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Electromagnetic properties of non-Dirac particles
with rest spin 1/2
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We resolve a number of questions related to an analytic description of electromagnetic form factors

of non-Dirac particles with the rest spin 1/2. We find the general structure of a matrix antisymmetric

tensor operator. We obtain two recurrence relations for matrix elements of finite transformations of

the proper Lorentz group and explicit formulas for a certain set of such elements. Within the theory

of fields with double symmetry, we discuss writing the components of wave vectors of particles in the

form of infinite continued fractions. We show that for Q2 ≤ 0.5 (GeV/c)2 , where Q2 is the transferred

momentum squared, electromagnetic form factors that decrease as Q2 increases and are close to those

experimentally observed in the proton can be obtained without explicitly introducing an internal particle

structure.

1. Introduction

The difference between the proton and the electron that shows up in their electromagnetic
interaction was first evidenced in the 1933 measurement of the magnetic moment of the pro-
ton [1] and was finally established after the McAllister and Hofstadter experiment on elastic
scattering of electrons on protons [2]. The essence of this difference is that one or more of the
following three electron characteristics are inapplicable to the proton. First, the electron is
assigned a Dirac representation of the proper Lorentz group L↑

+. Second, up to the experimen-
tally attainable sizes of the order 10−16 cm, the electron behaves as a pointlike particle, which
corresponds to the locality of the Lagrangian describing its interaction with the photon, where
the fields of all particles are taken at the same point. Third, the Lagrangian of the electro-
magnetic interaction of the electron is minimal: expressed in terms of the vector potential Aµ

of the electromagnetic field, it is free of derivatives. The theoretical concept of the proton and
neutron that subsequently formed appeals to their nonminimal electromagnetic interaction and
to a complicated internal structure but hardly challenges the assumption that the nucleon is a
Dirac particle. This is reflected in the general form of the nucleon electromagnetic current in
the momentum space [3]:

jµ(p, p0) = ieū(p)

[

γµF1(Q
2) +

iκ

2M
σµνqνF2(Q

2)

]

u(p0), (1)

where ū and u are Dirac spinors, κ is the anomalous magnetic moment, M is the nucleon mass,
q = p − p0, and Q

2 = −q2. Along with the Dirac (F1) and Pauli (F2) form factors in (1), the
Sachs form factors GE and GM are introduced as [4]

GE = F1 − κτF2, GM = F1 + κF2, (2)

where τ = Q2/4M2; these form factors are believed to describe the distribution of the electric
charge and the magnetism of the nucleon. Using the quantities GE and GM brings the Rosen-
bluth formula [5] for the elastic scattering of nonpolarized electrons on nonpolarized nucleons
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in the laboratory frame to the simplest form

dσ

dΩ
=
α2E′ cos2(θ/2)

4E3 sin4(θ/2)

[

G2
E + τG2

M

1 + τ
+ 2τG2

M tan2
θ

2

]

, (3)

where E and E′ are the respective electron energies in the initial and final states and θ is
the electron scattering angle. A detailed review of the results of experimental measurements
of electromagnetic form factors of the proton and the neutron and their various theoretical
interpretations can be found in [6].

Rejecting the description of the proton by a Dirac spinor entails numerous indeterminancies.
One type of indeterminancy arises because a particle with the rest spin 1/2 can be assigned

an infinite number of irreducible representations of the proper Lorentz group L↑
+ of the form1)

(−1/2, l1) and (1/2, l1), where l1 is an arbitrary complex number, and infinitely many reducible
representations constructed from these. Another type of indeterminancy arises from the ar-
bitrariness in the field theory constants allowed by the relativistic invariance [7], [8], and this
arbitrariness can be infinite, for example, if ISFIR-class fields are considered, which transform
under representations decomposable into an infinite direct sum of finite-dimensional irreducible
representations of the L↑

+ group.
Arguments in favor of the possible description of hadrons by ISFIR-class fields were adduced

in [9], [10]. We note that these fields had not been investigated until the appearance of a
symmetry approach for eliminating the infinite arbitrariness in the corresponding Lagrangians.
The general definition of the double symmetry notion [11], including the Gell-Mann–Levy σ-
model symmetry [12] and supersymmetry as particular cases, allowed supplementing [9] the
relativistic invariance (the primary symmetry) of ISFIR-class field theories with the requirement
of their additional (secondary) symmetry generated by transformations of the form

ψ(x) → ψ′(x) = exp[−iDµθµ]ψ(x), (4)

where the Dµ are matrix operators and the parameters θµ are components of a polar or an axial
four-vector of the orthochronous Lorentz group L↑. To avoid infinite degeneracy with respect
to spin in the mass spectrum of the resulting theory because the Lorentz group is extended,
spontaneous secondary symmetry breaking is introduced [13]. As a result, as shown in [14], the
free relativistic invariant equations for ISFIR-class fermionic fields thus constructed yield mass
spectra that agree with the experimental picture of baryon resonances and with the parton
model of hadrons supplemented by the confinement hypothesis.

We note that all the previously considered relativistically invariant free field theories with
infinitely many degrees of freedom, namely, bilocal equations (see [15]) and Gelfand–Yaglom-
type equations [7], [8] (with the corollaries refined in [16]) for FSIIR-class fields transforming
under representations decomposable into a finite direct sum of infinite-dimensional irreducible
representations of the L↑

+ group, have mass spectra that are unsuitable for particle physics
because of an accumulation point at zero. The infinite number of states in the theory of
ISFIR-class fields with double symmetry seems to reflect some internal structure of the cor-
responding particles, and the physically entirely satisfactory mass spectra of the theory are
evidence that the proposed approach describing a hadron by an infinite-component monolocal

1)Irreducible representations of the L group are labeled [7], [8] by two indices (l0, l1), where 2l0 is an
integer and l1 is an arbitrary complex number. The canonical basis of the (l0, l1)-representation space is
related to the SO(3) subgroup and is denoted by ξ(l0,l1)lm, where l is the spin and m is its projection on
the third axis, with m = −l,−l+ 1, . . . , l and l = |l0|, |l0|+ 1, . . .. In general, the range of values of l is
infinite. The (l0, l1) representation is finite dimensional, and the above sequence of spins terminates at
the number |l1|−1 if 2l0 and 2l1 are integers of the same parity and |l1| > |l0|. The Dirac representation
is (−1/2, 3/2)⊕ (1/2, 3/2).
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field is essentially correct. It is now desirable to find out how the physical content of the ex-
isting structure characteristics of particles with rest spin 1/2 is affected by passing from the

Dirac representation of the L↑
+ group to a non-Dirac representation assigned to the particle as

a whole and whether a satisfactory description of experimental processes involving composite
particles can be obtained based on considering a local interaction of monolocal fields without
explicitly introducing structural quantities.

