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In considering alternative higher-order gravity theories, one is liable to be motivated in pursuing
models consistent and inspired by several candidates of a fundamental theory of quantum gravity.
Indeed, motivations from string/M-theory predict that scalar field couplings with the Gauss- Bonnet
invariant, G, are important in the appearance of non-singular early time cosmologies. In this work,
we discuss the viability of an interesting alternative gravitational theory, namely, modified Gauss-
Bonnet gravity or f(G) gravity. We consider specific realistic forms of f(G) analyzed in the literature
that account for the late-time cosmic acceleration and that have been found to cure the finite-time
future singularities present in the dark energy models. We present the general inequalities imposed
by the energy conditions and use the recent estimated values of the Hubble, deceleration, jerk and
snap parameters to examine the viability of the above-mentioned forms of f(G) imposed by the
weak energy condition.

PACS numbers: 04.50.-h, 04.50.Kd, 98.80.-k

I. INTRODUCTION

A central theme in Cosmology is the perplexing fact
that the Universe is undergoing an accelerating expan-
sion [1]. The latter, one of the most important and chal-
lenging current problems in cosmology, represents a new
imbalance in the governing gravitational equations. His-
torically, physics has addressed such imbalances by either
identifying sources that were previously unaccounted for,
or by altering the governing equations. The cause of this
acceleration still remains an open and tantalizing ques-
tion. The standard model of cosmology has favored the
first route to addressing the imbalance, namely, a missing
stress-energy component. In particular, the dark energy
models are fundamental candidates responsible for the
cosmic expansion (see Refs. [2] for a review and refer-
ences therein).

One may also explore the alternative viewpoint,
namely, through a modified gravity approach. A very
promising way to explain these major problems is to as-
sume that at large scales Einstein’s theory of General
Relativity breaks down, and a more general action de-
scribes the gravitational field. The Einstein field equa-
tion of General Relativity was first derived from an action
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principle by Hilbert, by adopting a linear function of the
scalar curvature, R, in the gravitational Lagrangian den-
sity. However, there are no a priori reasons to restrict the
gravitational Lagrangian to this form. Indeed, several
generalizations of the Einstein-Hilbert Lagrangian have
been proposed, including a more general modification
involving an arbitrary function of the scalar invariant,
f(R) [3] and other Lagrangians involving second order
curvature invariants such as R2, RµνR

µν , RαβµνR
αβµν ,

εαβµνRαβγδR
γδ
µν , CαβµνCαβµν , etc [4]. The physical moti-

vations for these modifications of gravity were related to
the possibility of a more realistic representation of the
gravitational fields near curvature singularities and to
create some first order approximation for the quantum
theory of gravitational fields.

In addition to this, in considering alternative higher-
order gravity theories, one is liable to be motivated in
pursuing models consistent and inspired by several candi-
dates of a fundamental theory of quantum gravity. In this
context, it may be possible that unusual gravity-matter
couplings predicted by string/M-theory may become im-
portant at the recent low-curvature Universe. For in-
stance, one may couple a scalar field not only with the
curvature scalar, as in scalar-tensor theories, but also
with higher order curvature invariants. Indeed, motiva-
tions from string/M-theory predict that scalar field cou-
plings with the Gauss-Bonnet invariant G are important
in the appearance of non-singular early time cosmologies.
It is also possible to apply these motivations to the late-
time Universe in an effective Gauss-Bonnet dark energy
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model [5] (many aspects of Gauss-Bonnet gravity have
been analyzed in the literature [6–8]).

