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We present the results of extensive simulations regarding the critical behavior at the endpoint of
the Roberge-Weiss transition for Ny = 2 QCD. We confirm early evidence, presented in Ref. [1],
according to which the Roberge-Weiss endpoint is first order in the limit of large or small quark
masses, and second order for intermediate masses. A systematic study of the transition strength as
a function of the quark mass in the first order regions, permits us to estimate the tricritical values
of the quark mass separating the second order region from the first order ones.
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I. INTRODUCTION

A full understanding of the QCD phase diagram at fi-
nite temperature 7' and baryon chemical potential pp is
one of the main unreached goals within the Standard
Model of Particle Physics. Various questions remain
open, which are of fundamental importance both the-
oretically and phenomenologically, for astrophysics and
heavy ion collisions, like the existence and location of a
possible critical endpoint in the T'— up plane, accessible
to experiments.

Lattice QCD simulations, which are in principle the
ideal tool for a full non-perturbative investigation of the
phase diagram, are unfortunately hindered at up # 0 by
the complex nature of the path integral measure (sign
problem). Among other approximate methods, a way
to partially overcome the sign problem is to consider a
purely imaginary quark chemical potential, 1g = pg/3 =
ipr: numerical simulations are feasible and information
about real up can be recovered by analytic continuation
techniques [2-16].

Recent literature has pointed out that the phase struc-
ture at finite 7" and imaginary chemical potential may be
important by its own, and teach us something about the
non-perturbative properties of QCD also at zero or small
real pup [1,[11,[17-20]. Such phase structure is character-
ized by a periodicity of the partition function

Z(T, puy) = Tr (67%(7:LQCD*’L',U‘INQ)) (1)

in the angular variable @ = p; /T, which can be viewed, in
the path integral representation of the partition function,
as a phase rotation of fermion boundary conditions in
the Euclidean temporal direction. It can be shown [21]
that the period in 6 is 27/N,, where N, is the number
of colors. Such periodicity is smoothly realized in the
low temperature, confined phase, as expected from the
fact that only uncolored states, with N, multiple of N,
contribute to the system dynamics.

The situation is different in the high temperature
phase, as expected from the fact that also colored states
appear. Indeed, as can be explicitly verified by pertur-
bative computations [21l], the periodicity is realized in
a non-analytic way: the system goes through first order
lines, known as Roberge-Weiss (RW) transitions, when 6
crosses some fixed values, 0, = (2k + 1)7/N,, where k
is an integer. For such values of 8 the system possesses
an exact Zs symmetry, which is spontaneously broken
for T > Trw and unbroken for T" < Tgrw: therefore at
T = Trw, which is in fact the endpoint of the RW lines,
a genuine finite T' phase transition takes place for all val-
ues of the quark masses. Such transition coincides with
the phase transition at which charge symmetry is sponta-
neously broken when a spatial dimension is compactified
below a given critical size and which has been studied by
recent literature [23-27)].

The endpoint of the RW lines has been considered by
recent literature |1, 11, [17, 19, [20], for its possible influ-
ence on the critical properties and on the phase diagram
of QCD. The endpoint can be second order in the 3D
Ising universality class, or first order; in the latter case
it is actually a triple point, from which two further first
order lines depart.

In Ref. [1] first evidence has been presented showing
that, for QCD with two degenerate flavors (N; = 2),
the endpoint is first order in the limit of small quark
masses and second order for intermediate masses; first
order comes back in the high quark mass regime, where
the system reaches its quenched limit. In the same paper
it has been pointed out that, when the endpoint is first
order (triple point), one of the further first order lines
departing from it can be identified with (part of) the
continuation of the critical line to imaginary chemical
potential, thus explaining early evidence [4, [5] that the
latter meets the RW line right on its endpoint. A further
conjecture, put forward in Ref. [1], has been that the
nature of the transition at u = 0 as a function of the
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quark mass spectrum (which is summarized in the so-
called Columbia plot) is regulated by the physics of the
RW endpoint itself, i.e. that the = 0 transition is first
order only when the first order line departing from the
RW triple point reaches the y = 0 axis.