2. General description of the electromagnetic current
and form factors of non-Dirac particles with rest spin 1/2

The first general results concerning the electromagnetic properties of a nucleon that follow
from rejecting its description with a Dirac spinor were recently obtained in [10]. For a broad
class of representations of the proper Lorentz group assigned to a field ψ of a particle with
rest spin 1/2 and mass M , a polar four-vector of the electromagnetic current free of structure
functions of the transferred momentum squared can be written as

J µ(p, p0) = ie
(

ψ(p),
[

Q0Γ
µ +M−1Λµν(p, p0)qν

]

ψ(p0)
)

, (5)

where

Λµν(p, p0) ≡ Γµν +M−1ai1Γ
µνν1(pi1)ν1 + . . .+M−jai1...ijΓ

µνν1...νj(pi1)ν1 . . . (pij )νj + . . . , (6)

(ψ1, ψ2) is a relativistically invariant bilinear form assumed to be nondegenerate, Q0 is the
particle charge in units of the positron charge e, Γµ is the four-vector matrix operator, Γµν and
Γµνν1...νj are traceless matrix tensor operators of the Lorentz group that are antisymmetric in
µ and ν, ai1...ij are numerical coefficients, and pk ∈ {p0, p} for any index k. We assume that
the field vector ψ(p) satisfies some relativistically invariant equation

(Γµpµ −R)ψ(p) = 0, (7)

where R is a scalar matrix operator.
The terms in relations (5) and (6) involving the four-momentum pk correspond to terms with

derivatives of the field ψ(x) in the coordinate representation of the electromagnetic interaction
Lagrangian and can then be treated as higher electric multipoles of a composite particle. It is
more convenient to consider the set {p0, q} instead of the set of four-momenta {p0, p} in (5)
and (6).

It was shown in [10] that the angular distribution of final particles in the process of elastic
scattering of nonpolarized electrons on a nonpolarized particle with rest spin 1/2, independently

of the L↑
+-group representation S0 assigned to them, is given by Rosenbluth formula (3), where

the role of the electromagnetic factor is played by the quantities

GE =
C√
τ + 1

(ψ+1/2(p), [Q0R− q3Λ03]ψ+1/2(p0)), (8)

GM =
C√
τ
(ψ+1/2(p), [Q0MΓ1 + q0Λ10 − q3Λ13]ψ−1/2(p0)), (9)

where
C = (ψ+1/2(p0), Rψ+1/2(p0))

−1. (10)

The quantities GE and GM given by these formulas are constants for Dirac particles and
nontrivial functions of the transferred momentum squared Q2 for non-Dirac particles with
rest spin 1/2. The specific form of the functions GE(Q

2) and GM (Q2) is determined by several
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circumstances: first, by the choice of the representation S0; second, by the decomposition of the
wave vector ψ(p0) of the particle in its rest frame with respect to the canonical basis vectors in
the representation space S0, which depends on the structure of the operators in Eq. (7); third,
by the constants of the operators Γµν and Γµνν1...νj , j = 1, 2, . . .. None of these circumstances
depends explicitly on the internal structure of a non-Dirac particle with rest spin 1/2, and we
can therefore say that the corresponding form factors GE and GM in Rosenbluth formula (3)
are given by the external characteristics of the particle as a whole.

We next provide a description, which is missing from the literature, of several quantities in
the general relativistic field theory that are needed for calculating the form factors of non-Dirac
particles with rest spin 1/2 in (8) and (9). We find the general structure of second-rank matrix
antisymmetric tensor operators and explicitly give some matrix elements of finite transforma-
tions of the proper Lorentz group for finite-dimensional irreducible representations (±1/2, l1);
such elements were previously found only for unitary (infinite-dimensional) irreducible repre-
sentations [17]. Along with this, we consider problems related to the current in (5) and (6),
whose solutions are given in the framework of the theory of infinite-component ISFIR-class
fields with double symmetry. Specifically, we give the results connected with eliminating the
infinite arbitrariness in the constants of the Γµν operator, discuss the structure of tensor op-
erators Γµνν1...νj , j = 1, 2, . . . of rank three and higher, and propose writing the components of
wave vectors satisfying Eq. (7) in the form of infinite continued fractions.

In the theory of ISFIR-class fields with double symmetry, electromagnetic current (5), (6)
contains an infinite number of matrix operators in the general case and hence an infinite number
of arbitrary (normalization) constants. Such a description of the electromagnetic interaction of
non-Dirac particles lacks simplicity and elegance. So far, we can see no symmetry-based way
to eliminate the infinite arbitrariness in the constants of this current. Nonetheless, restricting
ourself in current (5), (6) to tensor operators of rank four and to values of the transferred
momentum squared not exceeding 0.5 (GeV/c)2, we use numerical computations to conclude
that we can in principle obtain electromagnetic form factors that decrease as Q2 increases,
without explicitly involving an internal structure of particles with rest spin 1/2.

3. General structure of the second-rank
matrix antisymmetric tensor operators

Let the transformation
x′µ = [l(g)]µ

νxν . (11)

of covariant four-vector components correspond to an element g of the proper Lorentz group.
Then the corresponding transformation of covariant components of a second-rank antisymmet-
ric tensor can be written as

y′µν = [T (g)]µν
αβyαβ, (12)

where

[T (g)]µν
αβ =

1

2
{[l(g)]µα[l(g)]νβ − [l(g)]ν

α[l(g)]µ
β}. (13)

Matrix operators Kµν that act on the field ψ as on a vector in a representation space S(g)
of the proper Lorentz group constitute an antisymmetric operator if the quantity (ψ1,K

µνψ2)

transforms under the L↑
+ group as an antisymmetric tensor, i.e., the contraction (ψ1,K

µνηµνψ2)
is an invariant nondegenerate bilinear form. This implies that the operators Kµν must satisfy
the condition

Kµν = S−1(g)KαβS(g)[T (g)]αβ
µν . (14)
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An infinitesimal proper Lorentz transformation of a four-vector and a vector in the S(g)-
representation space are respectively introduced as [7]

x′µ = xµ + ǫµ
νxν , ψ′ = ψ +

1

2
ǫµνI

µνψ, (15)

where the parameters of the transformations ǫµν and the infinitesimal operators Iµν are anti-
symmetric: ǫµν = −ǫνµ and Iµν = −Iνµ.

It follows from formulas (11) and (13)–(15) that the commutation relations

[Iµν ,Kαβ ] = −gµαKνβ + gµβKνα + gναKµβ − gνβKµα, (16)

where g00 = −g11 = −g22 = −g33 = 1 and gγδ = 0 for γ 6= δ.
We note that the commutation relations for infinitesimal operators follow from (16) under

the replacement Kγδ → Iγδ. The matrix realization of the operators Iµν in the space of any
irreducible representation of the L↑

+ group is known (see [7], [8], or [9]).
Among the 36 conditions in (16), only eight are independent. They can be chosen as

[I03,K03] = 0, [I12,K03] = 0, [I01,K31] = K03 (17)

and
[I01,K03] = K31, [I02,K03] = −K23, [I31,K03] = K01,

[I23,K03] = −K02, [I23,K31] = K12. (18)

The other 28 conditions in (16) are consequences of (17) and (18) and the commutation relations
for the Iµν . With the operator K31 expressed in terms of K03 from the first equality in (18)
and substituted in (17), we obtain three independent equations that must be satisfied by K03.
Finding K03 and using formulas (18), we obtain all the components of the antisymmetric
operator Kµν .