An interesting alternative theory is modified Gauss-
Bonnet gravity, or f(G) gravity, where f(G) is a general
function of the Gauss-Bonnet term [9–12]. Note that the
linear Gauss-Bonnet term is a topological invariant and
the variation of the density

√−gG in the action leads to
a total divergence, and therefore does not contribute to
the field equations. Specific realistic models of f(G) grav-
ity were constructed to account for the late-time cosmic
acceleration [12, 13], and it is these forms of f(G) that
we consider in this work. The respective constraints of
the parameters of the models were also analyzed in [13].
More specifically, in [13] the four types of finite-time fu-
ture singularities emerging in the late-time accelerating
era were studied from f(G)-gravity. It was shown that
by taking into account higher-order curvature corrections
the finite-time future singularities in f(G)-gravity are
cured. Therefore, it turns out that adding such a non-
singular modified gravity to singular dark energy models
makes the combined theory to be non-singular one as
well. In this context, we further consider the constraints
imposed by the energy conditions and verify whether the
parameter range of the specific models considered in [13]
are consistent with the energy conditions. More specif-
ically, we define generalized energy conditions for f(G)
modified theories of gravity, and consider their realization
for flat Friedmann cosmological models. In particular, we
analyze whether the weak energy condition is satisfied by
particular choices of f(G) which were advocated in Refs.
[12, 13] as leading to viable models.

The energy conditions are fundamental to the singu-
larity theorems and theorems of classical black hole ther-
modynamics (we refer the reader to [14] for more de-
tails). Note that the energy conditions are obtained when
one refers back to the Raychaudhuri equation for expan-
sion, where the attractive character of gravity is reflected
through the positivity condition, i.e., Rµνk

µkν ≥ 0, with
Rµν the Ricci tensor and kµ any null vector. Now, in
general relativity, through the Einstein field equation one
ends up with Tµνk

µkν ≥ 0, which is the null energy con-
dition. In particular, the weak energy condition (WEC)
assumes that the local energy density is positive and
states that TµνU

µUν ≥ 0, for all timelike vectors Uµ,
where Tµν is the stress energy tensor (for a perfect fluid
we have ρ > 0 and ρ + p ≥ 0). By continuity, the WEC
implies the null energy condition (NEC), Tµνk

µkν ≥ 0,
where kµ is a null vector [14]. The energy conditions
have been extensively analyzed in the literature, such as
in the cosmology settings and f(R) gravity and we refer
the reader to Refs. [15, 16] for more details.

This paper is outlined in the following manner: In Sec-
tion II, we present the gravitational field equations for
modified Gauss Bonnet gravity, and in Section III, we
outline the respective inequalities from the energy condi-
tions. In Section IV, we consider specific forms of f(G),
and analyze the constraints arising from the energy con-
ditions. Finally, in Section V we present our conclusions.

Throughout this work, we consider the following units
c = G = 1 (here G is the Newtonian gravitational con-
stant to distinguish it from the Gauss-Bonnet term, G).

II. FIELD EQUATIONS OF f(G) MODIFIED

GRAVITY

An interesting alternative gravitational theory is modi-
fied Gauss-Bonnet gravity, which is given by the following
action:

S =
1

2κ2

∫

d4x
√−g [R+ f(G)] + SM (gµν , ψ) , (1)

where the Gauss-Bonnet invariant is defined as

G ≡ R2 − 4RµνR
µν +RµναβR

µναβ . (2)

It is also important to note that in the matter action,
matter is minimally coupled to the metric and not to
the scalar field, making Gauss-Bonnet gravity a met-
ric theory. Thus, using the diffeomorphism invariance
of SM (gµν , ψ) yields the covariant conservation of the

stress-energy tensor, ∇µT
(mat)
µν = 0.

This theory has been extensively analyzed in the liter-
ature [6, 7, 9], and rather than review all of its intricate
details here, we note that it is a subset of Gauss-Bonnet
gravity, where the gravitational sector is given by the
action written in the following form

Sg =
1

2κ2

∫

d4x
√−g

[

R− λ

2
∂µφ∂

µφ− V (φ) + f(φ)G

]

,(3)

where λ = +1 is defined for a canonical scalar field, and
λ = −1 for a phantom field, respectively.
To see this, we follow closely the approach outlined in

Ref. [8, 9]. By introducing two auxiliary scalar fields A
and B, the gravitational part of the action (1), may be
rewritten as

Sg =
1

2κ2

∫

d4x
√−g [R +B(G−A) + f(A)] . (4)

Now varying the action (4) with respect to B, one obtains
A = G, so that the gravitational sector of the action
(1) is recovered. Varying with respect to A, one obtains
B = f ′(A), and substituting in (4) leads to

Sg =
1

2κ2

∫

d4x
√−g [R+ f ′(A)(G −A) + f(A)] . (5)

With the following definitions φ = A and V (φ) =
Af ′(A) − f(A), one finally ends up with the following
action

S =
1

2κ2

∫

d4x
√−g [R− V (φ) + f(φ)G] + SM (gµν , ψ) .