Recently the numerical study of the RW endpoint has
been extended to Ny = 3 QCD |19], confirming also for
this case the presence of a first order transition for small
and high quark masses, with a second order region for
intermediate masses. Moreover, the authors of Ref. [19]
have suggested that the tricritical behaviour which is
present at the two tricritical masses, separating the sec-
ond order from the first order regions, may shape the
critical line also for real values of the chemical potential,
implying a weakening of the transition with real chemical
potentials which was suggested also by earlier works [28].

All the results and conjectures above claim for a more
systematic study of the phase diagram in the T — uj
plane, which is perfectly feasible with present simulation
algorithms. The aim of the present work is to move a step
in this direction, by extending in a substantial way the
original results presented in Ref. [1] for Ny = 2 QCD.
In particular we will present results about the critical
behavior at the RW endpoint for a large set of quark
masses, confirming the results of Ref. [1I] and giving an
estimate for the two tricritical masses, my; and myo >
my1, separating the first order regions from the second
order one.

Our first instrument to discern the critical behavior
around the RW endpoint is the finite size scaling of vari-
ous susceptibilities. However, an accurate determination
of the critical properties around the tricritical point may
be a non-trivial task. Much can be learned in this direc-
tion by the study of simpler statistical systems, like the
3D 3-state Potts model in presence of a negative magnetic
field h |22], which shares some of the properties of QCD
along the RW lines, i.e. the presence of a residual Zs
symmetry which gets spontaneously broken at a critical
temperature. In that model the transition is first order
for small values of |h| and second order for large values of
||, with a tricritical value of the field, htyic, Separating
the two regimes®. As shown in Ref. [22], discerning the
correct universality class close to hyc is difficult since, at
a given distance from Ay, tricritical scaling will mask
the correct critical indexes up to a given lattice size Ly ax,
which is regulated by tricritical crossover exponents. A
similar phenomenon is expected around m;; and myso.
Following Ref. [22], an alternative strategy will be to de-
termine parameters which fix the strength of the first
order transition for m < myg; or m > mys, like the latent
heat or the gap of the order parameter, and extrapolate
the values of m at which such parameters vanish, i.e. the

1 In the Potts model, of course, one does not observe the re-

strengthening of the transition (hence a second tricritical point),
which is present for QCD at low masses and which is likely caused
by the interplay with chiral degrees of freedom.

first order transition disappears.

Our results have been obtained using standard rooted
staggered fermions on lattices with N, = 4. The paper
is organized as follows: in Sec. II we give more details
about the discretized version of QCD under investigation
and about the observables and the strategy used for the
study of the critical behaviour; in Sec. III we present our
numerical results and finally, in Sec IV, we discuss our
conclusions and perspectives.

II. NUMERICAL SETUP

We shall consider the partition function of Ny = 2
QCD in presence of an imaginary chemical potential and
in the standard staggered discretization of dynamical
fermions,

Z(T,0) = /DU@’SG[U] (det M[U,0))"? | (2)

where 8 = u; /T, S¢ is the pure gauge plaquette action
and M is the fermion matrix

3
1
Mij = amdi; + 5 ;m,u (Uz‘,u5i,j—:> - Ula,ﬁi,jw)

+ M4 (eilw] Ui;45i,j—4 — etart U_]L

Liadige) - @)
Here i and j refer to lattice sites, U is a unit vector on
the lattice, 7;, are the staggered phases, a is the lattice
spacing and m is the bare quark mass.

RW transitions take place for § = (2k + 1)7/3. We
shall consider in particular the case § = 7: for this value
the residual Z5 symmetry, which is spontaneously broken
at Trw, corresponds to charge conjugation, hence the
imaginary part of the Polyakov loop or, alternatively, the
imaginary part of the baryon number can be taken as
possible order parameters; as in Ref. |1l], we shall consider
the former. In the following L will stand for the spatially
averaged Polyakov loop trace (normalized by N.), hence
Im(L) is the order parameter.

The order parameter susceptibility is defined by

X = L (Im(L)?) — (Im(L)])*), (4)

where L is the spatial size in lattice units, and is ex-
pected to scale, around the transition, as follows:

x =L ¢(tLY). (5)

where t = (T — Trw)/Trw is the reduced temperature.