Solving system of equations (17) for the unknown operator K03 means finding the result
of the action of this operator on vectors of the canonical basis ξ(l0,l1)lm in any irreducible
representation (l0, l1) of the proper Lorentz group. Using the known action of I12, I03, and I01

on basis vectors ξ(l0,l1)lm, we obtain

K03ξ(l0,l1)lm = f(l0 − 1, l1 − 1; l0, l1)

[

a(l,m)
√

(l + l0 − 1)(l + l0)(l + l1 − 1)(l + l1)×

×ξ(l0−1,l1−1)l−1m − b(l,m)
√

(l − l0 + 1)(l + l0)(l − l1 + 1)(l + l1)ξ(l0−1,l1−1)lm −

−a(l + 1,m)
√

(l − l0 + 1)(l − l0 + 2)(l − l1 + 1)(l − l1 + 2)ξ(l0−1,l1−1)l+1m

]

+

+f(l0 − 1, l1 + 1; l0, l1)

[

a(l,m)
√

(l + l0 − 1)(l + l0)(l − l1 − 1)(l − l1)ξ(l0−1,l1+1)l−1m+

+b(l,m)
√

(l − l0 + 1)(l + l0)(l − l1)(l + l1 + 1)ξ(l0−1,l1+1)lm −

−a(l + 1,m)
√

(l − l0 + 1)(l − l0 + 2)(l + l1 + 1)(l + l1 + 2)ξ(l0−1,l1+1)l+1m

]

+

+f(l0 + 1, l1 − 1; l0, l1)

[

a(l,m)
√

(l − l0 − 1)(l − l0)(l + l1 − 1)(l + l1)ξ(l0+1,l1−1)l−1m+

+b(l,m)
√

(l − l0)(l + l0 + 1)(l − l1 + 1)(l + l1)ξ(l0+1,l1−1)lm −

−a(l + 1,m)
√

(l + l0 + 1)(l + l0 + 2)(l − l1 + 1)(l − l1 + 2)ξ(l0+1,l1−1)l+1m

]

+

+f(l0 + 1, l1 + 1; l0, l1)

[

a(l,m)
√

(l − l0 − 1)(l − l0)(l − l1 − 1)(l − l1)ξ(l0+1,l1+1)l−1m−
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−b(l,m)
√

(l − l0)(l + l0 + 1)(l − l1)(l + l1 + 1)ξ(l0+1,l1+1)lm −

−a(l + 1,m)
√

(l + l0 + 1)(l + l0 + 2)(l + l1 + 1)(l + l1 + 2)ξ(l0+1,l1+1)l+1m

]

+

+f1(l0, l1; l0, l1)

[

a(l,m)
√

(l − l0)(l + l0)(l − l1)(l + l1)ξ(l0,l1)l−1m − b(l,m)l0l1ξ(l0,l1)lm−

−a(l + 1,m)
√

(l − l0 + 1)(l + l0 + 1)(l − l1 + 1)(l + l1 + 1)ξ(l0,l1)l+1m

]

+

+f2(l0, l1; l0, l1)mξ(l0,l1)lm, (19)

where

a(l,m) =
1

l

√

(l −m)(l +m)

4l2 − 1
, b(l,m) =

m

l(l + 1)
, (20)

and f(l0 ± 1, l1 − 1; l0, l1), f(l0 ± 1, l1 + 1; l0, l1), and fj(l0, l1; l0, l1), j = 1, 2, are arbitrary
constants.

In the family of antisymmetric tensor operators Kµν , we can single out two types of op-
erators that transform under nonequivalent irreducible representations of the orthochronous
Lorentz group. We let Γµν and Lµν denote them, assuming that contractions of these opera-
tors with two arbitrary polar four-vectors respectively give scalar and pseudoscalar operators
of the L↑ group. This means that the transformation properties of antisymmetric operators of
these two types under the spatial reflection P are described by the relations

PK0i + ηK0iP = 0, PKjk − ηKjkP = 0, i, j, k = 1, 2, 3, (21)

where η = +1 if Kµν = Γµν and η = −1 if Kµν = Lµν .
Because (see [7], [8])

Pξ(l0,l1)lm = ±(−1)[l]ξ(−l0,l1)lm, (22)

where the plus or minus sign is taken the same for all irreducible L↑
+ representations belonging

to a given representation S0, we can use relations (19)–(21) to obtain the constraints relating
the constants of Γµν and Lµν :

f(l0 ± 1, l1 − 1; l0, l1) = ηf(−l0 ∓ 1, l1 − 1;−l0, l1),
f(l0 ± 1, l1 + 1; l0, l1) = ηf(−l0 ∓ 1, l1 + 1;−l0, l1),
f1(l0, l1; l0, l1) = ηf1(−l0, l1;−l0, l1),
f2(l0, l1; l0, l1) = −ηf2(−l0, l1;−l0, l1). (23)

Electromagnetic current (5), (6) involves a second-rank antisymmetric tensor operator of
the Γµν type.

4. Antisymmetric tensor operators in the theory
of ISFIR-class fields with double symmetry

To eliminate the infinite arbitrariness in the constants of the operators Γµν in considering
electromagnetic current (5), (6) within the theory of ISFIR-class fields, we assume that this
current is invariant under secondary symmetry transformations (4). Hence, the conditions

[Dα,Γµν ] = 0. (24)

must be satisfied. Among the 24 relations in (24), there are only two that are independent,

[D0,Γ03] = 0, [D0,Γ12] = 0. (25)
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and the other 22 conditions in (24) are consequences of these two and also of relations (16)
and the commutation relations of the four-vector operator with infinitesimal operators of the
L↑
+ group (see [7]–[9]).
From the countable set of versions of the doubly symmetric theory of ISFIR-class fields with

spontaneously broken secondary symmetry [9], [13], in what follows, we choose to work with
the simplest one characterized by a physically acceptable mass spectrum [14]. In the chosen
version of the theory, first, the field transforms under the proper Lorentz group representation
consisting of all those and only those irreducible finite-dimensional representations that contain
spin 1/2:

S3/2 =
+∞
⊕

N=1

[(

−1

2
,
1

2
+N

)

⊕
(

1

2
,
1

2
+N

)]

. (26)