(6)
which is simply the action for Gauss-Bonnet gravity (3)
with the absence of the kinetic term. Thus, modified
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Gauss-Bonnet theory, given by (1) is dynamically equiv-
alent to Gauss-Bonnet gravity with λ = 0 [8, 9], where
λ is the multiplicative constant appearing in the kinetic

term. We refer the reader to Refs. [6, 7] for more details.
Now varying the action (1) with respect to the metric

provides the following gravitational field equation

Rµν − 1

2
Rgµν = κ2T (mat)

µν +
1

2
gµνf(G) +

(

−2RRµν + 4RµρRν
ρ − 2Rµ

ρστRνρστ + 4gαρgβσRµανβRρσ

)

f ′(G)

+2 [∇µ∇νf
′(G)]R− 2gµν [�f

′(G)]R+ 4 [�f ′(G)]Rµν − 4 [∇ρ∇µf
′(G)]Rν

ρ

−4 [∇ρ∇νf
′(G)]Rµ

ρ + 4gµν [∇ρ∇σf
′(G)]Rρσ − 4 [∇ρ∇σf

′(G)] gαρgβσRµανβ , (7)

where the prime denotes differentiation with respect to
G. Note that ∇µ is the covariant derivative opera-
tor associated with gµν , � ≡ gµν∇µ∇ν is the covari-

ant d’Alembertian, and T
(mat)
µν is the contribution to the

stress energy tensor from ordinary matter.
In this paper, we consider the flat FRW space-time

described by the metric

ds2 = −dt2 + a2(t)dx2 , (8)

where a(t) is the scale factor.
In the FRW background, and taking into account a

perfect fluid equation of state for ordinary matter, it fol-
lows that the field equations for f(G) gravity are given
by

24H3ḟ ′(G) + 6H2 + f(G)−Gf ′(G) = 2κ2ρ , (9)

8H2f̈ ′(G) + 16Hḟ ′(G)
(

Ḣ +H2
)

+
(

4Ḣ + 6H2
)

+f(G)−Gf ′(G) = −2κ2p , (10)

where ρ and p are the energy density and pressure, re-
spectively, and the overdot denotes a derivative with re-
spect to the time coordinate, t.

Moreover, we have

R = 6
(

2H2 + Ḣ
)

, (11)

G = 24H2
(

H2 + Ḣ
)

. (12)

In the FRW background, the gravitational field equa-
tions may be rewritten to take the following form

ρeff =
3

κ2
H2 , peff = − 1

κ2

(

2Ḣ + 3H2
)

, (13)

where ρeff and peff are the effective energy density and
pressure, respectively, defined as

ρeff =
1

2κ2

[

−f(G) + 24H2
(

H2 + Ḣ
)

f ′(G)− 242H4
(

2Ḣ2 +HḦ + 4H2Ḣ
)

f ′′(G)
]

+ ρ , (14)

peff =
1

2κ2

{

f(G)− 24H2
(

H2 + Ḣ
)

f ′(G) + (24)8H2
[

6Ḣ3 + 8HḢḦ + 24Ḣ2H2 + 6H3Ḧ

+8H4Ḣ +H2 ...
H
]

f ′′(G) + 8(24)2H4
(

2Ḣ2 +HḦ + 4H2Ḣ
)2

f ′′′(G)
}

+ p , (15)

where Eqs. (11)-(12) were used.
We also present the following useful relationship

ρeff + peff = ρ+ p+
96H2

κ2

[(

6Ḣ3 + 8HḢḦ − 18Ḣ2H2 + 3H3Ḧ − 4H4Ḣ +H2 ...
H
)

f ′′(G)

+24H2
(

2Ḣ2 +HḦ + 4H2Ḣ
)2

f ′′′(G)
]

, (16)

as it will be used throughout the text in the context of the energy conditions.