That means that the quantities x/ LZ/ Y. measured on dif-
ferent lattice sizes, should fall on the same curve when
plotted against LYV,

Another relevant quantity is the specific heat C of the
system, which is instead expected to scale as

C = Cy+ LYY ¢o(tLM"), (6)



v v a ~v/v afv
3D Ising |0.6301(4) |1.2372(5) |0.110(1) |~ 1.963|~ 0.175
Tricritical| 1/2 1 1/2 2 1
1°% Order 1/3 1 1 3

TABLE I: Critical exponents (see e.g. |29, 130]).

where C is a regular contribution. The values of the crit-
ical indexes «, v and v which are relevant to our analysis
are listed in Table[ll together with the values they take
for the different critical behaviors which may take place
in our system, i.e. first order, second order in the univer-
sality class of the 3D Ising model, and tricritical mean
field.

A careful verification of Eqs. (@) and (@), as well as
of similar relations giving the finite size scaling behav-
ior of other relevant quantities, gives information about
critical indexes, hence about the universality class of the
transition. A more direct way, in the case of a first order
transition, is to verify the existence, in the thermody-
namical limit, of finite gaps in the order parameter or in
the internal energy (latent heat), which may be visible
by looking at double peak distributions of physical ob-
servables around the transition, or by studying the large
volume limit of some cumulants.
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FIG. 1: Monte-Carlo histories of the real and imaginary part
of the Polyakov loop for a 8 value (5.328) around the critical
point and am = 0.0175 on a 163 x 4 lattice.

An example is the Binder-Challa-Landau cumu-
lant [31] of the energy, which is defined as By = 1 —
(E*Y)/(3(E?)?). Tt can be shown (see e.g. [32]) that near
a transition By develops minima whose depth scales as
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FIG. 2: Reweighted distribution of the real part of the

Polyakov loop at the pseudo-critical point for am = 1.5 and
various lattice sizes.
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FIG. 3: Reweighted distribution of the real part of the
Polyakov loop at the pseudo-critical point for am = 1. and
various lattice sizes.

$(E4 + E_). In particular, the thermodynamical limit
of Blmin is less than 2/3 if and only if a latent heat
is present. To simplify our analysis we have considered
the average plaquette (sum of the spatial and temporal
plaquettes) in place of the internal energy, since it is a
quantity which can be measured much more easily and,
like the internal energy, is even under the Zs symmetry
which gets broken at the RW endpoint. To simplify the
notation, in the following we will use the shorthand
2

B == — Bi|min- 8
3~ Bl (8)

A different, but analogous quantity is the gap of the



T ]
60 - Lg=12 n
r --Lg=16 1
50 — Lg=201
i L.=24 il
s
or —Lg=32] |
30 -
20 -
10 -
L /, \\\ . i
0 =" 0z 0.04 e o TR

FIG. 4: Reweighted distribution of the real part of the
Polyakov loop at the pseudo-critical point for am = 0.5 and
various lattice sizes.

order parameter, A, which can be extracted by looking
at the scaling of the maximum of its susceptibility, y,
and using the relation, valid in the large volume limit for
a first order transition,

LB
Xmax ™~ A + ZSA2 . (9)

Both Ag and A are expected to vanish as we approach
a tricritical mass my,ic from the first order side. In par-
ticular, the leading order expected behaviour is the fol-
lowing (see [33] or [34] for a brief summary)

AE Xy h — htric (10)

and

A o< /|(h = hisic) 1og(h — husic)| (11)

where we have indicated generically by h the relevant pa-
rameter driving the change from first to second order. It
is clear that h is a function of the quark mass and that
close enough to the tricritical point one can always set
h — Rtric ~ M — Myric; however, appropriate choices of h
can improve the region around the tricritical mass where
Egs. (I0) and () hold. Our choice will be h ~ m in the
low mass region and h ~ 1/m in the high mass region. It
is interesting to notice that Eq. (I0]) may seem ambigu-
ous, since a multiplicative redefinition h — const. x h
changes the functional dependence; however, as long as
(h — htric) < 1, the change is subleading and Eq. (I
still gives the dominant contribution.

