB structure
for three different values of ϕ∗/2α = 10−6, 10−7 and
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Figure 4. The effective temperature as a function of the scalar
coupling, 2α2, for a L = 2000L⊙, 1M⊙ RGB star. For a red giant
that is not under the influence of a scalar field, i.e., 2α2 = 0,
Teff ≈ 3270K. As the coupling of the scalar field increases, Teff

increases, a result of the smaller size of the RGB star.

10−8. We plot the effective temperature of a 2000L⊙

RGB star for different values of the scalar coupling. The
case of no scalar coupling 2α2 = 0 is the GR limit, where
Teff ≈ 3270 K. As α increases, the effective tempera-
ture increases. For instance the effective temperature is
≈ 3400 K for 2α2 = 1/3 (the f(R) gravity case we studied
above), which is an increase of ≈ 130 K over the unmod-
ified case. For 2α2 = 1.5, Teff ≈ 3700 K, an increase of
over 400 K above the fully screened case.

4. DISCUSSION

As we have mentioned, we have mainly focused on
RGB stars as they are observable in distant galaxies
due to their large luminosity. Indeed tip of the RGB
stars are seen out to ≈ 30 Mpc (Mager et al. 2008) and
used for accurate distance measurements (see the review
Freedman & Madore 2010). We have shown above that
their temperature is also very susceptible to the effects
of scalar fields. We now discuss their use as constraints
on modified gravity theories.
First let us discuss the precision with which their tem-

perature can be measured. Ferraro et al. (2006) (see also
Cassisi 2007) collected high quality J, H, and K photom-
etry of 28 Galactic globular clusters to measure the effec-
tive temperatures of RGB stars at fixed bolometric lumi-
nosities. Their measurement uncertainty of ≈ ±30 − 60
K suggests that measuring an effective temperature dif-
ference of ≈ 150 K is quite viable. For a scalar-matter
coupling α larger than 1/

√
6, the expected temperature

difference should be even larger.
We caution other effects are also important in influenc-

ing the temperature of RGB stars. For instance, metallic-
ity can change the effective temperature of a RGB star by
a few hundred K (see Figure 4 of Cassisi 2007 or Figure
2 and 3 of Ferraro et al. 2006). Fortunately, metallicity
effects are well modeled using modern stellar evolution
codes (again see Figure 4 of Cassisi 2007). A constraint
on the metallicity of these stars, e.g., spectroscopic mea-
surements, will help mitigate these effects. There are also

additional effects that might contribute, i.e., uncertain-
ties in mixing-length theory, conductive opacities, etc,
but these are being mitigated via comparison to local
RGB stars.
The effects of modified gravity on stellar evolution (for

φ∗/2α ∼ 10−8 − 10−7) would also manifest itself in de-
viation of the RGB branch under modified gravity (see
Figure 3). This deviation would be a unique signature
of modified gravity compared to metallicity variations.
Constraining this deviation in “clean” system such as
globular clusters around unscreened galaxies would also
place limits on the parameter of the chameleon mecha-
nism.
As is apparent from Figure 3, the mass of the initial

star may also shift the color of these TRGB stars so
that they appear bluer. Namely the degeneracy between
scalar field effects and mass of the RGB star needs to
be broken. An examination of Figure 3 suggests several
methods by which this can be done. If ϕ∗/2α is small,
the deviation from the RGB track due to the effect of the
scalar field can be used to directly test for the strength of
the scalar field. However, for a sufficiently large ϕ∗/2α,
this happens sufficiently early in the RGB phase that
the deviation might be missed. In that case, the mass of
these RGB stars would need to be established and this
can happen in several ways. For instance, if the stellar
population is relatively uniform and a clean turnoff mass
can be identified, this would put a strong constraint on
the mass of the progenitor. Note that the RGB track
for the scalar influenced 1 M⊙ traces the (fully) screened
1.5 M⊙ track fairly closely. However, the positions of the
turnoff for 1 and 1.5 M⊙ stars are significantly different.
We now discuss the current constraints on chameleon

theories, and examine what kind of host galaxies are
needed to improve them. Stringent tests of GR in the
solar system tell us that the scalar must be screened
within it. The simplest interpretation is that the so-
lar system is screened by virtue of its residing inside the
Milky Way (MW), which has a self gravitational poten-
tial of ∼ −10−6. 5 This suggests ϕ∗/2α ∼< 10−6 so that
the MW, and therefore its constituent solar system, is
screened. 6 This could possibly be evaded by saying
that the MW is screened not so much by its self gravita-
tional potential, but by virtue of its residing in the local
group. But data and constrained realizations suggest the
local group has a gravitational potential rather similar
to that of the MW itself (Klypin et al. 2003). Neigh-
bors of the local group are unlikely to change the pic-
ture significantly – for instance, both the Virgo cluster
and the local void contributes a potential at the MW of
the order of 10−6, with opposite signs (Peebles & Nusser
2010). Structure formation offers a constraint indepen-
dent of such MW considerations: ϕ∗/2α ∼< 10−4 from the
observed cluster abundance (Schmidt et al. 2009b). We