III. ENERGY CONDITIONS

The energy conditions arise when one refers to the Ray-
chaudhuri equation for the expansion, given by

dθ

dτ
= −1

2
θ2 − σµνσ

µν + ωµνω
µν −Rµνk

µkν , (17)

where Rµν is the Ricci tensor, and θ , σµν and ωµν are,
respectively, the expansion, shear and rotation associ-
ated to the congruence defined by the null vector field
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kµ. Note that the Raychaudhuri equation is a purely ge-
ometric statement, and as such it makes no reference to
any gravitational field equations.
The shear is a “spatial” tensor with σ2 ≡ σµνσ

µν ≥ 0,
thus from Raychaudhury’s equation it is clear that for
any hypersurface orthogonal congruences, which imposes
ωµν ≡ 0, the condition for attractive gravity reduces to
Rµνk

µkν ≥ 0. The latter inequality ensures that geodesic
congruences focus within a finite value of the parameter
labeling points on the geodesics. However, in general rel-
ativity, through the Einstein field equation one can write
the above condition in terms of the stress-energy tensor
given by Tµνk

µkν ≥ 0. In any other theory of gravity,

one would require to know how one can replace Rµν us-
ing the corresponding field equations. In particular, in a
theory where we still have an Einstein-Hilbert term, the
task of evaluating Rµνk

µkν is trivial. However, in f(G)
modified theories of gravity under consideration, things
are not so straightforward.

For convenience Eq. (7) may be written as the follow-
ing effective gravitational field equation

Gµν ≡ Rµν − 1

2
Rgµν = T eff

µν , (18)

where the effective stress-energy tensor is given by

T eff
µν = κ2T (mat)

µν +
1

2
gµνf(G) +

(

−2RRµν + 4RµρRν
ρ − 2Rµ

ρστRνρστ + 4gαρgβσRµανβRρσ

)

f ′(G)

+2 [∇µ∇νf
′(G)]R − 2gµν [�f

′(G)]R+ 4 [�f ′(G)]Rµν − 4 [∇ρ∇µf
′(G)]Rν

ρ

−4 [∇ρ∇νf
′(G)]Rµ

ρ + 4gµν [∇ρ∇σf
′(G)]Rρσ − 4 [∇ρ∇σf

′(G)] gαρgβσRµανβ . (19)

In this context, the positivity condition, Rµνk
µkν ≥ 0,

in the Raychaudhuri equation provides the following form
for the null energy condition T eff

µν k
µkν ≥ 0, through the

modified gravitational field equation (18). We also im-

pose the condition T
(mat)
µν kµkν ≥ 0 for ordinary matter.

This is useful as applying local Lorentz transformations
it is possible to show that the above condition implies
that the energy density is positive in all local frames of
reference.
Taking into account that the Raychaudhuri equation

holds for any geometrical theory of gravitation, we will
maintain its physical motivation, namely, the focussing of
geodesic congruences, along with the attractive charac-
ter of the gravitational interaction to deduce the energy
conditions in the context of f(G) modified gravity. To
this end, using the modified (effective) gravitational field
equations the energy conditions in this context are given
by

NEC ⇐⇒ ρeff + peff ≥ 0 , (20)

WEC ⇐⇒ ρeff ≥ 0 and ρeff + peff ≥ 0 , (21)

SEC ⇐⇒ ρeff + 3peff ≥ 0 and ρeff + peff ≥ 0 , (22)