Close to the tricritical points it can be particularly
difficult to discern the correct critical behaviour taking
place in the thermodynamical limit. Indeed, while first
order/3D Ising scaling are expected to take place for a
continuous range of values of m and exact tricritical scal-
ing only for specific values m = my,ic, what really hap-
pens is that tricritical scaling regulates a neighborhood
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FIG. 5: Reweighted distribution of the plaquette (average of
spatial and temporal) at the pseudo-critical point for am =
0.005 and various lattice sizes.

of myyic, whose size goes to zero as Ly — oo according
to critical indexes known as crossover exponents (see e.g.
[30, 35, 136]). Indeed, the true critical behaviour of the
system can be seen only for |t| < |h — huyic|/?, where ¢ is
the reduced temperature and ¢ is the crossover exponent,
which is by definition ¢ = yp,/y: (y+ and yp, are the renor-
malization group eigenvalues of the relevant variables ¢
and h — hiic), in particular ¢ = 1/2 in our case [33].
Putting the question the other way around, on a finite
lattice of typical size Lg, |t| can be traded for LY and
the previous condition becomes Ly 2> |h — hmc|f”/¢’; in
particular, according to the known tricritical indexes in
Table[ll one expects tricritical behaviour to dominate and
mask the correct thermodynamical limit up to a critical
size

Lo~ A |h— hyie| 7, (12)

where A is some unknown constant. Such a behavior has
been studied and verified quantitatively in Ref. [22] in the
case of the 3D 3-state Potts model in a negative external
field, which shares part of the symmetries studied in the
present work.

The difficulties in discerning the correct critical behav-
ior around myyc may result in a difficult determination
of the tricritical mass itself. For this reason we have fol-
lowed the strategy adopted in Ref. [22], i.e. to determine
the cumulant of the plaquette B and the gap of the order
parameter A2 for values of m where a first order tran-
sition is present, and then to determine my,ic by fitting
data with the expected behaviors in Eqs. (I0) and (I).

With the aim of determining the tricritical masses
my1 and mys present in the low and high mass re-
gions respectively, we have studied the critical be-
haviour of the system for various quark masses, am =
0.005,0.01,0.0175,0.025,0.03,0.075,0.5,1.,1.25,1.5 and
2.0. For each quark mass we have made simulations



1001 i
90+ —
80 —
70+ —
60— —
50— —
40+ —
30 —
20— —
10F R :

97- N ! ! AT ]
.49 05 051 052 053 054
FIG. 6: As in Fig. [l for am = 0.01.
200 N
re -
N L= 12
[ | \ —- LS =16 il
150 , \ — Lg=20 _
P L =32
L ‘ ]

100 - ! |
50 |
0 L et C| ..

0.51 052 053 0.54

FIG. 7: As in Fig. Bl for am = 0.075.

on lattices with Ny = 4 and different spatial sizes Ly,
reaching up to L, = 40 when necessary to correctly dis-
criminate the critical behavior. Numerical simulations
have been performed using the standard Rational Hy-
brid Monte-Carlo algorithm [37]: collected statistics have
been typically of the order of 10° trajectories around the
critical 8 and for each value of L.

Apart from results obtained for am = 0.025 and
am = 0.075, which were already partially reported in
Ref. [1], most numerical simulations have been performed
on two GPU farms located in Pisa and Genoa and pro-
vided by INFN, consisting of a total of 8 S1070 (32
C1060) NVIDIA GPUs. The numerical code, which runs
almost entirely on the GPUs, has been described in detail
in Ref. [38].
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FIG. 8: Monte-Carlo histories of the Polyakov loop (abso-
lute value) and of the chiral condensate for a 8 value (5.314)
around the critical point and am = 0.01, on a 16® x 4 lattice.