Second, the transformations of secondary symmetry (4) form a four-parameter Abelian group:
[Dµ,Dν ] = 0. Third, the polar four-vector operators Dµ from transformations (4) and Γµ from
Eq. (7) coincide with each other up to a constant numerical factor, and

d−1
0 D0ξ(± 1

2
,l1)lm

= c−1
0 Γ0ξ(± 1

2
,l1)lm

=
l + 1/2

l21 − 1/4
ξ(∓ 1

2
,l1)lm

−

−
√

(l1 − l − 1)(l1 + l)

l1 − 1/2
ξ(± 1

2
,l1−1)lm −

√

(l1 − l)(l1 + l + 1)

l1 + 1/2
ξ(± 1

2
,l1+1)lm, (27)

where d0 and c0 are arbitrary real constants. Fourth, there exist only two four-vector opera-
tors (up to a numerical factor) whose components commute with the components of Dµ: the
operator Dµ itself and the axial four-vector operator Lµ, whose time component acts on the
canonical basis vectors as

b−1
0 L0ξ(± 1

2
,l1)lm

= ∓ l1(l + 1/2)

l21 − 1/4
ξ(∓ 1

2
,l1)lm

±

±
√

(l1 − l − 1)(l1 + l)

2l1 − 1
ξ(± 1

2
,l1−1)lm ∓

√

(l1 − l)(l1 + l + 1)

2l1 + 1
ξ(± 1

2
,l1+1)lm, (28)

where b0 is an arbitrary constant.
Direct calculations show that there exists only one antisymmetric tensor operator Γµν (up

to a numerical factor) that satisfies conditions (25) with relations (19), (20), (23) (with η = 1),
and (27) taken into account. The values of its constants are

f

(

±1

2
, l1 + 1;∓1

2
, l1

)

= f

(

±1

2
, l1;∓

1

2
, l1 + 1

)

=
ih0

l1 + 1/2
,

f1

(

±1

2
, l1;±

1

2
, l1

)

=
h0

l21 − 1/4
,

f2

(

±1

2
, l1;±

1

2
, l1

)

= ∓ 2h0l1
l21 − 1/4

, (29)

where h0 is an arbitrary number. Such an operator Γµν can be expressed in terms of the
four-vector operators Γµ and Lµ described by formulas (27) and (28): Γµ Lµ:

Γµν = b−2
0 h0(L

µLν − LνLµ) (30)

or
Γµν = ib−1

0 c−1
0 h0ε

µνρσΓρLσ. (31)

Finding the general structure of the matrix tensor operators Γµνν1...νj , j = 1, 2, . . ., of rank
three and higher that are antisymmetric in two indices and lead to polar current four-vector
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(5) is a sufficiently laborious but feasible problem. Knowing the general structure would allow
finding all the sets of the constants of such operators that ensure the invariance of current
(5), (6) under secondary symmetry transformations (4). Lacking this information, we ensure
the double invariance of the theory by considering only those higher-rank operators Γµνν1...νj

that are expressed in terms of the four-vector operators Γµ in (27) and Lµ in (28). It is quite
possible that this exhausts the list of admissible operators Γµνν1...νj , but we have no proof of
this.

The tracelessness that we require of the rank-(2+ j) matrix operator Γµνν1...νj implies that
this operator does not contain matrix tensor operators of a lower rank j. In expressing traceless
operators Γµνν1...νj in terms of the operators Γµ and Lµ, we must use the relations

ΓµΓµ = 4c20, LµLµ = −3b20, LµΓµ = 0, (32)

4b−2
0 (LµLν + LνLµ) + 6gµν = c−2

0 (ΓµΓµ + ΓνΓµ)− 2gµν . (33)

The last equality reflects the coincidence (up to a numerical factor) of the second-rank traceless
symmetric tensor operators constructed from the operators Lµ and Γµ.

We now list all the linearly independent matrix operators of rank three and four with the
required properties:

Γµνρ
1 = h1Γ

ρΓµν ,

Γµνρ
2 = h2[L

ρΓ̃µν − b0h0
c0

(gµρΓν − gνρΓµ)],

Γµνρσ
1 = h3[Γ

ρΓσΓµν − c20
3
(4gρσΓµν + gµρΓνσ − gνρΓµσ + gµσΓνρ − gνσΓµρ)],

Γµνρσ
2 = h4[L

ρΓσΓ̃µν − b0h0
c0

(gµρΓνΓσ − gνρΓµΓσ) +

+
c0b0
6

(2gρσΓµν − gµρΓνσ + gνρΓµσ + 5gµσΓνρ − 5gνσΓµρ)], (34)

where

Γ̃µν =
i

2
εµνρσΓρσ =

h0
b0c0

(ΓµLν − ΓνLµ), (35)

and h1, h2, h3, and h4 are arbitrary constants.

5. Finite proper Lorentz transformations for the
finite-dimensional irreducible representations (±1/2, l1)

We consider some consequences of the proper Lorentz transformation corresponding to the
transition from the particle rest frame to the laboratory frame in which the particle moves along
the third coordinate axis with a velocity v. The corresponding transformations in the space of
wave vectors ψ are implemented by the operator S(α) = eαI

03

, where tanhα = v. Because the
action of the infinitesimal operator I03 on a vector of the canonical basis does not change its
spin projection on the third axis, the matrix elements of I03 and the matrix elements of finite
proper Lorentz transformations in the space of any irreducible L↑

+ representation (l0, l1) are
determined by the relations

I03ξ(l0,l1)lm =
∑

l′

I
(l0,l1)
l′m,lmξ(l0,l1)l′m, (36)

eαI
03

ξ(l0,l1)lm =
∑

l′

A
(l0,l1)
l′m,lm(α)ξ(l0,l1)l′m. (37)

8



We establish a number of constraints relating the quantities A
(l0,l1)
l′m,lm(α), restricting ourself

to finite-dimensional irreducible representations of the L↑
+ group. It follows from the explicit

form of the decomposition coefficients in (36) for such representations (see [7]–[9]) that

I
(l0,l1)
l′−m,l−m = I

(−l0,l1)
l′m,lm = −

[

I
(l0,l1)
l′m,lm

]∗
. (38)

From this and relations (36) and (37), we conclude that

A
(l0,l1)
l′−m,l−m(α) = A

(−l0,l1)
l′m,lm (α) =

[

A
(l0,l1)
l′m,lm(−α)

]∗
. (39)

We note that wave vectors of the form [10]

ψm(p0) =
+∞
∑

N=1

χ(N)
[

ξ( 1
2
, 1
2
+N) 1

2
m + rξ(− 1

2
, 1
2
+N) 1

2
m

]

, (40)

correspond to two independent states of the rest spin-1/2 particle that satisfy Eq. (7), where
r is equal to 1 or -1 and describes the spatial parity of the state and m = −1/2, 1/2. In the
reference frame where the particle velocity is directed along the third axis, the wave vector of
the particle is given by

ψm(p) = S(α)ψm(p0) =
+∞
∑

N=1

N−1/2
∑

l=1/2

χ(N)

[

A
( 1
2
, 1
2
+N)

lm, 1
2
m

(α)ξ( 1
2
, 1
2
+N) 1

2
m+

+rA
(− 1

2
, 1
2
+N)

lm, 1
2
m

(α)ξ(− 1

2
, 1
2
+N) 1

2
m

]