DEC ⇐⇒ ρeff ≥ 0 and ρeff ± peff ≥ 0 , (23)

where the notation NEC, WEC, SEC and DEC stand for
the null, weak, strong and dominant energy conditions,
respectively.
Now, in standard mechanics terminology the first four

time derivatives of position are referred to as velocity,
acceleration, jerk and snap. In a cosmological setting, in
addition to the Hubble parameter H = ȧ/a, it is appro-
priate to define the deceleration, jerk, and snap parame-
ters as

q = − 1

H2

ä

a
, j =

1

H3

...
a

a
, and s =

1

H4

....
a

a
, (24)

respectively.
In terms of the these parameters, we consider the fol-

lowing definitions

Ḣ = −H2(1 + q) , (25)

Ḧ = H3(j + 3q + 2) , (26)
...
H = H4(s− 2j − 5q − 3) , (27)

respectively.
Using the above definitions, then the energy conditions

(20)-(23) take the following respective forms

NEC : ρeff + peff = ρ+ p+
96

k2
{

−(6q3 + 27q2 + 21q + 8qj + 9j − s)f ′′(G)+

24[4(q2 + 2q + 1)H2 + 2q2 + 7q + j + 4]f ′′′(G)
}

H8 ≥ 0 , (28)

WEC : ρeff = ρ+
1

2k2
[

−f(G)− 24H4qf ′(G)− (24)2H8(2q2 + 3q + j)f ′′(G)
]

≥ 0, ρeff + peff ≥ 0 , (29)
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SEC : ρeff + 3peff = ρ+ 3p+
1

k2
[f(G) + 24H4qf ′(G) + 288H8(−6q3 − 23q2 − 15q − 8qj − 7j + s)f ′′(G)

+(24)(288)H12(2q2 + 3q + j)2f ′′′(G)] ≥ 0 , ρeff + peff ≥ 0 , (30)

DEC : ρeff − peff = ρ− p+
1

k2
[−f(G)− 24H4qf ′(G)− 96H8(−6q3 − 15q2 − 3q − 8qj − 3j + s)f ′′(G)

−(24)(96)H12(2q2 + 3q + j)2f ′′′(G)] ≥ 0 , ρeff + peff ≥ 0, ρeff ≥ 0 . (31)

IV. VIABLE f(G) THEORIES USING THE

ENERGY CONDITIONS

Viable f(G) modified theories of gravity were used
in [12] to account for the late-time cosmic acceleration.
These latter models were studied in the context of curing
the four types of finite-time future singularities emerging
in the late-time accelerating era [13]. Indeed it was shown
that by taking into account higher-order curvature cor-
rections, in the context of f(G) gravity, the finite-time
future singularities are cured. In this context, we fur-
ther consider the constraints imposed by the energy con-
ditions and verify whether the parameter range of the
specific models considered in [13] are consistent with the
energy conditions for flat Friedman cosmological models.
Thus, we consider some specific forms of f(G), consid-

ered in [12, 13] given by

f1(G) =
a1G

n + b1
a2Gn + b2

, (32)

f2(G) = a3G
n(1 + b3G

m) , (33)

where a1, a2, b1, b2, a3, b3, n, and m are constants. In
the following, we always assume n > 0.

Note that the Gauss-Bonnet invariant, defined in Eq.
(12), can be expressed as

G = −24H4q , (34)

in terms of the Hubble and the deceleration parameters,
respectively.

As the inequalities imposed by the energy conditions
in f(G) gravity are extremely lengthly, in the follow-
ing analysis we only consider the WEC in exemplifying
the application of the energy conditions. We consider
the following present-day values for the deceleration,
jerk and snap parameters [17, 18]: q0 = −0.81 ± 0.14,
j0 = 2.16+0.81

−0.75, and s0 = −0.22+0.21
−0.19.