am B A% /4

0.005 |2.15(10) x 107*/9.60(20) x 1073
0.010 |1.54(7) x 107* |8.04(26) x 1073
0.0175]1.01(8) x 10~* |6.40(40) x 1073
0.025 [0.69(4) x 107* |5.54(24) x 1073
0.030 |0.48(7) x 107* |4.60(50) x 1073
0.035 |0.32(6) x 10* |3.60(40) x 1073
1.00 |0.38(4) x 10™° [2.59(13) x 1073
1.25 |0.58(7) x 107° [4.16(36) x 1073
1.50  [0.66(7) x 107° |4.32(24) x 1073
2.00 [0.89(7) x 107° |5.20(20) x 1073

TABLE II: Estimated values for the thermodynamical limit
of B and A?/4 for values of the quark mass where a first
transition takes place.

III. NUMERICAL RESULTS

The presence of a first order RW endpoint, i.e. of a
triple point at the end of the RW lines, has clear sig-
natures in the Monte-Carlo (MC) histories and in the
probability distributions of the order parameter and of
other quantities. In Fig. [l we show the MC histories
of the real and imaginary part of the Polyakov loop for
am = 0.0175, where the endpoint is first order, and a 3
value around the transition. Metastabilities are clearly
detectable, with Im(L), the order parameter, taking three
distinct possible values, one in the unbroken and two in
the broken Z5 phase. Re(L), which is Z5 even, takes in-
stead only two distinct values corresponding to the bro-
ken and unbroken phase.

In Figs. 2 Bl and @] we show the reweighted distribu-
tion of Re(L), at the pseudocritical values of 5 taking
place on the different lattice sizes, for three values of
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FIG. 10: Scaling of x for am = 0.075 according to 3D Ising critical indexes (left) and to tricritical mean field indexes (right).

am in the heavy quark region, am = 1.5,1.0 and 0.5 re- indicating that in this case the first order transition is
spectively. For am = 1.5 and am = 1.0 a double peak weaker. For am = 0.5, instead, the distribution stays
distribution clearly develops and deepens as Ly — o0, single peaked for all explored volumes, suggesting that

indicating a first order transition, even if in the latter the endpoint may be second order in this case: this hy-
case one has to reach Ly, = 40 to clarify the behavior, pothesis is indeed consistent with the determination of



FIG. 11: Maximum of the susceptibility of the order param-
eter, x, as a function of the lattice size Ls, together with a
cubic fit x = A + B L? including all sizes (x?/d.o.f. = 0.89).
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FIG. 12: Binder-Challa-Landau cumulant of the plaquette
(see definition in Eq. (§) as a function of the lattice size
for am = 0.025 and am = 0.075. In the first case a func-
tion B = a + b/L? + ¢/L% describes well all data with
a = 0.69(4) x 107* and x*/d.o.f. = 0.13. For am = 0.075, in-
stead, data with L, > 8 are well described (x?/d.o.f. = 0.69)
by a dependence B = aL® (b = 0.62(2)) which gives B = 0 in
the thermodynamical limit.

amyo presented later.

Similar considerations can be made for the light mass
region. In Figs. Bl 6 and [7l we show the reweighted pla-
quette distributions at the pseudocritical couplings for
am = 0.005,0.01 and 0.075 respectively. Double peak
distributions are present for the two lower masses, with
the first order being clearly stronger for am = 0.005.
For am = 0.075 instead, as already shown in Ref. [1],
the distribution stays single peaked, suggesting that the
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FIG. 13: Binder-Challa-Landau cumulant of the plaque-

tte, extrapolated to the thermodynamical limit, and A2/4
for small quark masses where a first order transition is
present. We include the result from a linear fit B =
b (am¢1 — am), giving the value of the tricritical mass am¢ =
0.0428(24) and x?/d.o.f. = 0.13 (we have included quark
masses am > 0.0175), and from a fit to Eq. (), A?*/4 =
¢ (ame —am)log(ame —am), giving ams1 = 0.0477(23) and
x?/d.o.f. = 0.37 (we have included quark masses am > 0.01).
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FIG. 14: Binder-Challa-Landau cumulant of the plaquette,
extrapolated to the thermodynamical limit, and A2/4 for high
quark masses where a first order transition is present. We in-
clude the result from linear fits Boc = b (1/(ams2) —1/(am)),
giving amp = 0.71(4) (x*/d.of. = 1.09), and A?/4 =
c (1/(ami2) — 1/(am)), giving ame = 0.67(3) (x?/d.of. =
1.0). All masses have been included in the fit in both cases.

endpoint is second order in this case: this is consistent
with our determination of am:s (see later).