. (41)

Taking relations (39) into account, we hence conclude that to calculate the form factors in (8)

and (9), we need only know the quantities A
( 1
2
,l1)

l 1
2
, 1
2

1

2

(α) and only with l = 1/2 and 3/2 if we

restrict ourself to tensor operators of the second, third, and fourth ranks in formula (6).
Taking the derivative of both sides of (37) with respect to α and using the known form of

the operator I03 in the canonical basis (see [7]–[9]), we obtain

d

dα
A

( 1
2
,l1)

l 1
2
, 1
2

1

2

(α) = − i

4(l + 1)

√

(2l + 1)(2l + 3)(l21 − (l + 1)2)A
( 1
2
,l1)

l+1 1

2
, 1
2

1

2

(α) +

+
l1

l(l + 1)
A

( 1
2
,l1)

l 1
2
, 1
2

1

2

(α) +
i

4l

√

(2l − 1)(2l + 1)(l21 − l2)A
( 1
2
,l1)

l−1 1

2
, 1
2

1

2

(α). (42)

For a given number l1, starting with a single matrix element A
( 1
2
,l1)

1

2

1

2
, 1
2

1

2

(α) as a function of α, this

recurrence relation allows finding all the other elements A
( 1
2
,l1)

l 1
2
, 1
2

1

2

(α) with l = 3/2, . . . , |l1| − 1.

We now derive a recurrence relation involving the A
( 1
2
,l1)

l 1
2
, 1
2

1

2

(α) with different values of l1.

In the representation space (1/2, l1) ⊕ (1/2, l1 + 1) of the proper Lorentz group, we take two
vectors ϕ(p) and Φ(p) that are related to each other by the relativistically covariant formula

Φ(p) = (Lµpµ)ϕ(p) (43)

in an arbitrary inertial reference frame, where the four-momentum of the particle is equal to
p, and have only one nonvanishing component each in the canonical basis in the particle rest
frame,

ϕ(p0) = ϕ0ξ( 1
2
,l1)

1

2

1

2

, Φ(p0) = Φ0ξ( 1
2
,l1+1) 1

2

1

2

, (44)
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where ϕ0 and Φ0 are arbitrary constants. The full correspondence between the general structure
of the four-vector operator, equality (43), which in the particle rest frame has the form

Φ(p0) = (L0M)ϕ(p0), (45)

and relations (44) is attained under the conditions

L0ξ( 1
2
,l1)

1

2

1

2

= ia0

√

(l1 − 1/2)(l1 + 3/2)ξ( 1
2
,l1+1) 1

2

1

2

,

Φ0 = iϕ0a0M
√

(l1 − 1/2)(l1 + 3/2). (46)

In the laboratory frame, which is characterized by the Lorentz boost parameter α, it follows
from (43) with formulas (37) and (44) taken into account that

∑

l

Φ0A
( 1
2
,l1+1)

l 1
2
, 1
2

1

2

(α)ξ( 1
2
,l1+1)l 1

2

= (L0M coshα− L3M sinhα)
∑

l′

φ0A
( 1
2
,l1)

l′ 1
2
, 1
2

1

2

(α)ξ( 1
2
,l1)l′

1

2

. (47)

Because L3 = [L0, I03] (see [7]–[9]), using the explicit form of I03in the canonical basis and
formulas (46), we obtain the recurrence relation in l1 = 3/2, 5/2, . . . with l = 1/2, . . . , l1

A
( 1
2
,l1+1)

l 1
2
, 1
2

1

2

(α) =
1

2l(l + 1)
√

(2l1 − 1)(2l1 + 3)
×

×
[

−il sinhα
√

(2l + 1)(2l + 3)(l1 − l − 1)(l1 − l)A
( 1
2
,l1)

l+1 1

2
, 1
2

1

2

(α)+

+(4l(l + 1) coshα+ sinhα)
√

(l1 − l)(l1 + l + 1)A
( 1
2
,l1)

l 1
2
, 1
2

1

2

(α) +

+i(l + 1) sinhα
√

(2l − 1)(2l + 1)(l1 + l)(l1 + l + 1)A
( 1
2
,l1)

l−1 1

2
, 1
2

1

2

(α)

]

, (48)

from (47).
We can now prove by induction that the equality

A
( 1
2
,l1)

1

2

1

2
, 1
2

1

2

(α) =
2

l21 − 1/4

l1−3/2
∑

n=0

(l1 − n− 1/2)e(l1−2n−1)α, (49)

where l1 = 3/2, 5/2, . . ., holds. First, we verify formula (49) for l1 = 3/2, when it becomes

A
( 1
2
, 3
2
)

1

2

1

2
, 1
2

1

2

(α) = eα/2. (50)

For this, it suffices to use the known equality [7]–[9]

I03ξ( 1
2
, 3
2
) 1
2

1

2

=
1

2
ξ( 1

2
, 3
2
) 1
2

1

2

(51)

and relation (37). Assuming that formula (49) holds for some value of l1 equal to k1, k1 =
5/2, 7/2, . . ., we use (42) to obtain

A
( 1
2
,k1)

3

2

1

2
, 1
2

1

2

(α) =
2i
√
2

(k21 − 1/4)
√

k21 − 9/4

l1−3/2
∑

n=0

(k1 − n− 1/2)(k1 − 3n− 3/2)e(k1−2n−1)α. (52)

Using recurrence relation (48), we now find that the quantity A
( 1
2
,k1+1)

1

2

1

2
, 1
2

1

2

(α) obtained from it

equals the right-hand side of (49) if l1 there is replaced with k1+1, in other words, that formula
(49) also holds for l1 = k1 + 1.
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6. Writing the field vector components as continued fractions

We address the question of calculating the field vector ψ(p) belonging to the L↑
+-representa-

tion space S3/2 in (26) and satisfying Eq. (7), where the operator Γ0 is given by relation (27)
and the operator R has the form [13], [14]

Rξ(± 1

2
, 1
2
+N)lm = ρ(N)ξ(± 1

2
, 1
2
+N)lm =

[

∑

i

λiηi(N)

]

ξ(± 1

2
, 1
2
+N)lm, (53)

with

ηi(N) = 2
vNi (viN +N + 1)− wN

i (wiN +N + 1)

N(N + 1)(vi −wi)(2 + vi + wi)
, (54)

where N = 1, 2, . . ., vi = (zi +
√

z2i − 4)/2, wi = (zi −
√

z2i − 4)/2, λi and zi are some real
constants, and the index i takes one or several values.