A. Specific case: f1(G) = a1G
n
+b1

a2G
n+b2

In first place, we consider the specific case of Eq. (32).
For simplicity in the examples analyzed we consider vac-
uum, i.e., ρ = p = 0. The WEC constraints, i.e., ρeff ≥ 0
and ρeff + peff ≥ 0, are respectively given by

−[a1(−24qH4)n + b1][a2(−24qH4)n + b2] + n(−24qH4)n(a1b2 − a2b1) + (24)2nH8(−24qH4)n−2[a2(n+ 1)×

×(−24qH4)n + b2(1− n)]
(a1b2 − a2b1)(2q

2 + 3q + j)

a2(−24qH4)n + b2
≥ 0 , (35)

n(−24qH4)n(−b1a2 + a1b2){(6q3 + 27q2 + 21q + 8qj + 9j − s)[n(a22(−24qH4)2n − b22) + (a2(−24qH4)n + b2)
2]

+(4H2 + 8H2q + 4H2q2 + 2q2 + 7q + j + 4)[4a2b2(1− n2)(−24qH4)n + a22(n
2 + 3n+ 2)(−24qH4)2n

+b22(n
2 − 3n+ 2)]q−1H−4} ≥ 0 . (36)

The constraints provided by the inequalities (35)-(36)
are too complicated to find exact analytical expressions
for the parameter ranges of the constants a1, a2, b1, b2,
and n, so we consider specific values for some of the pa-
rameters. In particular, we impose the following values
a1 = −1, b1 = −1, and a2 = 2, and plot the WEC as a
function of b2 and n, which is depicted in Fig. 1. The
latter does indeed prove that the specific form of f1(G)

given by Eq. (32) considered in [13] is consistent with
the WEC inequalities.

B. Specific case: f2(G) = a3G
n(1 + b3G

m)

We consider the specific realistic case of Eq. (33) an-
alyzed in [13] which accounts for the late-time cosmic
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FIG. 1: The plots depict the weak energy condition for the specific form of f1(G) = a1G
n
+b1

a2G
n+b2

. The left plot corresponds to
ρeff ≥ 0; the right plot corresponds to ρeff + peff ≥ 0. We have considered the values a1 = −1, b1 = −1, and a2 = 2. The plots
show that the weak energy condition are satisfied for the parameter range considered. See the text for details.
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FIG. 2: The plots depict the weak energy condition for the specific form of f2(G) = a3G
n(1+ b3G

m). The left plot corresponds
to ρeff ≥ 0; the right plot corresponds to ρeff + peff ≥ 0. The parameter range for this specific case is given: n > 1

2
, n 6= 1,m <

0, n+m > 1, a3b3 > 0. We have considered the specific values (n = 2.5, m = −1). See the text for details.

acceleration, and that cured the four types of finite-time
future singularities emerging in the late-time accelerat-
ing era, given by the following specific conditions n > 0,
m < 0 and n 6= 1 and for several parameter ranges.
Rather than exhaustively analyze all of the cases, we
consider a specific case that does indeed prove that in
addition to curing the finite-time future singularities is
satisfies the weak energy condition. The latter parame-
ter range is given by following

n > 1/2, n+m > 1 and a3b3 > 0 , (37)

n > 1/2, 2/3 < n+m < 1 and a3b3 < 0 , (38)

n > 1/2, and n+m ≤ 2/3 . (39)

For the form of f2(G) considered by Eq. (33), the
WEC constraints, i.e., ρeff ≥ 0 and ρeff + peff ≥ 0, are
given by

−a3{(−24qH4)n[1 + b3(−24qH4)m] + 24H4(−24qH4)n−1[n+ (n+m)b3(−24qH4)m]

+242H8(−24qH4)n−1[n+ (n+m)b3(−24qH4)m](2q2 + 3q + j)} ≥ 0 , (40)
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FIG. 3: The plots depict the weak energy condition for the specific form of f2(G) = a3G
n(1+ b3G

m). The left plot corresponds
to ρeff ≥ 0; the right plot corresponds to ρeff + peff ≥ 0. The parameter range for this specific case corresponds to: n > 1
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1, m < 0, 2

3
< n+m < 1, a3b3 < 0. We have considered the specific values (n = 1.8, m = −1). See the text for details.
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FIG. 4: The plots depict the weak energy condition for the specific form of f2(G) = a3G
n(1+ b3G

m). The left plot corresponds
to ρeff ≥ 0; the right plot corresponds to ρeff + peff ≥ 0. The parameter range for this specific case corresponds to: n > 1

2
, n 6=

1, m < 0, n+m < 2

3
. We have considered the specific values of n = 1.3, m = −1. See the text for details.

a3(−24qH4)n{(6q3 + 27q2 + 21q + 8qj − s)[n2 − n+ b3(−24qH4)m(n2 − n+ 2nm+m2 −m)]

+(4H2 + 8H2q + 4H2q2 + 2q2 + 7q + j + 4)[n3 − 3n2 + 2n+ b3(−24qH4)m(n3 − 3n2 + 3n2m

+2n− 6nm+ 3nm2 +m3 − 3m2 + 2m)]q−1H−4} ≥ 0 , (41)

respectively.