It is interesting to notice that, when the transition is
first order, a gap develops also in other quantities, includ-
ing the chiral condensate, as visible from Fig. 8, where we
show the MC histories of the chiral condensate and of the
Polyakov loop around the RW endpoint. That suggests



that, as for the usual thermal transition at y = 0, a strict
correlation between deconfinement and chiral symmetry
restoration may be present also at the RW endpoint.

These results already fully confirm the outcome of
Ref. [1]: the RW endpoint is first order in the chiral limit
and weakens as the quark mass is increased, till an in-
termediate mass region is reached where the transition is
second order; it is first order again in the high quark mass
limit, where it weakens as the quark mass is decreased.
Last result is in some sense trivial since, as already dis-
cussed in Ref. [1], it is expected from the fact that the
SU(3) pure gauge transition is first order.

Further confirmations come from looking at the finite
size scaling of the susceptibility of the order parameter,
X, which is shown in Fig.[d for am = 0.0175,0.03,1.5 and
1. The first order scaling ansatz, Eq. (), is always veri-
fied for the largest volumes available. However, typically
one has to go beyond some critical size before seeing the
correct asymptotic critical behavior, and this critical size
increases as the transition weakens, i.e. as we approach
the tricritical points. For instance, at am = 1 first order
scaling sets in only for Lg > 32.

Similar considerations apply to the second order re-
gion. On the left-hand side of Fig. [0, which is taken
from Ref. [1], we show the finite size scaling of x for
am = 0.075 according to 3D Ising critical indexes: scal-
ing is fair for the heights of the peaks and less fair for the
widths. On the contrary, we realize that tricritical mean
field indexes perform much better, as apparent from the
right-hand side of Fig. [[0 (notice from Table [l that /v,
regulating the height of the peaks, is practically the same
for 3D Ising and tricritical mean field, while 1/v, which
regulates the widths of the peaks, is different). That does
not mean, of course, that am = 0.075 is exactly equal to
one of the two tricritical masses, but rather that it is close
enough to one of them so that a fake tricritical scaling
masks the correct asymptotic scaling at least for sizes up
to Ly = 32. However, we do not know neither how close
we are to the tricritical mass, nor how large we have to
go with L, to reach the thermodynamical limit, since we
have no apriori knowledge of the prefactor appearing in
Eq. (12).

Therefore, in order to get a more reliable determination
of the tricritical masses, we follow the strategy described
in Sec. IT and proceed to a determination of the gap of the
order parameter and of the plaquette as a function of the
quark mass in the first order regions. In Fig. 1l we plot
the maxima of the order parameter susceptibility, x, as a
function of Ly, for am = 0.025, together with a fit to the
asymptotic expected behaviour, Eq. (@), from which we
extract A%/4, The same procedure has been repeated for
all quark masses where a first order transition is present.
In Fig. 12 instead, we plot the Binder-Challa-Landau
cumulant of the plaquette, B (see Eq. (8)), as a function
of 1/V for am = 0.025 and am = 0.075: in the first case
the cumulant extrapolates to a non-zero value as V. — oo,
with both linear and quadratic corrections in 1/V clearly
visible, while in the second case data are well described

by a power law and B = 0 as V — o0, indicating the
absence of gap in the plaquette.

In Table [T we summarize all determinations obtained
for B and A?/4. From such values we can try to deter-
mine the tricritical masses as the points where B and A
vanish, fitting data by the expected behaviors in Eqgs. (I0)
and (IIJ). In Figs.[[3lwe show the results of such fits in the
low mass region for B and A% /4, respectively. We obtain
amy; = 0.0428(24) from B. Instead, from A?/4, we get
amy = 0.0477(23) if we fix h = m in Eq. ([[I); however,
we have also tried to estimate the systematic uncertainty
related to a possible multiplicative redefinition, h = A m,
letting A change over 2 orders of magnitude around one:
variations on the fitted value of amy; are small but ap-
preciable, leading us to a more generous estimate of the
overall error on the determination obtained from A?/4,
in particular ams; = 0.048(5).