We introduce a reference frame where the four-momentum is equal to p0 = {M0, 0, 0, 0}
and consider the state of the field ψ(p0) that has the spin 1/2 in this frame and is described
by (40). Then Eq. (7) reduces to the recurrence relation for the components of the field vector
χ(N)

N
√

N(N + 2)χ(N + 1) + (N + 1)
√

(N − 1)(N + 1)χ(N − 1) +

+[(M0c0)
−1N(N + 1)ρ(N) − r]χ(N) = 0, (55)

where N = 1, 2, . . . and also χ(0) = 0.
For any values of free parameters of the theory, relation (55) allows expressing all the χ(N),

N = 2, 3, . . ., in terms of a single quantity χ(1). Only those sets of free parameters of the theory
for which the obtained χ(N) ensure normalizability of the corresponding field vectors ψ(p0) in
(40) are interesting in particle physics. Satisfaction of this requirement for one or another fixed
set of free parameters zi, λi, and c0 leads to a set of values of M0 being selected and acquiring
the status of the masses of particles with rest spin 1/2 and spatial parity r.

A detailed analysis of the characteristics of the mass spectrum of the theory depending on
the domain of the free parameters zi was given in [14]. It was shown that the experimental
picture of nucleon resonances satisfactorily agrees with the mass spectrum of the theory of
ISFIR-class fields under study if z1 > 2 and |zj | < 2 for j 6= 1 is assumed in formulas (53) and
(54). In this case, which we consider in what follows, the asymptotic form of the components
of field vectors is determined by a single parameter z1: as N → ∞, we have

χ(N) = A0G(N)(1 +O(N−1)) +B0G
−1(N)(1 +O(N−1)), (56)

where

G(N) =

(

− ρ(1)

M0c0

)N v
N(N+1)/2
1

N !
. (57)

The field vector ψ(p0) in (40) is normalizable if and only if the coefficient A0 in (56), which
depends on the free parameters of the theory M0, c0, and λi, vanishes. We have no analytic
methods for solving the equations A0 = 0 for the parameter M0, i.e., methods for finding the
mass spectrum inherent to Eq. (55). The problem of calculating any number of the lower
values of mass is solved approximately via numerical methods whose algorithm was described
in [14]. But any approximation to the mass value leads to a nonzero, although small, quantity
A0, and the quantities χ(N) found from exact relation (55) hence change their behavior from
a decrease to a rapid increase as N increases already for small numbers N . (For example,
for the parameter values of the theory given at the beginning of Sec. 8, the sequence χ(N)

11



starts increasing at the eighth term.) This considerably reduces the possible use of numerical
computations.

In what follows, we give a formula for calculating χ(N) with the following properties. In
and of itself, this formula is an approximate relation for χ(N) if the parameter M0 is different
from the state mass M and an exact relation if M0 = M . The values of χ(N) obtained from
the formula tend to zero as N increases infinitely.

We introduce the notation

π(N) = (−1)N
√

N(N + 1)χ(N), H(N) = (M0c0)
−1N(N + 1)ρ(N) − r. (58)

Relation (55) can then be rewritten as

N2π(N + 1) + (N + 1)2π(N − 1)−H(N)π(N) = 0, (59)

where N = 1, 2, . . .. This system must be supplemented by the condition π(0) = 0 or the
equivalent condition

π(2) = H(1)π(1) (60)

obtained from (59) with N = 1. Equations (59) together with (60) allow expressing all the
required quantities π(N) in terms of π(1). We have

π(N)

π(N + 1)
=

N2

H(N)− (N − 1)2(N + 1)2

H(N − 1)− (N − 2)2N2

. . . −
. . .

H(2)− 9

H(1)

, (61)

where N = 2, 3, . . ..
We now suppose that the satisfaction of the condition π(0) = 0 is not a necessary addition

to relation (59). We therefore drop one equation in (59), the one with N = 1, from considera-
tion. The remaining equations of system (59) (those with N = 2, 3, . . .) have two independent
solutions because all the quantities π(N) can be expressed in terms of π(1) and π(2). One
of these solutions is given by (60) and (61), and the other can be represented as the infinite
continued fraction

π(N + 1)

π(N)
=

(N + 2)2

H(N + 1)− (N + 1)2(N + 3)2

H(N + 2) − (N + 2)2(N + 4)2

. . . −
. . .

H(N + n)− (N + n)2(N + n+ 2)2

. . .

, (62)

where N = 1, 2, . . .. This infinite continued fraction must be regarded as the limit of the
sequence
[

π(N + 1)

π(N)

]

1

=
(N + 2)2

H(N + 1)
,

[

π(N + 1)

π(N)

]

2

=
(N + 2)2

H(N + 1)− (N + 1)2(N + 3)2

H(N + 2)

, . . . , (63)

which emerges as a result of solving system of equations (59) with N = 2, 3, . . . by consecutive
approximations:

N2
[

π(N + 1)

π(N)

]

n−1

+ (N + 1)2
{

[

π(N)

π(N − 1)

]

n

}−1

−H(N) = 0, (64)
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where n = 1, 2, . . ., with [π(N + 1)/π(N)]0 = 0.
We prove that in the considered domain of the parameters zi in formulas (53) and (54),

the sequence [π(N + 1)/π(N)]n converges as n → ∞. For this, we recall that η1(N) increases
exponentially as N increases, and the values of ηj(N), j 6= 1, oscillate in a bounded region as
N varies. Therefore, for sufficiently large values of N , the contribution of the ηj(N), j 6= 1, to
ρ(N) and then to H(N) becomes arbitrarily small. Hence, for any set of the free parameters
M0, c0, and λ

i of the theory and for any number ε > 0, a number N0 depending on them can
be given such that for all N ≥ N0, the inequality 0 < N4/H(N) < ε holds (for simplicity in
what follows, we assume that M0c0ρ(N0) > 0), and hence so does the inequality

0 <
(N + 1)2(N + 2)2

H(N + 1)
<

(2N − 1)H(N)

N2
. (65)

Using this relation, we can easily establish that for N ≥ N0, the sequence [π(N + 1)/π(N)]n,
n = 1, 2, . . ., is monotonically increasing, is bounded from above,

0 <

[

π(N + 1)

π(N)

]

n

<
(N + 1)2(N + 2)2

N2H(N + 1)
, (66)

and therefore converges. Based on relation (64), we next establish the convergence of the
sequence [π(N + 1)/π(N)]n, n = 1, 2, . . ., in turn for N = N0 − 1, N0 − 2, . . . , 1.

Passing first to the limit n → ∞ in inequalities (66) and then to the limit N → ∞, we
obtain

lim
N→∞

π(N + 1)

π(N)
= 0, lim

N→∞
π(N) = 0. (67)

It hence follows that for any value of the parameter M0, the components of the field vector
χ(N) found from formulas (58) and (62) tend to zero as N increases infinitely.