5 By coincidence, the sun has a similar gravitational potential,
∼ −2× 10−6.

6 Another option is of course that the scalar-matter coupling α
is very close to zero. This is the uninteresting limit of the scalar
force being practically invisible to everything else. Our discussion
assumes instead gravitational strength coupling of α ∼ O(1), in-

cluding for instance the f(R) value of α = 1/
√
6. Observational

constraints on chameleon theories ultimately translate into limits
on the plane of ϕ∗/2α and α (see Fig. 3 of Hui et al. 2009).
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will frame our discussion mainly in terms of improving
the MW constraint of 10−6, though obviously the im-
provement will be even greater when compared against
the more conservative structure formation limit.7

Red giants located in a host galaxy with a gravitational
potential shallower than the MW can improve upon the
existing constraint. For instance, a 100 km/s host galaxy
could push the limit on ϕ∗/2α to 10−7; a 30 km/s
dwarf could push it to 10−8. The important point is to
avoid blanket screening, i.e. avoid host galaxies that are
screened by their surroundings, such as by virtue of being
situated inside a cluster or massive group.8 This means
that for red giants located within a 100 km/s galaxy to
be useful, we would like to make sure the galaxy’s sur-
roundings contribute a potential no deeper than −10−7.
This should be achievable if the galaxy is located at a dis-
tance of more than a few Mpc from the MW9, avoiding
the local sheet and into the general direction of the local
void (Klypin et al. 2003). For red giants located within
a 30 km/s dwarf to be useful, we should make sure the
galaxy’s neighbors contribute a potential no deeper than
−10−8. For this, one could venture deeper into the lo-
cal void (Peebles & Nusser 2010) , or go to the field or
voids that are further away from nearby concentrations of
galaxies (∼> 10 Mpc, Szomoru et al. 1996a,b; Rojas et al.

2004; van de Weygaert et al. 2009; Stanonik et al. 2009).
Obviously, an accurate mapping of the gravitational po-
tential of the local universe (∼< tens of Mpc) would be
highly desirable in determining which galaxies are likely
to be unscreened by environment.
In this paper, we have shown that RGB stars in galax-

ies with shallower potential than the MW can be used to
improve constraints on modified gravity theories that in-
voke the chameleon or symmetron mechanism. We have
shown that RGB stars with an unscreened envelope (but
generally screened core) are more compact, and hence
hotter (by ≈ 150 K) than completely screened RGB stars
(like the ones in the MW) at the same luminosity. This
temperature difference should be measurable in distant
unscreened galaxies. Dwarf galaxies in the field or in
voids will give us the strongest limits, improving the
current solar system or MW constraint by 2 orders of
magnitude, and current structure formation constraints
by 4 orders of magnitude.

We thank Bill Paxton for helping us set up MESA
and his patience with answering our many questions
regarding its design. Without his help, this work would
not have been possible. We also thank B. Madore for
useful discussions. P.C. is supported by the Canadian
Institute for Theoretical Astrophysics. L.H. is supported
by the DOE (DE-FG02-92-ER40699) and NASA (09-
ATP09-0049), and thanks Hong Kong University, New

York University and the Institute for Advanced Study
for hospitality. This research has made use of NASA’s
Astrophysics Data System.

REFERENCES

Adams, F. C. 2008, J. Cosmology Astropart. Phys., 8, 10
Carroll, S. M., Duvvuri, V., Trodden, M., & Turner, M. S. 2004,

Phys. Rev., D70, 043528
Cassisi, S. 2007, in IAU Symposium, Vol. 241, IAU Symposium,

ed. A. Vazdekis & R. F. Peletier, 3–12
Deser, S. 1970, Annals Phys., 59, 248
Dvali, G. R., Gabadadze, G., & Porrati, M. 2000, Phys. Lett.,

B485, 208
Ferraro, F. R., Valenti, E., Straniero, O., & Origlia, L. 2006, ApJ,

642, 225
Freedman, W. L., & Madore, B. F. 2010, ArXiv e-prints
Hansen, C. J., Kawaler, S. D., & Trimble, V. 2004, Stellar

interiors : physical principles, structure, and evolution, ed.
Hansen, C. J., Kawaler, S. D., & Trimble, V.

Hinterbichler, K., & Khoury, J. 2010, Phys. Rev. Lett., 104,
231301

Hui, L., & Nicolis, A. 2010, Phys. Rev. Lett., in press,
[arXiv:1009.2520 [hep

Hui, L., Nicolis, A., & Stubbs, C. W. 2009, Phys. Rev. D, 80,
104002

Khoury, J., & Weltman, A. 2004a, Phys. Rev., D69, 044026
—. 2004b, Phys. Rev. Lett., 93, 171104
Kippenhahn, R., & Weigert, A. 1990, Stellar Structure and

Evolution, ed. Kippenhahn, R. & Weigert, A.
Klypin, A., Hoffman, Y., Kravtsov, A., & Gottloeber, S. 2003,

Astrophys. J., 596, 19
Mager, V. A., Madore, B. F., & Freedman, W. L. 2008, ApJ, 689,

721
Mota, D. F., & Barrow, J. D. 2004, Mon. Not. Roy. Astron. Soc.,

349, 291
Navarro, J. F., Frenk, C. S., & White, S. D. M. 1996, ApJ, 462,

563
Nicolis, A., Rattazzi, R., & Trincherini, E. 2009, Phys. Rev., D79,

064036
Oyaizu, H., Lima, M., & Hu, W. 2008, Phys. Rev., D78, 123524
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