In Fig. [I4 we show instead the same kind of fits for the
high mass region: in this case we have used 1/(am) as
the relevant variable h, as explained in Sec. II. We obtain
amyz = 0.71(4) from B. Instead, regarding A%, we notice
that (h — hgyic) is O(1) and it makes no sense to look for
logarithmic corrections (see Eq. (II)), so we make use of
a simple linear fit also for A2, leading to am = 0.67(3).
However, also in this case we can redefine h = A/m, with
A < 1, and try again a fit with Eq. (II)): using A = 1072,
for instance, we obtain am;e = 0.73(3).

To summarize, we take as our final determinations of
the two tricritical masses, which take into account pos-
sible systematic errors, amy; = 0.045(5) and ami =
0.70(5). We notice that both determinations are consis-
tent with the fact that both am = 0.075 and am = 0.5,
where no metastability and double peak distribution is
observed, belong to the second order region governed, in
the thermodynamical limit, by 3D Ising critical indexes.

IV. CONCLUSIONS AND PERSPECTIVES

We have confirmed the outcome of Ref. [1] regarding
the order of the endpoint of the RW transition for Ny = 2
QCD: a first order endpoint (triple point) is present both
in the low mass and in the high mass limit; the endpoint
is second order for intermediate quark masses, which are
separated from the first order regions by two distinct tri-
critical masses. Following an investigation performed in
Ref. [22] for the 3D 3-state Potts model in a negative
external field, which shares part of the same symmetries
studied in the present work, we have performed a careful
study of some parameters directly linked to the strength
of the first order transition, in particular the Binder-
Challa-Landau cumulant of the plaquette and the gap
of the order parameter; that has permitted to obtain
independent and consistent determinations of the two
tricritical masses. Staying conservative with error esti-
mates, we state as our final result am;; = 0.045(5) and
amyz = 0.70(5). Such results are summarized in Fig. [I5]
where we sketch a phase diagram in the T-m, plane.
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FIG. 15: Sketch of the phase diagram in the T-mgy plane
which summarizes our results: in Ny = 2 QCD the endpoint
of the Roberge-Weiss transition is first order close to the chiral
and to the quenched limit and second order for intermediate
masses. A conservative estimate for the two tricritical masses
separating the second order region from the first order ones,
for the lattice discretization adopted in the present work, is
amyz1 = 0.045(5) and am2 = 0.70(5).

The value of am;; corresponds to a pion mass of the
order of 400 MeV, hence we conclude that for physical
quark masses the RW endpoint should be well inside the
first order region. It is therefore of primary importance
to explore what is the fate of the further first order lines
departing from the triple point. One of them, in partic-
ular, may reach the zero density axis or have a critical

endpoint arbitrarily close to it, which could have great
influence on the physics of strongly interacting matter
right above the deconfinement transition. The question
is also strictly connected to the problem of the order of
the chiral transition for Ny = 2 [39, 40)].

Another important issue is of course to extend our in-
vestigation to Ny # 2 and confirm the conjecture that
the nature of the transition at © = 0 may be regulated
by the physics of the RW endpoint [1], i.e. that the p =10
transition is first order only when the first order line de-
parting from the RW triple point reaches the p = 0 axis,
and that tricritical scaling may shape the chiral critical
surface [19].

All these investigations will require extensive numeri-
cal simulations, which are however perfectly feasible since
they involve an imaginary chemical potential. Part of this
program is progress.

We stress that our present results are valid for the stan-
dard rooted staggered discretization of the theory and
for lattices with N; = 4, corresponding to a lattice spac-
ing of about 0.3 fm. A key issue is then also to verify
that the main features of the phase diagram remain un-
changed when changing discretization and/or approach-
ing the continuum limit. The two tricritical masses could
still be present, but the first order regions could in prin-
ciple extend or shrink in a significant way.
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