If the right-hand side of (62) with N = 1 is equated to H(1), then the obtained equation at
some fixed value of the parameters zi, λi, and c0 can be regarded as an equation for the mass
spectrum of states with the rest spin 1/2 and parity r. When the above equation is satisfied,
the quantities π(N) obtained using formula (62) satisfy relation (59) for all the required values
of N , and the corresponding field vectors ψ(p0) in (40) are normalizable. For a small deviation
of the values of M0 from some mass spectrum point M , the approximate quantities π(N)|M0

calculated from (62) and the exact π(N)|M satisfying both relation (62) and equality (60) have
similar asymptotic behaviors as N increases and little differ from each other. The degree of
smallness of each can then be estimated in appropriate numerical computations.

7. Some aspects of analytic calculations of the contributions
to the form factors of lower-rank tensor operators

The final analytic expressions for electromagnetic form factors (8) and (9), even in the case
of calculating only the contributions of lower-rank tensor operators (up to rank four) are quite
cumbersome. We therefore restrict ourself to discussing a number of crucial points that lead
directly to these expressions.

We first note that the spatial parity r in relations (40), (41), (55), and (58) for the state
under consideration can be set equal to unity without loss of generality.

The bilinear form (ψ1, ψ2) in the space of an L↑
+ representation decomposable into a direct

sum of finite-dimensional irreducible representations is relativistically invariant if [7], [8]

(ξτ ′l′m′ , ξτlm) = (−1)[l]δτ ′τ∗δl′lδm′m, (68)

where τ∗ = (l0,−l1) ∼ (−l0, l1) for τ = (l0, l1).
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To ensure the realness of form factors (8), we assume that the constants b0 and hi, i =
0, 1, 2, 3, 4, in formulas (28)–(35) are real. Then

(ψ1,Γ
µψ2) = (Γµψ1, ψ2), (ψ1, L

µψ2) = (Lµψ1, ψ2), (ψ1,Γ
µνψ2) = −(Γµνψ1, ψ2). (69)

We hence obtain the equalities

(ψ1, Γ
ρΓµνψ2) = (Γρψ1, Γ

µνψ2), (ψ1, L
ρΓ̃µνψ2) = (Lρψ1, Γ̃

µνψ2),

(ψ1, Γ
ρΓσΓµνψ2) = (ΓσΓρψ1, Γ

µνψ2), (ψ1, L
ρΓσΓ̃µνψ2) = (ΓσLρψ1, Γ̃

µνψ2), (70)

which considerably simplify both the analytic and the numerical calculations.
We revealed several relations satisfied by the separate terms of form factors (8) and (9),

namely,

(

ψ 1

2

(p), Γµνρ
i qνqρψm(p0)

)

= 0, (71)
(

ψ 1

2

(p), Γµνρσ
i qνpρqσψm(p0)

)

= −1

2

(

ψ 1

2

(p), Γµνρσ
i qνqρqσψm(p0)

)

, (72)

where µ = 0, 1, and i = 1, 2.
The proof of formulas (71) and (72) is based on the transformation properties of the four-

vector matrix operators Kµ [7]–[9] and the antisymmetric tensor operators Kµν in (14) under
a Lorentz boost along the third axis,

KµpµS(α) = S(α)Kµp0µ, K03S(α) = S(α)K03, K1µpµS(α) = S(α)K1µp0µ, (73)

and also involves Eqs. (69), the given P -parity of the particle state in the rest frame, the
relativistic invariance of the bilinear form, and its realness. We demonstrate this in the simplest
case where we consider formula (71) with i = 1 and µ = 0. We then have

(

ψ 1

2

(p), ΓρqρΓ
03qνψ 1

2

(p0)
)

=
(

(Γρpρ − Γρp0ρ)S(α)ψ 1

2

(p0), Γ
03ψ 1

2

(p0)
)

=

=
(

(S(α)Γρp0ρ − ΓρS(α)p0ρ)Pψ 1

2

(p0), Γ
03Pψ 1

2

(p0)
)

=

=
(

(S(−α)Γρp0ρ − ΓρS(−α)p0ρ)ψ 1

2

(p0), P
2(−Γ03)ψ 1

2

(p0)
)

=

= −
(

S−1(α)(Γρp0ρ − Γρpρ)ψ 1

2

(p0), Γ
03ψ 1

2

(p0)
)

=
(

Γρqρψ 1

2

(p0), Γ
03S(α)ψ 1

2

(p0)
)

=

=
(

Γ03ψ 1

2

(p), Γρqρψ 1

2

(p0)
)

= −
(

ψ 1

2

(p), ΓρqρΓ
03qνψ 1

2

(p0)
)

. (74)

Taking relations (33)–(35) into account, we can show that

Γµνρσ
2 qνqρqσ = cΓµνρσ

1 qνqρqσ, (75)

where c is some numerical coefficient. In the subsequent calculations, we therefore restrict
ourself to tensor (6) of the form

Λµν(p, p0) = Γµν + Γµνρ
1 p0ρ + Γµνρ

2 p0ρ + Γµνρσ
1 (a1qρqσ + a2p0ρp0σ) + Γµνρσ

2 p0ρp0σ, (76)

where a1 and a2 are arbitrary constants.
We introduce the notation

ξ±l1,lm = ξ(− 1

2
,l1)lm

± ξ( 1
2
,l1)lm

(77)
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and also

e1(N) =

√

N(N + 2)

N + 1
χ(N + 1) +

2N + 1

N(N + 1)
χ(N)−

−
√

(N − 1)(N + 1)

N
χ(N − 1),

e2(N) =

√

(N − 1)N

N + 1
χ(N + 1)−

√

(N − 1)(N + 2)

N(N + 1)
χ(N)−

−
√

(N + 1)(N + 2)

N
χ(N − 1),

e3(N) =

√

N(N + 2)

N + 1
χ(N + 1)− N2 +N + 1

N(N + 1)
χ(N) +

+

√

(N − 1)(N + 1)

N
χ(N − 1),

e4(N) =

√

(N − 1)N

N + 1
χ(N + 1) +

(2N + 1)
√

(N − 1)(N + 2)

N(N + 1)
χ(N) +

+

√

(N + 1)(N + 2)

N
χ(N − 1). (78)

We obtain formulas that essentially simplify the procedure for calculating form factors (8)
and (9):

Γ1ψ− 1

2

(p0) =
c0
√
2

6

(

+∞
∑

N=1

√
2e1(N)ξ−1

2
+N, 1

2

1

2

+
+∞
∑

N=2

ie2(N)ξ+1
2
+N, 3

2

1

2

)

,

Γ03ψ 1

2

(p0) =
h0

√
2

3

(

+∞
∑

N=1

√
2e1(N)ξ−1

2
+N, 1

2

1

2

+
+∞
∑

N=2

ie2(N)ξ+1
2
+N, 3

2

1

2

)

,

Γ10ψ− 1

2

(p0) = −h0
√
2

6

(

+∞
∑

N=1

2
√
2e1(N)ξ−1

2
+N, 1

2

1

2

−
+∞
∑

N=2

ie2(N)ξ+1
2
+N, 3

2

1

2

)