As in the previous example, the constraints provided
by the inequalities (40)-(41) are too complicated to find
exact analytical expressions for the respective parameter
ranges of the constants a3, b3, m, and n, so we consider
specific values for the parameters. The parameter con-
straint given Eq. (37), with the following specific values
(n = 2.5,m = −1) are depicted in Fig. 2; the constraints
provided by Eq. (38) are depicted in Fig. 3 for the val-
ues (n = 1.8,m = −1); and finally the constraints pre-
sented by Eq. (39) are depicted in Fig. 4 for the values
(n = 1.3,m = −1). The respective WEC conditions are
then provided as a function of the parameters a3 and b3.
As in the previous case, the plots depicted in Figs. 2-4

do indeed prove that the specific form of f2(G) given by
Eq. (33) considered in [13] is consistent with the WEC.

V. DISCUSSION AND FINAL REMARKS

The standard model of cosmology is remarkably suc-
cessful in accounting for the observed features of the Uni-
verse. However, there remain a number of fundamental
open questions at the foundation of the standard model.
In particular, we lack a fundamental understanding of the
acceleration of the late universe. Recent observations of
supernovae, together with the WMAP and SDSS data,
lead to the remarkable conclusion that our universe is
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not just expanding, but has begun to accelerate. One is
liable to ask: What is the so-called ‘dark energy’ that is
driving the acceleration of the universe? Is it a vacuum
energy or a dynamical field (“quintessence”)? Or is the
acceleration due to infra-red modifications of Einstein’s
theory of General Relativity? How is structure forma-
tion affected in these alternative scenarios? What will
the outcome be of this acceleration for the future fate of
the universe?
The aspects of these fundamental questions whose res-

olution is so important for theoretical cosmology, need
to look beyond the standard theory of gravity. A very
promising way to explain these major problems is to as-
sume that at large scales Einstein’s theory of General Rel-
ativity breaks down, and a more general action describes
the gravitational field. It is clear that these open ques-
tions involve not only gravity, but also particle physics.
String theory provides a synthesis of these two parts of
physics and is widely believed to be moving towards a
viable quantum gravity theory. Thus, in considering al-
ternative higher-order gravity theories, one is liable to be
motivated in pursuing models consistent and inspired by
several candidates of a fundamental theory of quantum
gravity. In this context, predictions of string/M-theory in
the context of gravity-matter couplings, show that cou-
plings of the scalar field with higher order curvature in-
variants are important. In particular, a coupling of the
scalar field with the Gauss-Bonnet invariant G are fun-
damental in the appearance of non-singular early time
cosmologies.

In this work, we discussed the viability of an inter-
esting alternative gravitational theory, namely, modified
Gauss-Bonnet gravity or f(G) gravity. We considered
specific realistic forms of f(G) analyzed in the literature
that account for the late-time cosmic acceleration and
that cured the finite-time future singularities [12, 13].
The general inequalities imposed by the energy condi-
tions were outlined and using the recent estimated values
of the Hubble, deceleration, jerk and snap parameters we
have shown the viability of the above-mentioned forms of
f(G) imposed by the weak energy condition.

However, as argued in [16] it is important to emphasize
that although the energy conditions in modified theories
of gravity have a well-founded physical motivation, i.e.,
the attractive nature of gravity as outlined in Raychaud-
huri’s equation, the issue as to whether they should be
applied to modified theories of gravity is an open ques-
tion, which is ultimately related to the confrontation be-
tween theory and observations.
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