,

Γ13ψ− 1

2

(p0) =
h0

√
2

6

(

+∞
∑

N=1

2
√
2e3(N)ξ+1

2
+N, 1

2

1

2

−
+∞
∑

N=2

ie4(N)ξ−1
2
+N, 3

2

1

2

)

. (79)

Because the time component of a matrix four-vector operator does not change the spin
and its projection on the third axis, it follows that in the calculations of the contributions to
form factors (8) and (9) of the third- and fourth-order matrix tensors involved in (76), it is
convenient to use relations (70) and the equality

ΓσΓρqσqρψ 1

2

(p) =M2[S(α)Γ0Γ0 − 2Γ0S(α)Γ0 + Γ0Γ0S(α)]ψ 1

2

(p0). (80)

8. Form factors in the theory of ISFIR-class fields with a local
electromagnetic interaction that decrease as Q2 increases

Any statements regarding the possible dependence of electromagnetic form factors (8) and
(9) on the transferred momentum squared Q2 in the theory of ISFIR-class fields are justified
from the standpoint of hadron physics if the problem of the mass spectrum is first solved
in some version of the theory and a satisfactory agreement with the experimental picture
is obtained for some values of the free parameters. Such a solution, allowing a satisfactory
correspondence with the set of observable nucleon resonances, was presented in [14]. The
freedom of choice is restricted in the considered version of the theory of ISFIR-class fields
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as follows. The scalar operator R in (53) is determined by two parameters z1 = 2.036 and
z2 = 0.14, and we additionally assume that λ1/c0 = 939 × 2.4686 MeV and λ2/λ1 = −0.6724.
In what follows, we consider the state with the lowest mass and the rest spin 1/2.

We first note that for the above values of the parameters of the theory, the magnetic mo-
ment of the non-Dirac particle under consideration resulting from the minimal electromagnetic
interaction is equal in terms of the magneton not to unity, as for a Dirac particle, but to 0.2824.

We next note that with the specified values of the constants of the theory, the quantities
ρ(N) in (53) are positive for all positive integers N . Hence, the part of the charged particle
electric form factor in (8) (Q0 = 1) that is generated by the minimal electromagnetic interac-
tion, (ψ+1/2(p), Rψ+1/2(p0)), increases monotonically up to infinity as Q2 increases from zero
to +∞. Eliminating this increase by introducing a term due to a nonminimal electromag-
netic interaction into form factor (8) would cause no concern if the appropriate values of the
free constants of the operator Λµν in (6) had been produced by some mathematically clear
procedure.

In the absence of such a procedure, we restrict ourself to establishing the possibility in
principle of fixing the numerical parameters of the operator Λµν such that both form factor (8)
and form factor (9) ensure a satisfactory approximation of the experimental data for the proton
in the domain of small values of the transferred momentum squared (Q2 ≤ 0.5 (GeV/c)2).
Because both form factors (8) and (9) are determined by the same quantity (the tensor Λµν

), it is not guaranteed a priori that for some choice of the free constants, the Q2 dependence
of both agrees with the experimentally observed dependence. We can see the validity of this
statement in the following example. We assume that pk = q in relation (6) for any index k.
Then only the even-rank tensors Γµνν1...νj make nonzero contributions to form factors (8) and
(9). As a result of numerical computations with the contributions of tensor operators through
the sixth rank taken into account, we find that we can ensure a decrease, which is nearly the
dipole one, of the magnetic form factor in (9) as Q2 increases. But electric form factor (8) then
turns out to be slowly increasing with Q2, which contradicts the experimental picture.

The results of approximating the experimental data for the electric and magnetic form
factors of the proton obtained using relations (8)–(10), (19), (20), (27)–(31), (34), (37), (40),
(49), (52)–(54), (58), (62), (68), (70), and (75)–(80) are shown in the figures 1 and 2 with the
solid line. They correspond to the constant choices

MCh0
√
2

3
= 6.9483, c0h1 = −1.4565, b0h2 = −0.6959,

a1 = 0, c20h3a2 = 0.8008, c0b0h4 = −0.1761. (81)

The dotted lines in the figures also show dipole approximations to the form factors,

GM = (1 + κ)

(

1 +
Q2

0.71

)−2

, GE =

(

1 +
Q2

0.71

)−2

, (82)

where Q2 is expressed in units of (GeV/c)2. Experimental data are taken from [18] and [19].

9. Concluding remarks

The obtained results are largely general and can be useful in investigating this or that
theory of non-Dirac fermions both with the rest spin 1/2 and with higher rest spins.

Based on the general structure of matrix second-rank antisymmetric operators given in Sec.
3, we might elsewhere analyze the possibility of the spin operator and the magnetic moment
operator of a non-Dirac particle with rest spin 1/2 essentially differing from each other. That,
together with the question already raised in [20] regarding the degree of justification for using
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Figure 1: The proton magnetic form factor Figure 2: The proton electric form factor

GM

2.79 GE

Q2 (GeV/c)2 Q2 (GeV/c)2

the Bargmann–Michel–Telegdi formula [21] to describe the relativistic particle spin rotation in
a constant homogeneous magnetic field, could be an additional argument for the necessity of
experimental verification of that formula.

The results of the part of this paper pertaining to the theory of ISFIR-class fields that
we investigated do not bury the prospects of luckily assigning the structured particles a local
Lagrangian of their electromagnetic interaction. At the same time, the results indicate the
existence of nontrivial points requiring serious thought. We believe it is useful, fully based on
the results obtained here and in [9], [13], [14], to analyze the version of the theory of ISFIR-class
fields whose free states satisfy the second-order equation

(c1∂
µ∂µ + c2Γ

µΓν∂µ∂ν + iΓµ∂µ −R)Ψ(x) = 0 (83)

with known ingredients (the L↑
+ group representation in (26), the matrix operators Γµ in (27),

and R in (53), (54)) and with some real constants c1 and c2. This equation can certainly
be reduced to a linear equation with spontaneously broken double symmetry, but the newly
introduced field is then to correspond to a proper Lorentz group representation whose direct-
sum decomposition contains irreducible representations with multiplicities not less than two.
Such representations were eliminated from all of our previous investigations by using condition
1 in [9]. Associating Eq. (83) with baryons is supported, in our view, by such a detail in the
experimental picture of nucleon resonances [22] as the proximity in masses of the lowest states
with opposite parities for spins 5/2, 7/2, and 9/2. In analyzing the mass spectrum of Eq.
(83), it would be desirable to first answer the question of whether a good correspondence with
experimental results for nucleons can be obtained in the case where the sequence of matrix
elements of ρ(N) in formulas (53) and (54) has an alternating sign (for example, when only one
parameter zi is fixed with z1 < −2). If this possibility is feasible, then we can hope to obtain
the minimal interaction contributions to electromagnetic form factors of a charged particle that
decrease with an increase in Q2 and also to be able to deal with a single matrix second-rank
antisymmetric tensor operator for both a charged and a neutral particle.

Acknowledgments. The author is deeply grateful to S.P. Baranov and V.E. Troitsky for
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